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The brain structural connectome is generated by a collection of white matter fiber

bundles constructed from di�usion weighted MRI (dMRI), acting as highways for

neural activity. There has been abundant interest in studying how the structural

connectome varies across individuals in relation to their traits, ranging from age

and gender to neuropsychiatric outcomes. After applying tractography to dMRI

to get white matter fiber bundles, a key question is how to represent the brain

connectome to facilitate statistical analyses relating connectomes to traits. The

current standard divides the brain into regions of interest (ROIs), and then relies

on an adjacency matrix (AM) representation. Each cell in the AM is a measure

of connectivity, e.g., number of fiber curves, between a pair of ROIs. Although

the AM representation is intuitive, a disadvantage is the high-dimensionality

due to the large number of cells in the matrix. This article proposes a simpler

tree representation of the brain connectome, which is motivated by ideas in

computational topology and takes topological and biological information on the

cortical surface into consideration. We demonstrate that our tree representation

preserves useful information and interpretability, while reducing dimensionality

to improve statistical and computational e�ciency. Applications to data from

the Human Connectome Project (HCP) are considered and code is provided for

reproducing our analyses.
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1. Introduction

The human brain structural connectome, defined as the white matter fiber tracts

connecting different brain regions, plays a central role in understanding how brain structure

impacts human function and behavior (Park and Friston, 2013). Recent advances in

neuroimaging methods have led to increasing collection of high quality functional and

structural connectome data in humans. There aremultiple large datasets available containing

1,000s of connectomes, including the Human Connectome Project (HCP) and the UK

Biobank (Essen et al., 2012; Bycroft et al., 2018). We can now better relate variations in the

connectomes between individuals to phenotypic traits (Wang et al., 2012; Hong et al., 2019;

Roy et al., 2019). However, the large amount of data also creates the need for informative

and efficient representations of the brain and its structural connectome (Galletta et al., 2017;

Zhang et al., 2018; Jeurissen et al., 2019; Pizarro et al., 2019; Sotiropoulos and Zalesky,

2019). The main focus of this article is a novel and efficient representation of the processed

connectome data as an alternative to the adjacency matrix (AM) as input to statistical

analyses.
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Diffusion magnetic resonance imaging (dMRI) uses diffusion-

driven displacement of water molecules in the brain to map the

organization and orientation of white fiber tracts on a microscopic

scale (Bihan, 2003). Applying tractography to the dMRI data, we

can construct a “tractogram” of 3D trajectories of white fiber tracts

(Jeurissen et al., 2019). It is challenging to analyze the tractogram

directly because (1) the number of fiber trajectories is extremely

large; (2) the tractogram contains geometric structure; and (3)

alignment of individual tracts between subjects remains difficult

(Zhang et al., 2019). Because of these challenges, it is common

to parcellate the brain into anatomical regions of interest (ROIs;

Desikan et al., 2006; Destrieux et al., 2010; Wang et al., 2010), and

then extract fiber bundles connecting ROIs. We can then represent

the brain structural connectome as a weighted network in the form

of an AM, a p by p symmetric matrix, with i, j-th entry equal to the

number of fiber curves connecting region i and region j, where p is

the total number of regions in the parcellation.

Statistical analyses of structural connectomes are typically

based on this AM representation, which characterizes the

connectome on a fixed scale depending on the resolution of ROIs.

However, research has shown that brain networks fundamentally

organize as multi-scale and hierarchical entities (Bassett and

Siebenhühner, 2013). Some research has attempted to analyze

community structures in functional and structural brain networks

across resolutions (Betzel and Bassett, 2017); however, these works

are limited to community detection. Brain atlases have anatomically

meaningful hierarchies but only one level can be captured by the

AM representation. If the lowest level in the atlas hierarchy with

the greatest number of ROIs is used, this creates a very high-

dimensional representation of the brain. The number of pairs of

ROIs often exceeds the number of connectomes in the dataset. This

presents statistical and computational challenges, with analyses

often having low power and a lack of interpretability (Cremers et al.,

2017; Poldrack et al., 2017).

For instance, to infer relationships between the connectome

and a trait of interest, it is common to conduct hypothesis tests for

association between each edge (connection strength between a pair

of ROIs) and the trait (Fornito et al., 2016; Gou et al., 2018; Wang

et al., 2019; Lee and Son, 2021). As the number of edges is very

large, such tests will tend to produce a large number of type I errors

without multiple testing adjustment. If a Bonferroni adjustment is

used, then the power for detecting associations between particular

edges and traits will be very low. A common alternative is to control

for false discovery rate, for example via the Benjamini-Hochberg

approach (Genovese et al., 2002). However, such corrections cannot

solve the inevitable increase in testing errors that occur with more

ROIs. An alternative is to take into account the network structure

of the data in the statistical analysis (see, for example Leek and

Storey, 2008; Fornito et al., 2016; Alberton et al., 2020). Such

approaches can potentially improve power to detect differences

while controlling type I errors through appropriate borrowing of

information across the edges or relaxation of the independence

assumption, but statistical and computational problems arise as the

number of ROIs increases. Finally, it is common to vectorize the

lower-triangular portion of the brain AM and then apply regression

or classification methods designed for high-dimensional features

(e.g., by penalizing using the ridge or lasso penalties).

To make the problems more concrete, note that a symmetric

p × p connectome AM has
(p−1)p

2 pairs of brain ROIs. For the

popular Desikan-Killiany parcellation (Desikan et al., 2006) with

p = 68,
(p−1)p

2 = 2, 278. A number of other common atlases have

many more than p = 68 brain regions, leading to a much larger

number of edges. Even if one is relying on data from a large cohort,

such as the UK Biobank, the sample size (number of subjects) is still

much smaller than the connectivity features, leading to statistical

efficiency problems without reducing the dimensionality greatly

from q =
(p−1)p

2 . Dimensionality reduction methods, such as

Principal Components Analysis (PCA), tensor decomposition, or

non-negative matrix factorization, can be a remedy for studying

relationships between the connectome and traits (Yourganov et al.,

2014; Smith et al., 2015; Zhang et al., 2019; Patel et al., 2020).

But, they may lack interpretability and fail to detect important

relationships when the first few principal components are not

biologically meaningful or predictive of traits.

In this paper, we propose a new representation of the brain

connectome that is inspired by ideas in computational topology, a

field focused on developing computational tools for investigating

topological and geometric structure in complex data (Carlsson,

2009; Edelsbrunner and Harer, 2010). A common technique in

computational topology is persistent homology, which investigates

geometry/topology of the data by assessing how features of the data

come and go at different scales of representation. Related ideas

have been used successfully in studying brain vascular networks

(Bendich et al., 2016), hippocampal spatial maps (Dabaghian et al.,

2012), dynamical neuroimaging spatiotemporal representations

(Lee et al., 2011; Geniesse et al., 2019), neural data decoding

(Rybakken et al., 2019), and so on (Sizemore et al., 2019). We

propose a fundamentally different framework, which incorporates

an anatomically meaningful hierarchy of brain regions within a

persistent homology approach to produce a new tree representation

of the brain structural connectome. This representation reduces

dimensionality substantially relative to the AM approach, leading

to statistical and computational advantages, while enhancing

interpretability. After showing our construction and providing

mathematical and biological justification, we contrast the new

representation with AM representations in analyses of data from

the Human Connectome Project (HCP).

2. Method

2.1. Tree construction

There is a rich literature defining a wide variety of parcellations

of the brain into regions of interest (ROIs) that are motivated by

a combination of biological and statistical justifications (Desikan

et al., 2006; Destrieux et al., 2010; Klein and Tourville, 2012). The

ROIs should ideally be chosen based on biological function and to

avoid inappropriately merging biologically and structurally distinct

regions of the brain. Also, it is important to not sub-divide the

brain into regions that are so small that (a) it may be difficult to

align the data for different subjects and (b) the number of ROIs is

so large that the statistical and computational problems mentioned

in the introduction are exacerbated. Based on such considerations,
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the Desikan-Killiany (DK) atlas is particularly popular, breaking the

brain into p = 68 ROIs (Desikan et al., 2006).

A parcellation such as DK is typically used to construct an

AM representation of the structural connectome at a single level

of resolution. However, we instead propose to introduce a multi-

resolution tree in which we start with the entire cortical surface

of the brain as the root node, and then divide into the right and

left hemisphere to produce two children of the root node. We

further sub-divide the two hemispheres into large sub-regions, then

divide these sub-regions into smaller regions.We continue this sub-

division until obtaining the regions of DK (or another target atlas)

as the leaf nodes in the tree. In doing this, we note that there is

substantial flexibility in defining the tree structure; we need not

choose a binary tree and can choose the regions at each level of

the tree based on biological function considerations to the extent

possible. Finally, we summarize the connectivity information at

different resolutions in the weights of the tree nodes.

In this article, we focus primarily on the following tree

construction based on the DK atlas for illustration, while hoping

that this work motivates additional work using careful statistical

and biological thinking to choose the regions at each layer of the

tree. The DK parcellation is informed by standard neuroanatomical

conventions, previous works on brain parcellations, conversations

with expert scientists in neuroscience, and anatomic information

on local folds and grooves of the brain (Desikan et al., 2006).

We use the Freesurfer software to obtain the DK parcellation

for each individual brain, and DK parcellation divides each

hemisphere into 34 regions that can be organized hierarchically

(Desikan et al., 2006). Specifically, each hemisphere has six regions:

frontal lobe, parietal lobe, occipital lobe, cingulate cortex, temporal

lobe, and insula. All of these regions, except the insula, have

multiple sub-regions, many of which are further sub-divided in

the DK atlas. The full hierarchy can be found in Appendix 1.1

(Supplementary material). We calculate the weight of each node

as the sum of all connections between its immediate children. For

instance, the weight at the root node will equal the sum of all the

inter-hemisphere connections. The weight of the left hemisphere

node will equal the sum of all connections among the left temporal

lobe, frontal lobe, parietal lobe, occipital lobe, cingulate cortex,

and insula. The weight of the left temporal lobe is the sum of all

connections between regions within the temporal medial aspect

and lateral aspect. We continue this calculation for all nodes that

have children. The weights of a leaf node will be all connections

within that region, or equivalently, the diagonal element at that

region’s index on the AM representation.

To rephrase the tree construction in math notations, let A =

A1
1 be the whole brain, A2

1 be the left hemisphere, A2
2 be the

right hemisphere, and Al
i be the i-th region at level l, where l =

1, · · · , L and i = 1, · · · ,Nl. For example, in DK, L = 5, N1 =

1, N2 = 2, N3 = 12,N4 = 44,N5 = 32 (Appendix 1.1 in

Supplementary material). Define the weight of region Al
i, denoted

byHl
i , asH

l
i := number of fibers connecting any two children of Al

i

for all l = 1, 2, · · · , L and i = 1, · · · ,Nl. For example, for DK-

based tree, H2
1 is the number of fibers connecting children of left

hemisphere, that is, fibers between temporal lobe, cingulate cortex,

occipital lobe, parietal lobe, and frontal lobe. Similarly, H3
1 is the

number of fibers connecting children of temporal lobe, that is, fibers

between medial aspect and lateral aspect.

Figure 1 provides an illustration of the DK-based tree structure

and the connections summarized at each node. Often the

connections within the leaf nodes are not estimated in the AM

representation (i.e., the diagonal elements of an AM are set to

zero), thus, they have weights zero and are omitted from the

figure. We also introduce a more compact visualization of the

tree based on circle chord plots. Figure 2 shows the steps in our

pipeline to construct a brain tree. The final output circle plot

displays bundles of white matter tracts as overlapping chords scaled

inversely proportional to the level of the tree they belong to and

color-coded by the node they belong to.

2.2. A persistent homology interpretation

Persistent homology is a method for computing topological

features of a space at different resolutions. As quantitative features

of noisy data, persistent homology is less sensitive to the choice of

coordinate andmetric and robust to noise (Carlsson, 2009). The key

construction in persistent homology is the filtration, a multi-scale

structure similar to the brain network. As a result, we can interpret

the above defined Hl
k
as corank of the persistent homology. As

a rigorous definition of persistent homology is highly technical,

we present a simple version and leave the rigorous version and

the proof to the Appendix in Supplementary material. For relevant

background in topology (see Hatcher, 2002; Munkres, 2016).

Theorem 1. Hl
k
is the corank of the persistent homology.

Theorem 1 provides a topological interpretation of Hl
k
, and

partially explains why the tree T = (A,H) is a powerful

representation of the brain network. It states thatHl
k
, our proposed

summary statistic, is the corank of the persistent homology. In

simpler terms, this means that our statistic measures the “holes”

or loops in the structure of the brain network that persist across

different levels of partition. These holes can be thought of as

stable features of the network, in that they remain even when

we change our perspective or level of detail. As we increase

the resolution (i.e., when we move from looking at large-scale

structures to focusing on smaller-scale details), some holes may

“close up” (disappear), while others continue to exist. These

persistent holes can inform us about the topological structure of

the brain network. Thus,Hl
k
, by capturing these persistent features,

provides a summary statistic that is less sensitive to changes in

perspective and robust against noise.

We consider the tree T = (A,H) to be a powerful

representation because it captures not just the connections between

different regions of the brain (as the adjacency matrix A does),

but also the persistent homological features (captured by Hl
k
). This

allows us to include topological information, like the persistence

of holes at different scales, which can potentially capture complex

structural information about the brain network that a simple

adjacency matrix might miss. In effect, T = (A,H) provides us with

a richer, more nuanced view of the brain network, thus making it a

powerful representation for brain connectivity analysis.
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FIGURE 1

Visualization of the DK tree structure and connections summarized at each node on the brain image. Leaves, including the insula, have no internal

connections and are omitted for readability. Individual brains were created using the brainconn R package (Orchard et al., 2021).

3. Results

3.1. Data description

We investigate our tree representation’s ability to preserve

information from the AM representation while improving

interpretability in analyses relating brain structures to behavioral

traits. We use neuroimaging data and scores on various behavioral

assessments from the HCP (Glasser et al., 2013, 2016). The HCP

collects high-quality diffusion MRI (dMRI) and structural MRI

(sMRI) data, characterizing brain connectivity of 1,200 healthy

adults, and enables comparison between brain circuits, behavior

and genetics at the individual subject level (Essen et al., 2012). We

use data from the 2017 release accessed through ConnectomeDB.

Details on data acquisition and preprocessing pipeline of dMRI

and sMRI data in the HCP can be found in Essen et al. (2012)

and Glasser et al. (2013, 2016). To produce connectome data

from raw dMRI/sMRI data, we use the reproducible probabilistic

tractography algorithm in Girard et al. (2014) to construct

tractography data for each subject, the DK atlas (Desikan et al.,

2006) to define the brain parcellation, and the preprocessing

pipeline in Zhang et al. (2018) to extract weighted matrices of

connections. More details of these steps can be found in Zhang

et al. (2019). In the extracted data matrices, each connection

is described by a scalar number. The HCP data include scores

for many behavioral traits related to cognition, motor skills,

substance use, sensories, emotions, personalities, and many

others. Details can be found at https://wiki.humanconnectome.

org/display/PublicData/HCP-YA+Data+Dictionary-+Updated+

for+the+1200+Subject+Release. The final data set consists of

n = 1, 065 brain connectomes and 175 traits. We construct the

tree representations of the connectomes based on the construction

described in Section 2.1.

We conduct purely visual exploratory comparisons of the

tree and AM representation in Figure 3. Figure 3A shows how

four example brain connectomes are visualized differently under

two representations. We see that different nodes in the tree

representation correspond to different pixel patterns in the AM

representation. Figure 3B shows the percent difference in brain

connections between the top and bottom ten percent of scores

in four cognitive tasks. The percent difference in the AM

representation of a trait is calculated as
CAM
top −CAM

bottom

CAM
bottom

, where CAM
top is

the average AM of people who score in the top 10% of that trait,

and CAM
bottom

is the average AM of people who score in the bottom

10%. Similarly, the percent difference in the tree representation of

a trait is calculated as
Ctree
top −Ctree

bottom

Ctree
bottom

, where Ctree
top is the average tree

of people who score in the top 10% of that trait, and Ctree
bottom

is

the average tree of people who score in the bottom 10%. Figure 3B

shows the visualization of the tree representation as amore effective

exploratory analysis tool to find regions of the brain with large

percentage change between the top and bottom scores. On the other
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FIGURE 2

The tree construction pipeline: first, tractography and Desikan-Killiany (DK) protocol are used to estimate an adjacency matrix; then, the adjacency

matrix and a hierarchy based on the DK protocol are combined to produce the tree representation. We introduce a compact circle chord plot that

shows the tree representation of white matter fiber tracts connecting brain regions from the DK protocol. Connections are color-coded by the node

they belong to, the same color codes as in Figure 1, and scaled inversely proportional to the level they belong to in the tree.

hand, the AM, being a much higher dimensional representation,

can capture connection-specific associations, especially negative

ones that get washed out at the brain-region level.

To quantitatively compare the strengths and weaknesses of

the AM and tree-based representations of the brain connectome

in the next subsections, we use a simple two-step approach: first

vectorizing the connectome data, and then applying a regression

method. Since a connectomematrix is symmetric, we only vectorize

the upper triangular part, resulting in a 2,278-dimensional vector

for each matrix. We also remove pairs of ROIs that show no

variability in connectivity across subjects, reducing the vectorized

matrices to 2,202 dimensions. Self-edges are not recorded in the

connectome matrices, so the leaves in the tree representation have

zero weights. As a result, we remove the leaf nodes, leaving the

vectorized trees to be 23-dimensional instead of 91-dimensional.

To apply regression algorithms, we first reduce the dimension

of the adjacency matrix to K ≪ 2, 202 by selecting the top principal

components (PCs). We observed that the regression MSEs of

commonly used algorithms including linear regression, decision

trees, support vector machines (SVM), boosting, Gaussian process

(GP) regression, etc., did not decrease when we increased the

number of PCs, and Zhang et al. (2019) also observed that the

regression performance is robust for K = 20–60. As a result, we

keep the first K = 23 PCs to match the dimension of the tree

for a fair comparison. We refer to the data from the vectorized

trees as Dtree and that from principal components of the vectorized

matrices as DPCA.

3.2. Canonical correlation analysis

Human brain connectivity has been shown to be capable

of explaining significant variation in a variety of human traits.

Specifically, data on functional and structural connectivity have

been used to form latent variables that are positively correlated with

desirable, positive traits (i.e., high scores on fluid intelligence or

oral reading comprehension) while also being negatively correlated

with undesirable traits (i.e., low sleep quality, frequent use of

tobacco, or cannabis; Smith et al., 2015; Tian et al., 2020). In this

first analysis, we compare how strongly latent variables inferred

from the two representations are associated with the perceived

desirability of traits. We choose to work with a subset of 45 traits

that have been shown to strongly associate with brain connectome

variations, including cognitive traits, tobacco/drug use, income,

years of education, and negative and positive emotions (Smith et al.,

2015; Zhang et al., 2019). We include only traits with continuous

values to simplify the analyses. The full list of variables used can

be found in the Appendix (Supplementary material). We will use

a statistical method called canonical correlation analysis (CCA),

which finds linear combinations of the predictors that are most
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FIGURE 3

Examples of adjacency matrices and corresponding tree representations of brain connectomes. (A) The sample average from the HCP data (left

most) and its modifications so that di�erent regions of the brain (i.e., the frontal lobe, temporal lobe, and occipital lobe) have denser connections.

Because these modifications are unrealistic and only meant to better distinguish how connections are visualized di�erently in the AM and tree

representations, color scales are omitted. Values in the adjacency matrices are normalized for visual clarity. (B) Percent di�erence in brain

connections between the top and bottom ten percent of scores in four cognitive tasks.

correlated with some other linear combinations of the outcomes. In

our case, the predictors are principal components of the vectorized

AM or features of the vectorized trees, and the outcomes are scores

measured on 45 traits. Mathematically, let X ∈ R
n×p be the feature

matrix (n = 1, 065, p = 23), and Y ∈ R
n×q be the outcome matrix

(q = 39 with some traits being removed due to extensive missing

values, see the next paragraph for more details). Additionally, let

ak ∈ R
p and bk ∈ R

q, k = 1, ..., min(p, q) be pairs of linear

transformation of the data. We refer to (rk, sk) = (Xak,Ybk)

as the feature and outcome canonical variates or the kth pair of

canonical variates. CCA aims to learn ak, bk such that (ak, bk) =

argmax
ak ,bk

corr(rk, sk), so the linear transformations maximize the

correlation between components of the canonical variates pair.

Pairs of canonical variates are also constrained to be orthogonal,

that is, rT
k
rh = 0 and s

T
k
sh = 0 for k 6= h.

Since this analysis considers all traits simultaneously, we

remove traits with extensive missing values (i.e., more than 10% of

all observations) and are left with 39 traits.We then normalizeDtree,

DPCA, and these 39 trait scores, and fill in missing values with the

feature’s mean. We fit two CCAs using Dtree and DPCA separately,

and use the Wilks’s lambda test to check that the first canonical

variate pair, which has the largest co-variation, is significant at the

5% level in each model. We hand-label the traits as desirable or

not desirable based on previous research (Smith et al., 2015; Tian

et al., 2020). Figure 4 plots the correlation of the trait scores with the

first feature canonical variate and color-codes traits by desirability.

Traits with smaller fonts have smaller contributions to the linear

combination that makes up the first outcome canonical variate.

It shows that desirable traits tend to be more highly negatively

correlated with the first feature canonical variate compared to the

undesirable traits, which tend to be weakly correlated. This is most

clear with traits with strong signal such as fluid intelligence and

spatial orientation. With the same number of features, the tree

representation produces a canonical variate that can separate traits

into groups of the same desirability slightly better than the principal

components of the AM can.
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FIGURE 4

Correlations between behavioral traits and the first canonical variate extracted from 23 principal components of the AM compared to the 23 non-leaf

nodes of the tree representation. The y-axis has been transformed so that traits do not overlap. The font size of each trait indicates the magnitude of

the coe�cients of a linear combination that defines the first canonical variate.

3.3. Prediction

Additionally, we consider the performance of these

representations in predictive tasks. We hypothesize that if

the tree representation preserves important information from the

AM representation, they will provide comparable performance in

predicting trait scores. Since in Section 3.2, cognitive traits generally

have the largest correlations with the first feature canonical variate,

we will examine cognitive traits in more details in this section.

Specifically, we include all 45 cognitive traits in the HCP data,

including different metrics of the same trait. We fit a baseline

model that returns the sample mean and 19 popular machine

learning models (including linear regression, decision tree, SVM,

ensemble trees, GP regression, and their variants) to the Dtree and

DPCA data. To evaluate predictive performance, we consider two

scale-free metrics: (1) correlations between predictions and true

outcomes and (2) the percentage of improvement in test MSE

compared to the baseline predictor. We calculate these metrics

using five-fold cross validation repeated 10 times. Figures 5,

6 shows the cross-validated predictive performance for two

representative regression algorithms: linear regression and GP

regression. Linear regression represents a simple, interpretable,

and widely used algorithm, while GP regression is a flexible

algorithm that has the best overall performance among the 19

algorithms we studied. For each algorithm and each trait, the

x-axis is the performance of the AM representation while the

y-axis is that of the tree representation. Points above the diagonal

line y = x indicate better performance by the tree representation,

while points below the line indicate better performance by

the AM representation.

Overall, the performance of both representations seems

similar. However, for most traits, even when considering the
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FIGURE 5

Percentage of change in MSE compared to baseline of linear regression and GP regression using tree and AM representation in predicting 45

cognitive traits.

FIGURE 6

Correlation between predictions and observed outcomes of linear regression and GP regression using tree and AM representation in predicting 45

cognitive traits.

GP regression with best overall performance, the correlation is

smaller than 0.2, and the improvement in test MSE is <3%.

This suggests that the vectorized brain connectivity might not

be relevant to predicting most of these traits. If we focus on

traits with large correlations or improvement in MSE, the tree

representation has better performance in terms of both correlation

and improvement in MSE for five out of eight traits with

correlations >0.2. These traits include fluid intelligence, picture

vocabulary, spatial orientation, and oral reading recognition, which

also have the largest correlations with the canonical variate in

Section 3.2.

3.4. Interpretability of regression

Finally, we compare interpretability of the two representations.

Scientists are often interested in identifying structures in the

connectomes that are associated with traits to answer questions

such as which kind of connections might be damaged by routine

use of drugs or which might be responsible for enhanced working

memory. Therefore, we compare interpretability, in terms of

biologically meaningful inference, of regression results using the

two representations. We focus on spatial orientation (number

correct), picture vocabulary (age-adjusted), fluid intelligence
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(correct responses), oral reading recognition (age-adjusted), and

working memory (age-adjusted) because these traits show strong

associations with the connectomes in the CCA and prediction tasks.

We fit a separate linear regression with Bayesian model

selection on Dtree and DPCA to infer associations between brain

connectomes and the traits mentioned above. Bayesian model

selection accounts for uncertainty in the model selection process

by posterior probabilities for the different possible models. The

regression coefficients are averaged across all models, weighted

by estimated model posterior probabilities. For feature selection,

we define important features as those with posterior inclusion

probabilities of more than 0.75. For models using Dtree, we simply

interpret posterior means and credible intervals of the estimated

effects of important features directly. Figures 7, 8 (left column)

show tree features whose colors are based on their estimated

coefficients, and opacity are based on their posterior inclusion

probabilities.

For the models using DPCA, after selecting important principal

components, we can calculate a regression coefficient for each brain

connection from the regression coefficients of these important

principal components. Let X be an n × p matrix of vectorized

brain connections whose columns have been standardized. Recall

that PCA is based on the singular-value decomposition of the data

matrix X = UDVT , where VVT = I,UTU = I and D is a diagonal

matrix of p non-negative singular values, sorted in decreasing

order. The jth principal axis is the jth eigenvector or the jth column

of V , and the jth principal component is the jth column of UD.

With K PCs, we get a rank-K approximation of X ≈ UKDKV
T
K

where MK contains the first K columns of matrix M. Applying the

approximation to the linear model Y = Xβ + ǫ ≈ UKDKθ + ǫ,

we get VT
Kβ ≈ θ , where θ is a K-vector of regression coefficients of

the principal components. There are multiple generalized inverses

β̂ = VKθ + b for b such that VT
Kb = 0. We will use b = 0 to

get the standard least-norm inverse β̂ = VKθ as estimates of the

regression coefficient for the original brain connections (Bernardo

et al., 2003). We interpret the results based on 50 connections with

the largest coefficient magnitude. Figures 7, 8 (right column) show

these connections colored by their estimated coefficients.

The tree-based model finds no structure statistically significant

(with posterior inclusion probability>0.75) in predicting enhanced

working memory. This is consistent with previous sections

showing weak signals for associations between working memory

and brain connectomes. The matrix-based model finds some

cross-hemispheric connections between temporal lobes positively

correlated with enhanced memory, which is supported by prior

research (Eriksson et al., 2015). However, it also finds many

right hemispheric connections negatively correlated with these

scores, which contradicts some prior findings (Poldrack and

Gabrieli, 1998). For oral reading recognition, the models find cross-

hemispheric and left-hemispheric connections important in both

the tree and adjacency matrix representations. This is consistent

with prior research that showed better reading ability associated

with more cross-hemispheric connections between frontal lobes

(Zhang et al., 2019) and with increased fractional anisotropy in

some left hemispheric fiber tracts (Yeatman et al., 2012). The

matrix-based model additionally finds many connections across

all regions in the right hemisphere to be important, among

which the insula, frontal opercular, and lateral temporal lobe

have previously been found to correlate with this score (Kristanto

et al., 2020). On the other hand, the tree-based model found

increased connectivity in the right occipital lobe to negatively

correlate with higher scores. While healthy adults typically have

larger left occipital lobar volume, research has found associations

between developmental stuttering and phonological dyslexia with

rightward occipital asymmetry or no occipital asymmetry (Foundas

et al., 2003; Zadina et al., 2006), which is consistent with our

tree-based model’s result. For fluid intelligence, the tree-based

model finds connections within the left hemisphere and between

hemispheres to be important. The matrix-based model finds

within-hemisphere connections, especially those involving the

frontal lobes, to be important. The fluid intelligence score serves as

proxy for “general intelligence” (Raven, 2000; Gershon et al., 2014),

which relies on many sub-networks distributed across the brain

(Dubois et al., 2018). For the vocabulary task, the tree-based model

finds connections within the left hemisphere, while the matrix-

based model finds connections within both hemispheres, to be

important. Both results support existing findings that interpreting

meanings of words activates many regions across the brain (Huth

et al., 2016). Finally, in the spatial orientation task, the tree-

based model finds cross-hemispheric connections to be important

and positively correlated with better scores, while the matrix-

based model does for connections between regions within each

hemisphere (Figure 8, bottom). Both are somewhat similar to

prior research that found decreased cross-hemispheric and right

hemispheric connectivity to be associated with impaired spatial

recognition of stroke patients (Ptak et al., 2020). Overall, we

observe that the results from the tree representation are easier to

interpret because of the inherent low-dimensional and biologically

meaningful structure. The results from the AM representation

tend to be noisier, and more likely to involve negative correlations

between connectivity and better performance in cognitive tasks.

Potentially, the representations may better encode different kinds

of information that are both important.

4. Discussion

We propose a novel and efficient tree representation based

on persistent homology for the brain network. Through analyses

of the HCP data, we show that the tree representation preserves

information from the AM representation that relates brain

structures to traits while being much simpler to interpret.

Simultaneously, it reduces the computational cost and complexity

of the analysis because of its inherent lower dimension. We believe

the advantages of the tree representation will be more evident on

small brain imaging data sets.

Our new representation opens doors to new mathematical and

statistical methods to analyze brain connectomes; in particular,

taking into account the tree structure of the data. Topological

data analysis (TDA) uses notions of shapes and connectivity to

find structure in data, and persistent homology is one of the most

well-known TDA methods (Wasserman, 2017). TDA has been

used successfully in studying brain networks (Saggar et al., 2018;

Gracia-Tabuenca et al., 2020), but we provide a fundamentally

different approach. Our analyses of the connectome trees in this

paper are simplistic. We treat tree nodes as independent and
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FIGURE 7

Brain connectome structures significantly associated with each trait inferred using the tree representation (left) and principal components of the AM

representation (right). Colors represent the sign and magnitude of significant (i.e., posterior inclusion probability >0.75) regression coe�cients. For

tree-based results, the opacity also represents the posterior inclusion probability to improve the visibility of bundles of connections with larger e�ects.

non-interacting. Future work should consider the tree structure

to enforce dependence between the nodes, and hence, between

their effects on behavioral traits. The tree structure may also be

exploited to model interactions between connectome structures

across different scales. For instance, Bayesian treed models are

flexible, nonparametric methods that have found widespread and
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FIGURE 8

(Continue) Brain connectome structures significantly associated with each trait inferred using the tree representation (left) and principal components

of the AM representation (right). Colors represent the sign and magnitude of significant (i.e., posterior inclusion probability >0.75) regression

coe�cients. For tree-based results, the opacity also represents the posterior inclusion probability to improve the visibility of bundles of connections

with larger e�ects.

successful applications in many domains (Linero, 2017). Existing

treed models might prove unwieldy to fit and interpret on AM-

based brain networks but their modifications may fit the nature of

our tree representation well.
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