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Robot-assisted minimally invasive surgery (RAMIS) has gained significant traction 
in clinical practice in recent years. However, most surgical robots rely on touch-
based human-robot interaction (HRI), which increases the risk of bacterial 
diffusion. This risk is particularly concerning when surgeons must operate 
various equipment with their bare hands, necessitating repeated sterilization. 
Thus, achieving touch-free and precise manipulation with a surgical robot is 
challenging. To address this challenge, we propose a novel HRI interface based 
on gesture recognition, leveraging hand-keypoint regression and hand-shape 
reconstruction methods. By encoding the 21 keypoints from the recognized 
hand gesture, the robot can successfully perform the corresponding action 
according to predefined rules, which enables the robot to perform fine-tuning 
of surgical instruments without the need for physical contact with the surgeon. 
We  evaluated the surgical applicability of the proposed system through both 
phantom and cadaver studies. In the phantom experiment, the average needle 
tip location error was 0.51  mm, and the mean angle error was 0.34 degrees. In 
the simulated nasopharyngeal carcinoma biopsy experiment, the needle insertion 
error was 0.16  mm, and the angle error was 0.10 degrees. These results indicate 
that the proposed system achieves clinically acceptable accuracy and can assist 
surgeons in performing contactless surgery with hand gesture interaction.
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1. Introduction

Robot-assisted minimally invasive surgery (RAMIS) is now well established in clinical 
practice due to its high precision and minimal invasiveness (Nagyné Elek and Haidegger, 2019; 
Haidegger et al., 2022). In RAMIS, preoperative medical image data is utilized to plan the surgical 
path, while the robot performs the approach during the surgery as per the plan. Surgeons must 
manipulate various software to control the navigational surgical robot throughout the procedure, 
especially to fine-tune surgical instruments with their perspective in complex surgeries. However, 
at present, adapting the surgical robot by manual means increases the risk of bacterial diffusion, 
rendering the surgeon unable to control the robot during surgery while complying with the high 
sterile requirements. To address this issue, various types of study have been proposed. Some 
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studies have attempted to solve this problem by using other devices 
such as joysticks and pedals to transform the surgeon’s command into 
actions (Díaz et al., 2014; Ohmura et al., 2018). Nevertheless, in the 
case of joysticks, human-robot interaction (HRI) tasks applied to 
surgical robots are performed through master–slave operations, with 
which has not been effectively resolved on the movement difference 
between the master and slave console and the problem of over-
operation. On the other hand, the pedal-based solutions are still 
limited by behavioral consistency, which impedes their use for every 
surgeon in RAMIS, particularly those who are unskilled. Recently, 
several studies have attempted to address this issue through contactless 
HRI using touch-free solutions (Nestorov et al., 2016; Cho et al., 2018; 
Despinoy et  al., 2018), with a particular focus on hand gesture 
recognition-based HRI. The researchers have made significant progress 
in modeling and analyzing hand gesture recognition. These studies 
have adopted various frameworks to predict users’ intentions in HRI 
tasks and enable robots to perform corresponding actions, including 
probabilistic graphical models of temporal processes, deep learning 
techniques with supervised learning, and other methods including 
unsupervised learning algorithms, among others (Van Amsterdam 
et al., 2021; Cao et al., 2022).

Probabilistic graphical models of temporal processes, which have 
been widely utilized in speech recognition for time series analysis, 
have also served as a source of inspiration for gesture recognition in 
HRI tasks (Ahmidi et al., 2017). Chen et al. (2015) introduces a novel 
hand gesture recognition model based on hidden Markov models 
(HMM), which could identify a worker’s gesture patterns and 
intentions with reliable accuracy. Mavroudi et al. (2018) proposes a 
framework for fine-grained gesture segmentation and recognition, 
which employs a Conditional Random Field (CRF) model and a 
frame-level representation based on discriminative sparse coding. 
Reiley et al. (2008) utilizes Linear Discriminant Analysis (LDA) and 
HMM to build models for gesture recognition, which improved the 
recognition rate by promoting discrimination between sub-gestures 
instead of the entire gesture, thus enabling them to capture the internal 
variability of each segment. The aforementioned models have been 
implemented effectively to analyze the kinematic signals for the da 
Vinci surgical robot. Deep learning techniques, specifically the 
implementation of deep convolutional neural networks (CNN), have 
been employed for the purpose of recognizing gestures. In the study 
by Oyedotun and Khashman (2017), the image is first preprocessed 
using binarization, followed by setting a threshold to locate the 
gesture, and finally, a CNN is utilized to recognize the gestures. 
Similarly, ElBadawy et  al. (2017) uses a 3D CNN-based gesture 
recognition system to analyze normalized images, achieving a 
recognition rate averaging 90%. Huynhnguyen and Buy (2021) 
introduces a 2-stage surgical gesture recognition approach, where one 
stage detects the transition between consecutive gestures using a 3D 
CNN, and the other stage classifies video clips into corresponding 
gesture classes based on a long short-term memory (LSTM) neural 
network. Experimental results using JIGSAWS’s suturing video dataset 
show that the proposed method achieves an accuracy of over 70% for 
both tasks. Moreover, Fang et al. (2019) presents a gesture recognition 
system that combines generative adversarial network (GAN) and 
CNN, achieving better results with fewer samples.

Furthermore, there are alternative approaches for gesture 
recognition in HRI tasks. Huang et  al. (2011) presents a gesture 
recognition approach that relies on Gabor filters and a support vector 

machine (SVM) classifier. Their proposed method is highly resistant 
to variations in illumination, leading to recognition rates that improve 
from 72.8 to 93.7%. Tarvekar (2018) introduces a skin threshold 
segmentation approach for recognizing and categorizing gestures by 
segmenting hand regions in images and extracting color and edge 
features through an SVM classifier. Shi et al. (2021) proposes a novel 
domain adaptive framework for robotic gesture recognition that aligns 
unsupervised kinematic visual data, enabling the real robot to acquire 
multi-modality knowledge from a simulator. The empirical evidence 
indicates that the model has the potential to significantly enhance the 
operational efficiency of the real robot, resulting in a noteworthy 
12.91% increase in precision. Moreover, there exist cases in which the 
recognition of hand gestures is facilitated through the utilization of 
Leap Motion™ and Kinect™ devices (Ahmad et  al., 2016; Jin 
et al., 2016).

In current RAMIS procedures, limited interactions between the 
surgeon and the robot restrict surgical efficiency. And it is apparent 
that the majority of present-day studies employ relatively intricate 
techniques to achieve specific HRI tasks using various devices. 
However, little study has presented a comprehensive framework for 
gesture recognition that exhibits strong generalization capabilities and 
high efficiency, which can be applied effectively to address the problem 
of the contactless HRI in RAMIS. To this end, we propose a concise 
and effective framework for navigational surgical robots to perform 
actions in response to the surgeon’s gestures in this paper, utilizing 
touch-free solutions based on hand gesture recognition technology. 
This framework facilitates the robot to execute surgical interventions 
under the guidance of an expert surgeon and a surgical navigation 
system, resulting in enhanced medical treatment efficacy and 
conserved healthcare resources, while also ensuring aseptic conditions 
that impede bacterial dissemination.

2. Materials and methods

2.1. System composition

As depicted in Figure  1, the collaborative surgical navigation 
robot system is primarily composed of a computer workstation, an 
optical positioning-based surgical navigator, auxiliary accessories such 
as surgical probes and locators, and a robot module that includes a 
7-DoF robotic arm and its controller. Both the operating table and 
surgical navigator are mobile devices that can be adjusted to fit the 
patient and surgeon’s positions. The workstation and its internal 
software connect the surgical navigator and the robot into a closed-
loop structure. The surgical navigator tracks the patient and surgical 
instruments in real-time by positioning reflective balls mounted on 
the operating table and the robot manipulator. The collaborative 
surgical robot, with its terminal surgical instruments, can 
be positioned flexibly around the operation table and controlled by the 
surgeon’s hand gestures. The navigator constructs an enhanced 
surgical field by integrating preoperative medical information of 
patients (e.g., target organs, vessels and planned surgical paths) with 
the location and target points of intraoperative instruments attached 
to the actual patient body to provide surgeons with augmented visual 
information. With the direct navigation interface, hand gesture 
guidance can be used as a direct and natural method to interact with 
the surgical robot.
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2.2. System workflow

The figure displayed in Figure 2 outlines the workflow of the 
proposed surgical system. The computer workstation serves as 
the main control and computation center, enabling robot control, 
generating enhanced surgical visual information, and supporting 
human-robot interaction. The hardware layer of the collaborative 
surgical robot system is denoted with blue dotted lines, while the 
human subjects involved in the touch-free surgical procedure, 
such as the surgeon, surgical navigation interface, surgical robot 
motion/execution, patient, and HRI interface, are located above 
this blue layer. The data flow is indicated by black arrow lines, 
including control and feedback flows between the subjects and 
hardware modules. The surgeon-centered interaction flow is 
shown with red dotted lines, highlighting the data flow among 
the subjects. For this contactless robot-assisted puncture 
treatment with a surgical navigation interface, a semi-automatic 
mode of surgical procedure is proposed. Surgeons are required 
to select surgical targets and needle insertion sites through 
patient image guidance before surgery and plan corresponding 
surgical paths. During surgery, surgeons can fine-tune the 
needle’s posture directly through hand gesture interaction. The 
generation of the surgical navigation interface is based on our 
previous research (Liu et al., 2017; Chen et al., 2021). This paper 
centers on the attainment of contactless HRI objectives, 
specifically, the detection of gestures and the subsequent control 
of surgical robots.

2.3. Gesture recognition model

In this section, our attention is directed towards the gesture 
recognition module of our approach. The specific architecture of the 
model is illustrated in Figure 3.

The main function of the hand gesture recognition network is to 
process monocular images captured by the camera to acquire the 
desired pose and shape of the hand. The 3D pose of the hand is denoted 
by the 3D position of keypoints, while the shape of the hand is 
represented in the form of a mesh. We have identified a total of 21 
keypoints on the hand as regression targets, which include the position 
of the wrist, finger joints, and fingertips. The 3D position of each key 
point is denoted by the (x, y, z) coordinates. The hand shape is 
represented by a mesh consisting of 778 nodes, with associated 
connection information between them. We represent the mesh in the 
network as a graph G(V, E), where V represents the 778 nodes and E 
denotes the connection information between them. Our gesture 
recognition module employs a Unet architecture and utilizes a multi-
layer convolutional network for feature extraction, resulting in a feature 
map of varying sizes. This is followed by convolution and upsampling 
to extend the feature map and combine it with the previously extracted 
features at each layer. Our approach is divided into several distinct parts.

2.3.1. Keypoint regression branch
In order to simultaneously regress the pose of both hands, a 

regression approach is utilized to predict the keypoint locations. The 

FIGURE 1

Overview of the non-contact collaborative surgical navigation robot system.
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position information of the hand keypoints, with a shape of (2, 21, 3), 
is unfolded into a 126-dimensional vector, which is then paired with 
dataset labels to calculate the L2 loss values. This enables the network 
to learn how to regress the keypoints. Eq. (1) depicts the generation 

of the keypoint positions. The regression process employs the last 
layer of the encoder output, which passes through multiple 
homogeneity networks and is subsequently expanded into a 
126-dimensional vector that represents the 3D positions of joints.

FIGURE 3

The concrete architecture of the hand gesture recognition model.

FIGURE 2

Workflow of the hand-gesture based surgeon-robot cooperation.
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where P∈ 2 21 3× ×
 indicates the vector of 126 dimensions, 

Ximg  is the RGB image, fen  and fde  represent encoder and decoder 
of the regression branch respectively, and f flat  denotes a flatten 
function that can convert a three-dimensional matrix to a 
126-dimensional vector.

2.3.2. Auxiliary prediction branch
Three distinct auxiliary methods are employed to aid the model 

in making accurate predictions. These methods consist of hand 
segmentation, density mapping, and 2D pose. The 2D pose branch 
transforms the ultimate feature map of the Unet architecture into 21 
heatmaps, which denote the 2D positions of both hands. Meanwhile, 
the hand segmentation branch restores the feature map to its original 
resolution, producing a mask with distinct pixel values for the left 
hand, right hand, and background. In addition, dense matching 
produces a dense mapping map with the same dimensions as the 
original map by establishing correspondences between images in a 
manner analogous to positional coding. We utilize dense matching to 
define the correspondence between vertices and image pixels, 
employing various hues to represent individual vertices.

The three categories of auxiliary information are labeled 
independently in the dataset and are utilized to compute the loss 
values, allowing the network to more effectively extract hand features.

2.3.3. Hand shape regression branch
Convolutional mesh regression is utilized in this branch to 

generate precise and dense 3D shapes for the hands. This classical 
method produces a 3D mesh aligned with the image, enabling the 
generation of intricate and fine 3D shapes. The hand shape regression 
branch comprises a network with graph convolution. As 
demonstrated in Eq. 2, the feature maps are spanned and propagated 
into two fully connected layers with a position embedding module to 
derive the left-hand and right-hand graph structures, respectively. 
The process for the former graph structure is illustrated in Eq. 3, 
where it is first subjected to graph convolution and subsequently, the 
outputs are passed through a multi-head attention mechanism 
module to establish attention between nodes within itself and merge 
with the features extracted from different layers by the feature 
extractor. Finally, it is transmitted to the interaction attention module 
across the left and right hands to determine the interaction 
relationship between the hands and assist in modifying their shape 
information. The hand mesh is generated in a coarse-to-fine 
approach, where a coarse mesh is initially generated, and then, 
according to the nearest neighbor mode, it is up-sampled following 
the rules of graph coarsening to acquire a finer mesh, with the 
features of the coarse mesh assigned to its children vertices. With the 
final layer of the graph processed, a mesh consisting of 778 vertices 
is obtained.

 
V V f FL R g img
0 0
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where Fimg  represents the feature map from Resnet50 encoder, 
fg  indicates the function that converts feature map into graph 

structure with fully connected layers and position embedding module.
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where VL
i

 and VR
i

denote the hand vertices of the i-th layer of the 
left and right hand shape regression branch, respectively. Ii  is the 
feature map from the encoder and decoder, Gi  indicates the function 
with Graph convolution, interaction attention, and up-sampling.

2.4. Hand gesture mapping to robot

Upon identifying hand gestures, it becomes imperative to regulate 
the surgical robot’s motion, ensuring the meticulous adjustment of 
surgical instruments, culminating in the seamless execution of a 
non-invasive surgical procedure. To maneuver the robot with 
precision, it is essential to encode the hand’s posture and 
correspondingly map it to appropriate commands.

2.4.1. Encoding
To quantify the position information of keypoints, we initially 

need to extract appropriate features. We opt to use the Euclidean 
distance between joints to calculate the distance between each pair of 
keypoints. By using features with high differentiation, we  can 
accurately represent and distinguish various commands, thereby 
enhancing the system’s reliability. For this purpose, we employ the 
distance between the fingertip and the root point as features for binary 
encoding, where a distance greater than a predefined threshold is 
encoded as 1 and vice versa. The binary encoding principle is 
illustrated in Eq. 4.

 
B d threshold
i

i=
≥




−1

0

0if

otherwise  
(4)

where di−0  indicates the distance between the i-th finger’s tip and 
root point, and Bi  represents the code for the corresponding finger.

2.4.2. Gesture mapping
To ensure optimal system stability and minimize the risk of 

accidental touches, a dual-hand posture control method is employed. 
A set of eight distinctive hand gestures has been carefully selected to 
showcase this control scheme, as illustrated in Figure 4. Gesture A 
involves clenching the left hand while extending the forefinger of the 
right hand. In Gesture B, the right hand is clenched while the left hand 
extends the forefinger. Gesture C is characterized by an open left hand 
with the right hand extending the forefinger, while in Gesture D, the 
right hand is open with the left hand extending the forefinger. Gesture 
E entails an open left hand while the right hand is clenched, and 
Gesture F involves an open right hand while the left hand is clenched. 
In Gesture G, both hands extend their forefingers, whereas in Gesture 
H, both hands are clenched.

2.4.3. Safety strategies for HRI
Our methodology involves employing a continuous and 

uninterrupted stream of video frames that are captured by the 
camera. Relying on a single frame for recognition and command 
transmission would give rise to ambiguity and instability within the 
system. To circumvent this, we formulated a simple state machine to 
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manage and filter the triggers of gestures. As shown in Figure 5, 
we assigned a distinct counter for each gesture, which increments 
each time the recognition outcomes correspond to the code of that 
specific gesture and resets to zero if another gesture appears. To 
curtail erroneous touches and bolster the robustness of the system, 

we programmed the counter to activate the corresponding control 
command when it reaches a specific threshold. Following the 
triggering of a gesture, the counter does not immediately clear but 
rather remains at a value above the threshold until a subsequent 
action clears it.

3. Results

The hand gesture interaction model is implemented on the 
collaborative robotic arm, Franka Emikia, and its effectiveness is 
verified through experiments on phantom and cadaver research, 
following the process outlined in Figure 2.

3.1. Gesture recognition accuracy

In order to apply gesture recognition model to surgical robots, 
it is necessary to first test the accuracy of recognizing predefined 
gestures. We  evaluated the recognition accuracy and 
corresponding robot operation effects of eight gestures through 
two experiments involving 10 volunteers. In the first experiment, 
each volunteer performed the predefined gestures at different 
locations, and each gesture was tested five times on the same 
volunteer. The average recognition accuracy for each gesture is 
shown in Table 1. It is worth noting that there was one recognition 
failure in the third and fifth categories, which was due to the 
fingers being obstructed. In the second experiment, volunteers 
manipulated the robot through gestures to complete a specified 
task, aimed at verifying the learning difficulty and efficiency of 
the gesture interaction. The completion time for the task, which 
involved touching a specified object, ranged from 1 min 27 s to 
2 min 32 s among the 10 volunteers, with an average of 1 min 49 s. 
These results demonstrate that the gestures we  designed for 
interaction are straightforward and easily learned, and that the 
corresponding actions of the robot are reasonable.

FIGURE 4

Predefined 8 gestures and its corresponding commands in robot. (A) From left to right are: Gesture A, Gesture B, Gesture C, Gesture D, Gesture E, 
Gesture F, Gesture G and Gesture H. (B) Gesture-motion corresponding rules.

FIGURE 5

State machine design for HRI tasks.
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3.2. Phantom experiment

3.2.1. Experimental settings
The phantom experiment involved the use of a surgical robot to 

perform expected actions based on human hand gestures on a skull 
model. A target tumor composed of a metal nail with dimensions of 
2 × 2 × 2 mm was prepared in the eyebrow center of a phantom to 
simulate the location of the puncture target. Simultaneously, 
we located a metal block, measuring 4 mm3, onto the model’s nasal tip 
to imitate the surgical entry point. The skull model was then subjected 
to CT scanning and introduced into a surgical navigator to simulate 
surgical path planning, with the entry point being the tip of the nose 
and the target location being the eyebrow center.

A surgeon from a hospital participated in the phantom 
experiment. With the guidance of the surgical navigation system, 

the needle held by the surgical robot was gradually inserted 
through touch-free hand gesture interaction with the surgeon. 
The target and actual path of the needle were derived after 
insertion into the phantom, and the position error of the needle 
tip in the preoperative plan was estimated with the help of the 
surgical system. The workflow of the phantom experiment is 
illustrated in Figure 6.

3.2.2. Experimental result
Table 2 showcases the mean positioning error of the needle tip 

and the rotation angle error of the needle. The experimental data 
reveals that the needle tip’s average positioning error is 0.51 mm, 
and the average angle error is 0.34 degrees. The results obtained 
from the surgeon’s five experiments are outlined in Table 2.

TABLE 1 Accuracy of eight gesture recognition with predefined categories.

Category 1 2 3 4 5 6 7 8

Accuracy 100% 100% 98% 100% 98% 100% 100% 100%

FIGURE 6

The flow of phantom experiment. (A) Mockup preparation and 3D reconstruction; (B) Surgical planning and intraoperative navigation; (C) HRI through 
hand gesture; (D) Verify after surgery.

https://doi.org/10.3389/fnins.2023.1200576
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1200576

Frontiers in Neuroscience 08 frontiersin.org

3.3. Cadaver experiment

3.3.1. Experimental settings
In this section, a simulated experiment was conducted to perform 

a biopsy for nasopharyngeal carcinoma on a cadaver. To create the 
lesion, we placed a small metal block with a volume of 8 mm3 at the 
nasopharyngeal apex of the cadaver head. CT scanning was then 
performed to obtain medical information with marked points of the 
cadaver, as illustrated in Figure 7. Using these CT data, we performed 
3D reconstruction to create an image-guided space where surgical 
planning could take place. The needle entry point was located at the 
top of the anterior nostril, and the target point was at the top of the 
nasopharynx where the metal block was located.

Similar to the phantom experiment, the surgical robot adjusted its 
position gradually until the needle tip reached the insertion point of 
the surgical path, following the hand gesture interactive instructions 
of the surgeon. With the guidance of surgical navigation and hand 
gesture interaction, the needle was positioned to align with the 
planned path and maintained in that posture until it reached the 
lesion. In the same way, we estimated the errors in the location and 
angle of the needle tip.

3.3.2. Experimental result
Figure  8 illustrates the outcomes of the simulated biopsy for 

nasopharyngeal carcinoma. The red and green lines displayed in the 

figure indicate the intended surgical path and the real needle location, 
respectively. In Figure  8A, the path of the simulated biopsy is 
demonstrated. Figure 8B exhibits that the needle approached the entry 
point with a posture that is in agreement with the planned path. 
Ultimately, Figure 8C portrays the outcome of the needle insertion 
into the simulated lesion. As can be seen from Figure 8, the actual 
needle position nearly matches the planned surgical path. By fitting 
the needle information in the surgical navigator, we obtained an actual 
location error of 0.16 mm and an angle error of 0.10 degrees.

4. Discussion

In this study, we presented a novel framework for recognizing 
gestures using monocular color images, achieving an accuracy rate of 
over 98% in recognizing all predefined gestures. Compared with 
traditional manual procedures, the proposed framework for gesture 
recognition facilitates efficient contactless interaction between 
surgeons and surgical robot in RAMIS, thereby mitigating the risk of 
bacterial transmission and enhancing surgical efficacy by enabling 
precise fine-tuning of related instruments.

Both phantom experiments and cadaver studies were successfully 
conducted to provide proof of concept for the contactless HRI to assist 
in RAMIS, and it is evident that sub-millimeter precision was achieved 
after implementing the trials with hand gesture interaction. We suggest 
two potential rationales for the positive results observed in our 
experimentation. The first evidence of the enhanced precision in hand 
gesture recognition is derived from the auxiliary prediction branch, 
which significantly contributes to the extraction of both 3D and 2D 
hand features. Another possible explanation could be  that each 
adjustment of the robot we designed is considerably subtle, especially 
in terms of its ability to make adjustment for orientation. This, in turn, 
increases the possibility of accurate movement of the surgical robot 
according to the intended surgical plan. Moreover, the surgical robot 
can be configured with high efficiency, and the HRI interface exhibits 
a shallow learning curve (the average learning time of only 1 min and 
49 s) in a simulated task, thereby results in no significant increase in 
surgery preparation time. It was proved that with the aid of hand 

TABLE 2 Error of the needle insertion in phantom experiment.

Number of 
experiments

Needle

Position error 
(mm)

Angle error 
(°)

1 0.40 0.14

2 0.54 0.22

3 0.67 0.57

4 0.63 0.41

5 0.32 0.36

FIGURE 7

The position of the simulated lesion in nasopharyngeal apex. (A) Coronal plane; (B) Cross section; (C) Sagittal plane.
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gesture interaction, the surgeon can effortlessly fine-tune surgical 
instruments without physical contact for a majority of the time.

Although the current version of the non-contact collaborative 
surgical navigation robot system has showed favorable outcomes, it is 
not without its limitations. One example of this is the limitation faced 
by the surgeons in adjusting the surgical instruments, as they can 
merely adjust them through one gesture at a time. This results in an 
increase of the motion steps and a decrease in task efficiency. We think 
this can be effectively solved by designing more gestures. Additionally, 
the complex environment of the operating room with a multitude of 
medical instruments and limited space may lead to restricted image 
acquisition and occasional hand occlusion, resulting in recognition 
failures. Hand occlusion is also the reason for the two cases of 
recognition failure in Table  1. Furthermore, the proposed state 
machine may cause discomfort as it necessitates maintaining a gesture 
for a period of time, while the designed model lacks recognition of 
dynamic gestures, limiting the surgeon’s control over the surgical 
robots through dynamic gestures.

At present, the available data from phantom and cadaver cases is 
sufficient to establish the feasibility of the touchless HRI interface for 
RAMIS. We believe that our work will be regarded as the fundamental 
basis of touchless surgical robot HRI, and it has been preliminary 
substantiated by both phantom and cadaveric investigations. The 
findings have indicated the efficacy of the design of the collaborative 
system in aiding other surgical procedures involved RAMIS and 
demand stringent sterility standards. We believe that the framework 
we  have established will form a practical system and be  applied 
in clinic.

5. Conclusion

The feasibility and validity of the framework we proposed in 
this paper are verified through the experiments on both phantoms 
and cadavers. The experimental findings evince the surgical robot’s 
ability of fine-tuning instruments through augmented visual 
feedback from the navigation surgical system and contactless hand 
gesture recognition, thus by minimizing bacterial, the surgical 

safety can be enhanced. At the same time, the framework is easily 
integrated into a real surgical robot. The future works should 
endeavor the study of surgical robot application utilizing mixed 
reality technology that integrates touch-free solutions and the 
development of more dynamic hand gestures to augment the 
integration flexibility.
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Simulated biopsy results. (A) Simulated surgical path. (B) The needle reaches the top of the anterior nostril. (C) The needle reaches the simulated lesion.
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