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Much of the neural machinery of the early visual cortex, from the extraction 
of local orientations to contextual modulations through lateral interactions, is 
thought to have developed to provide a sparse encoding of contour in natural 
scenes, allowing the brain to process efficiently most of the visual scenes we are 
exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse 
effects ranging from simple discomfort to migraine attacks, and epileptic seizures 
in the extreme, all phenomena linked with an excessive metabolic demand. The 
theory of efficient coding suggests a link between excessive metabolic demand 
and images that deviate from natural statistics. Yet, the mechanisms linking energy 
demand and image spatial content in discomfort remain elusive. Here, we used 
theories of visual coding that link image spatial structure and brain activation to 
characterize the response to images observers reported as uncomfortable in a 
biologically based neurodynamic model of the early visual cortex that included 
excitatory and inhibitory layers to implement contextual influences. We  found 
three clear markers of aversive images: a larger overall activation in the model, a 
less sparse response, and a more unbalanced distribution of activity across spatial 
orientations. When the ratio of excitation over inhibition was increased in the 
model, a phenomenon hypothesised to underlie interindividual differences in 
susceptibility to visual discomfort, the three markers of discomfort progressively 
shifted toward values typical of the response to uncomfortable stimuli. Overall, 
these findings propose a unifying mechanistic explanation for why there are 
differences between images and between observers, suggesting how visual input 
and idiosyncratic hyperexcitability give rise to abnormal brain responses that 
result in visual stress.
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Introduction

Some static images, particularly stripes, are consistently reported as aversive, causing 
headaches, eyestrain, perceptual distortions, hallucinatory colours or shapes, a series of bodily 
symptoms regrouped under the term visual stress (Wilkins, 1995). Stripes can also trigger 
seizures in individuals with photosensitive epilepsy (Wilkins et al., 1984; Radhakrishnan et al., 
2005; Hermes et  al., 2017). The current literature considers visual stress as resulting from 
unusually strong neural activity in the visual cortex (Haigh et al., 2013). Visual stress occurs in 
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a range of neurological conditions that are co-morbid with epilepsy 
(Wilkins et  al., 2022), consistent with the theory that cortical 
hyperexcitability underlies visual stress. In migraine, hyperexcitability 
is also suggested by a large haemodynamic response to unpleasant 
sensory stimuli, a low phosphene threshold in response to transcranial 
magnetic stimulation, and the use of antiepileptics in migraine 
prophylaxis (Porciatti et al., 2000; Huang et al., 2003; Ferrari et al., 
2015; Mulleners et al., 2015). In the non-clinical population, images 
that trigger visual stress are generally associated with a large cortical 
haemodynamic response, as measured using functional magnetic 
resonance imaging (Huang et  al., 2003, 2011) and near infra-red 
spectroscopy (Haigh et  al., 2013, 2015; Le et  al., 2017), or a large 
electrophysiological response, for example, steady-state evoked 
potentials (O'Hare, 2016; Haigh et al., 2019; Gentile and Aguirre, 2020; 
Lindquist et al., 2021) and event-related potentials (Haigh et al., 2019).

To date, no general principle has explained the link between the 
spatial structure of an image and the visual stress associated with it, 
but the most satisfying account for the relationship between visual 
stress and enhanced cortical activity comes from a prevalent theory in 
sensory neuroscience, that of efficient coding (Attneave, 1954; Barlow, 
1961). The theory of efficient coding states that sensory systems have 
evolved under the selective pressure to provide an efficient 
representation of the stimuli relevant for survival in an organism’s 
environment. The efficiency is expressed both in terms of the 
information transmitted and the metabolic cost of the neural processes 
involved. The theory has received strong empirical and theoretical 
support for different sensory modalities (Olshausen and Field, 1996; 
Lewicki, 2002; Machens et al., 2005). A large body of theoretical and 
empirical evidence has demonstrated an accord between neural 
encoding and regularities in the relevant natural environment (e.g., 
Olshausen and Field, 1996; Lewicki, 2002; Machens et al., 2005). An 
important regularity concerns how the correlation between the 
luminance of two nearby locations in a natural scene decreases with 
distance. It is encapsulated in the Fourier power spectrum of natural 
scenes, which decreases with spatial frequency f  as 1 / f α , with an 
exponent α  consistently found between 1.6 and 2.4 (Field, 1987; 
Tolhurst et al., 1992; Geisler, 2008). In agreement with the theory of 
efficient coding, discrimination performance is optimal for stimuli 
with such statistics (Knill et al., 1990; Parraga et al., 2000; Geisler et al., 
2001). Similarly, measuring the deviation from 1 / f α  provides a 
reliable predictor of the visual discomfort a visual stimulus provokes 
(Fernandez and Wilkins, 2008; Juricevic et  al., 2010; O'Hare and 
Hibbard, 2011; Penacchio and Wilkins, 2015; Ogawa and Motoyoshi, 
2020), and the way in which the chromaticity differences in a stimulus 
depart from those in nature predicts visual discomfort (Penacchio 
et al., 2021).

Whilst the theory of efficient coding provides a theoretical 
foundation for the understanding of visual stress, measuring 
deviations with respect to the statistical regularities of natural scenes 
can only provide functional models (Carandini and Heeger, 2012; Kay, 
2018) of visual stress, namely models that describe a functional 
relationship between input, here static images, and output, here 
observers’ self-reported discomfort when viewing the images. 
Understanding mechanistically how the spatial structures of static 
images cause discomfort therefore remains a major challenge. In a first 
computational attempt to characterize the neural correlate of visual 
discomfort using a mechanistic model (Hibbard and O'Hare, 2015), 
computed the activity of a bank of simple cells in response to natural 

images and to sine gratings, a class of images associated with visual 
discomfort. They found that the response of the model to natural 
images was sparser than that to gratings, involving fewer “neurons” 
and therefore consistent with the excessive metabolism associated 
with uncomfortable images. The approach, however, had three 
limitations. (1) The study considered only two extreme classes of 
stimuli, natural images, and gratings, and not more complex real-life 
scenes. (2) The model did not include contextual influences, i.e., the 
way the activity of a neuron is modulated by the activity of 
neighbouring neurons (Fitzpatrick, 2000; Carandini et  al., 2005). 
Contextual modulations in the early visual system are fundamental to 
understand how the strength of activity of a neuron can be deeply 
modified depending on the spatial structure of the input outside its 
classical receptive field (Zipser et al., 1996; Vinje and Gallant, 2000). 
(3) The model proposed in (Hibbard and O'Hare, 2015) could not 
account for differences between individuals, for example by 
considering individual differences in the balance between cortical 
excitation and inhibition, a possible reason for increased susceptibility 
to discomfort in some individuals (Adjamian et al., 2004).

In this study, we  systematically analyzed the activity of a 
biologically based neurodynamic model of the early visual cortex that 
implements contextual influences in response to images from urban 
landscapes and abstract art. We considered theories of visual coding 
that link image spatial structure and brain activation in order to 
investigate how different metrics of the model activity predicted 
observers’ self-reported visual discomfort. Our aim was twofold: (1) 
To gain a mechanistic understanding of the differences in induced 
discomfort between images, and (2) to investigate possible mechanistic 
explanations for individual differences in susceptibility to discomfort. 
We first identified possible neural markers of discomfort. We next 
analyzed how these markers changed when the ratio of excitation over 
inhibition in the network was modified. This allowed us to test the 
putative role of disparities in balance between cortical excitation and 
inhibition in the mechanisms underlying inter-individual differences 
in susceptibility to visual discomfort.

Materials and methods

Stimuli, participants, and procedure

We considered four sets of stimuli previously used in the literature, 
two sets of photographs of urban architecture (building frontages) and 
two sets of images of abstract art.

Architecture stimuli
We used two sets, hereafter, Architecture 1 and 2, N = 74 images 

in each, previously considered in a study on the contribution of spatial 
frequencies to visual discomfort for which the experiments were held 
in person (Penacchio and Wilkins, 2015). Participants [N = 10 in each 
set, see (Penacchio and Wilkins, 2015)] viewed each colour 720 × 
960-pixel images for an unlimited time on a calibrated LCD display 
with a size of 20 cm x 27 cm (width x height) at 80 cm, representing a 
visual angle of 15°. They were instructed to rate the images for 
discomfort on a Likert scale, from 1 for ‘not uncomfortable at all’ to 7 
for ‘very uncomfortable’. We explicitly stated that we were interested 
in discomfort, which we assumed to be distinct from unpleasantness, 
ugliness, or un-preference.
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Art stimuli
We considered two sets of images of abstract art from a study on the 

contribution of variations in chromaticity to visual discomfort (Penacchio 
et  al., 2021), Art 1 and 2, N = 50 images in each. For these sets, the 
responses were collected online using Qualtrics, in agreement with 
COVID-19 protocols. Participants (Art 1, N = 53 after 5 were discarded 
because they showed no variability in their responses, 37 female, 2 
non-binary, 14 male, mean age 20.0 years, SD age 2.0; Art 2, N = 79 after 1 
was discarded on the same grounds as for Art 1, 59 female, 6 non-binary, 
14 male, mean age 20 years, SD age 2.5) viewed each grey-level 512×512 
pixel image for an unlimited duration and had to report their level of 
discomfort on a Likert scale (1, ‘no discomfort’, 2, ‘some discomfort’, 3, 
‘moderate discomfort’, 4, ‘uncomfortable, and 5, ‘very uncomfortable’). As 
these two sets were rated online, we  had no control on the viewing 
conditions, and therefore no knowledge of the visual angle represented by 
the stimuli for each participant. All participants were recruited from the 
University of Nevada, Reno, and consented to the study electronically. 
They obtained a course credit for their time. All verified that they had 
normal or corrected to normal vision and none reported a diagnosed 
psychiatric or neurological condition. The protocol was approved by the 
Institutional Review Board at the University of Nevada, Reno (333057), 
and was conducted in accordance with the Declaration of Helsinki.

Supplementary File “Raw data” (Penacchio et al., 2023) provides 
a visualisation of all the ratings of all observers for the four sets of 
stimuli. While the sets of urban scenes rated for discomfort consisted 
of colour images, these images were modestly coloured and colour 
differences did not explain variance in discomfort (Penacchio et al., 
2021; see Electronic Supplementary Material).

Experiments

Our study consisted of two experiments. In Experiment 1, 
we looked for possible markers of visual discomfort in the activity of 
a dynamic model of the visual system. Therefore, we  contrasted 
participants’ self-reported discomfort when viewing an image to 
different metrics of the activity of a model of the early visual system 
in response to this image (see Figure 1). We found such markers, and 
so in Experiment 2 we explored whether and how they would change 
when the ratio of excitation over inhibition was altered in the model. 
Since we could not measure intra-cortical inhibition, Experiment 2 
was entirely computational.

Model of the early visual cortex

Model architecture
The model was made of two components. Component 1 consisted 

of units whose receptive fields (RFs) mimic those of simple cells in the 
primary visual cortex (V1) and have been shown to fit well with 
physiological data (Serre and Riesenhuber, 2004; Serre et al., 2007). 
Component 2 was a network that takes the output of Component 1 
and implements contextual influences. It consisted of a firing-rate 
neurodynamic network made of units that emulate (‘glutamatergic’) 
excitatory and (‘GABAergic’) inhibitory neurons connected as a 
recurrent network that emulates the connectivity of the visual cortex 
underpinning contextual influences (Wilson and Cowan, 1972; Li, 
1999, 2002; Dayan and Abbott, 2001; Figure 1A).

The units in Component 1 were modelled using Gabor filters 
sensitive to four regularly spaced orientations (0°, 45°, 90° and 135°) 
and 12 spatial frequencies, corresponding to 12 regularly spaced 
wavelengths, ranging from 1 cycle per degree (cpd) to 10.8 cpd for the 
experimental conditions of Architecture 1 and 2. The output of the 
convolution of these filters with the images was the input to the 
network (Component 2).

The cortical columns (hypercolumns) in Component 2 densely 
sampled the input image (one hypercolumn per pixel, resulting in a 
total of 2562 hypercolumns) (Figure  1A). The population of 
excitatory units within each hypercolumn included all 48 types of 
simple cells (4 orientations x 12 spatial scales). The hypercolumns 
also included a ‘mirror’ population of inhibitory units. Excitatory 
cells were connected to each other through monosynaptic excitatory 
connections, and disynaptically via inhibitory interneurons 
[conforming to Dale’s law stating that neurons in the cortex are 
either excitatory or inhibitory (Eccles, 1976)]. The architecture and 
connectivity of the network has been presented in previous work (Li, 
1999, 2002; Penacchio et  al., 2013) and mimics the biological 
architecture responsible for contextual modulations of the activity 
of a neuron by stimulation of its non-classical receptive field (nCRF). 
It is based on lateral connections that simulate the connectivity in 
mammal and primate early visual cortex (Knierim and Vanessen, 
1992; Kapadia et al., 1995; Weliky et al., 1995). In particular, the 
connectivity is set up such that: (i) mutual monosynaptic excitation 
is strong between neighbouring units sensitive to similar spatial 
frequencies and to orientations similar to the direction formed by 
these units [a cortical feature at the basis of contour enhancement 
(Li, 1999)], and, (ii) inhibition is strong between neighbouring units 
sensitive to orientations perpendicular to the orientation these units 
form [a property thought to be  at the basis of iso-orientation 
suppression (Li, 1999)]. Overall, the activity of a unit is driven by the 
input within its CRF and modulated by contextual influence in its 
nCRF. Modulation can be suppressive or facilitatory, depending of 
the strength of horizontal recruitment, but tends to be  more 
suppressive for higher input levels (see Li, 1999) in agreement with 
empirical observations (Hirsch and Gilbert, 1991; Weliky et  al., 
1995; Cavanaugh et al., 2002).

The architecture of Component 2 has been previously shown to 
be able to account for figure-ground segmentation, bottom-up saliency, 
contour grouping, and brightness induction (Zhaoping and May, 2007; 
Zhang et al., 2012; Penacchio et al., 2013; Zhaoping and Zhe, 2015; Berga 
and Otazu, 2020, 2022). We also verified that simulating the nCRF of 
units with naturalistic stimuli increased the sparseness of their response 
(Vinje and Gallant, 2000; Haider et al., 2010; Supplementary Material S2; 
Penacchio et al., 2023).

Importantly, as our main purpose in this paper was to understand 
whether a biologically realistic model of the early visual cortex processes 
uncomfortable images differently from other images, we did not fit any 
parameters in any of the two components of the model but used the 
previously published parameters [Component 1, (Serre and Riesenhuber, 
2004, Serre et al., 2007); Component 2 (Li, 1999; Penacchio et al., 2013)]. 
Supplementary Material S1 gives a full description of the two components 
of the model including the equations that govern the dynamic of the 
network. Note that our choice for the size of the input images (256 × 256) 
imposed an upper limit to the spatial frequencies handled by the model 
(the highest frequency was 10.8 cpd). This choice reflected both a 
constraint on the computational load for processing all the images with 
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all the possible values of gain (see below) and robust evidence from the 
literature that the frequencies that contribute most to discomfort are 
below 10 cpd (Wilkins et al., 1984; O'Hare and Hibbard, 2011).

Model dynamic and output
The dynamic of the model was simulated using a discrete time 

implementation with an Euler integration scheme of the first order 
(Strogatz, 2015). The model assumes a periodic activity (‘steady state’) 
after 3 to 4 membrane time constants after stimulus onset (Li, 1999; 
Penacchio et  al., 2013). For each image, the output of the model, 
hereafter, model population response, was the vector x tisθ ( )( ) formed 
by the firing rates of all the excitatory cells between the 4th and 20th 
membrane time constants, where i∈[ ]1 256

2
,  is the hypercolumn 

position, s∈[ ]112,  is the frequency channel, θ ∈ ° ° ° °{ }0 45 90 135, , ,  is 
the orientation, and { }4,5, ,20t ∈ …  is the membrane time constant, 
giving a vector of length 75.35 10≈ ×  for each image (Figure 1B). All 
metrics to analyse the activity of the model were based on this vector.

Input pre-processing
Before being processed by the model, the images were cropped to 

centred squares of maximal size, then converted to luminance using 
the measurement of the display’s R, G and B channels [Architecture 1 
and 2, see Penacchio and Wilkins (2015)], or Matlab’s (MATLAB, 

2019) rgb2gray function (Art 1 and 2), and finally down-sampled to 
256 × 256 pixel images using Matlab’s function ‘imresize’ with a nearest 
neighbour algorithm. To avoid edge effects, the images were padded 
using a standard mirroring process of width 28 pixels, resulting in 312 
× 312-pixel images input to the model. Only the 256 × 256 central 
positions were considered for the model population response x tisθ ( )( ).

Excitation/inhibition balance
We manipulated the ratio of excitation over inhibition (E/I) in the 

model (e.g., modelling a lack of Gamma-aminobutyric acid (GABA) 
neurotransmitter) by decreasing the strength of activation of the 
inhibitory layer of the starting model (hereafter, reference model) using 
a multiplicative factor called gain. The gain varied between 1 (no 
modification, reference model) to 0 (no inhibition at all) by steps of 
−0.125. See Supplementary Material S1 for details.

Rationale for using a neurodynamic model

We believe that many static models of early spatial vision that 
include units sensitive to different spatial frequencies and 
orientations, non-linearity and divisive normalization to 
implement contrast gain-control (Heeger, 1992; Foley, 1994; 

FIGURE 1

Schematics of the experiment. (A) We processed images from four sets of stimuli (Architecture 1 and Architecture 2, N = 74 each, Art 1 and Art 2, N = 50 each) 
using a neurodynamic model of the early visual cortex. This model consisted of a layer of excitatory units and a layer of inhibitory units scattered in a grid of 
hypercolumns organised retinotopically, each including units sensitive to luminance edges with different spatial orientations and spatial frequencies. The 
hypercolumns were interconnected through excitatory-excitatory, excitatory-inhibitory, and inhibitory-inhibitory connections following a biologically 
plausible pattern of lateral connections. For each image, we recorded the firing rates of all the excitatory units in the model over several temporal iterations 
of the model, leading to (B) the model population response to the image, i.e., vectors of non-negative numbers. (C) Observers reported perceived 
discomfort when viewing each image in one of the four sets of stimuli by rating each stimulus on a Likert scale in which the lowest value meant ‘not 
uncomfortable at all’ and the highest ‘very uncomfortable to look at’. (D) We then regressed (here, for illustration, group average of) reported visual 
discomfort against different metrics of the model population response. The metrics were chosen to reflect three main hypotheses on the neural correlate 
of visual discomfort (see section Metrics of model activity, Rationale for types of metrics considered). (E) To analyse the contribution to visual discomfort of 
different spatial frequencies, we also regressed reported visual discomfort against the same metrics applied to the subset of units in the model sensitive to a 
given spatial frequency (‘frequency channels’, see Methods). The subpanels only show four of the twelve channels.
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Cavanaugh et al., 2002; Kay et al., 2013; Schutt and Wichmann, 
2017) would also be  good model candidate to predict visual 
discomfort. We  chose to use instead an excitatory-inhibitory 
neurodynamic model based on Zhaoping Li’s seminal model (Li, 
1999, 2002) for several reasons. First, this allowed us to have 
separate excitatory and inhibitory populations, and therefore to 
test putative hypotheses on the role played by the relative strength 
of excitation and inhibition in visual discomfort, thought to play 
a central role in individual differences in susceptibility to visual 
discomfort. Second, this allowed us to inherit from (Li, 1999, 
2002) a realistic implementation of mutual influences between 
neighbouring units tuned to different spatial orientations. Third, 
including timing goes a step further toward more complex models 
that in the future will allow a careful estimation of the amount of 
activity in the gamma band, which are crucial to understand 
photosensitive epilepsy (e.g., Hermes et  al., 2017 and 
see Discussion).

Metrics of model activity

Rationale for types of metrics considered
Two main theories of visual coding link brain activation and 

image structure. The contrast energy theory states that activation 
in the primary cortex depends on local contrast at different 
spatial frequencies, independently of the spatial arrangement of 
the luminance edges producing this contrast (Movshon et  al., 
1978; Albrecht and Hamilton, 1982; Rieger et  al., 2013). The 
theory of sparse coding, by contrast, supposes that the early 
visual system has adapted to process the specific arrangements 
and redundancy of local contrast features found in natural scenes 
with a reduced number of neurons strongly active simultaneously 
(Atick and Redlich, 1992; Field, 1994; Olshausen and Field, 1996, 
2004; Vinje and Gallant, 2002; Hyvarinen et al., 2009), saving 
metabolic energy. We therefore considered metrics of the model 
population activity in response to each image x tisθ ( )( ) related to 
(1) the model population activation level (‘total amount of firing 
of all units when processing the image’) and (2) the sparseness of 
the model response (‘to what extent the encoding of the image was 
carried out by a small number of active units across retinotopic 
space and time’). We also considered a metric based on (3) the 
isotropy of the model response (‘how much activity was evenly 
distributed across orientations in the model hypercolumns’). Our 
rationale was that periodic patterns such as stripes, causing a 
concentration of neural activity in a subpopulation of cortical 
cells sensitive to the same orientation, are strong inducers of 
pattern-sensitive epilepsy and visual discomfort (Wilkins et al., 
1979, 1984; Meldrum and Wilkins, 1984; O'Hare and Hibbard, 
2011; Hermes et al., 2017).

Metrics implementation
(1) The model activation level, similar to a measure of contrast 

energy, was measured using the L1-norm of the model population 
response, ( )( )( ) ( )( ) ( )1 , , ,E x t x t x tis is isi s tθ θ θθ= = ∑  , where 
i s t, , ,θ( ) runs over all the hypercolumns, orientations, frequencies 

and membrane time constants considered. As the choice of a 
particular norm over others is arbitrary, we  also measured the 

activation level using alternative metrics (see 
Supplementary Material S3; Penacchio et al., 2023). (2) The sparseness 
of the model population response was measured as 
S x t x tis isi s tθ θθ( )( )( ) = − ( )∑ tanh

, , ,

2 (Hyvarinen, Hurri et  al., 

2009). We also computed alternative measures of sparseness (see  
Supplementary Material S3; Penacchio et al., 2023). (3) Isotropy was 
computed using the (Shannon) entropy Hist of the distribution of 
response for each hypercolumn i, spatial frequency s and membrane 
time t , and taking the grand mean, H x tisθ ( )( )( ) = , , /isti s t H N∑ , 
where N = × ×256 12 16

2  is the number of terms in the sum, 
and  H p i s t p i s tist = − ( ) ( )( )= ° ° ° °∑ θ θθ , , , ,log

, , ,
2

0 45 90 135
 is the 

entropy of the probability distribution obtained by normalising 
the  vector (x t x t x t x tis is is is0 45 90 135° ° ° °( ) ( ) ( ) ( ), , , ) so that it sums 
to  one. Entropy measures isotropy in the sense that if all 
the  orientations are equally represented at i s t, ,( ), (i.e., 
x t x t x t x tis is is is0 45 90 135° ° ° °( ) = ( ) = ( ) = ( )), Hist assumes its maximal 
value, Hist = ( ) =log2 4 2 . When the response to one orientation is 
greater than that for the others we have Hist < 2, and Hist = 0 if only 
a single orientation is represented (as for ‘stripes’). For analysing the 
frequency channels separately, we applied the same metrics to the 
subpopulation of units corresponding to each channel, i.e., x tis0θ ( )( ) 
with 0s  being one of the 12 spatial frequencies (Figure 1E). Figure 2 
illustrates the computations of the metrics and shows the stimulus 
with the minimum and maximum value of each metric in set 
Architecture 1 as well as the relevant aspect of the network activity 
[see Supplementary File “all markers’ values” (Penacchio et al., 2023) 
for an illustration of the markers values for all the stimuli in 
Architecture 1].

Natural images

To estimate the distribution of isotropy of the model response for 
natural images we randomly selected 100 images of the van Hateren’s 
database of calibrated natural images (van Hateren and van der Schaaf, 
1998), processed them as done with the stimuli of the experiments and 
extracted this metric for each input image.

Statistical analysis

We used linear mixed effects (multilevel) models to analyse 
possible correlations between metrics and participants’ self-
reported discomfort in Experiment 1. In all models, the metrics 
were considered as fixed effects and participant identity was 
considered as a random effect (i.e., with random intercept, and, 
when possible, random slope). This allowed us to estimate the 
effect of possible markers of discomfort in the general population 
while ignoring the specificities of each participant, including 
specific viewing conditions and apparatus for the sets rated 
online, Art 1 and 2. The models were fitted in R (R Development 
Core Team, 2020) using the function lmer from the package lme4 
(Bates et al., 2014). All the metrics were normalised to a mean of 
0 and a SD of 0.5 (e.g., Gelman and Hill, 2006). We selected the 
models using log likelihood, AIC information criterion, and 
likelihood ratio (BIC is reported for information). For hypothesis 
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testing we used χ2-distributions whose degree of freedom were 
the differences in degrees of freedom between the models to 
be compared. Following recommended practice (Meteyard and 
Davies, 2020), all the details about the models tested and adopted 
are provided in Supplementary Material, section 
Statistical Inference.

Results

Experiment 1: markers of visual discomfort

The three types of metrics envisioned, activation level, sparseness, 
and isotropy, were markers of visual discomfort. We found an effect 
of population activation level on observers’ judgements for the four 
sets of images. Images that elicited a greater activation in the model 

were associated with more discomfort (Figure  3A, full model, 
Architecture 1: χ2 = 107, df = 3, p < 10−15; Architecture 2: χ2 = 157, df = 3, 
p < 10−15; Art 1: χ2 = 99, df = 3, p < 10−15; Art 2: χ2 = 78, df = 3, p < 10−15). 
We also found a relationship between the sparseness of encoding of 
an image and its associated discomfort. Images inducing a less sparse 
(‘denser’) encoding caused more discomfort (Figure 3B, Architecture 
1: χ2 = 72, df = 3, p < 10−14; Architecture 2: χ2 = 134, df = 3, p < 10−15; Art 
1: χ2 = 77, df = 3, p < 10−15; Art 2: χ2 = 43, df = 3, p < 10−8). Anisotropy of 
the model response was clearly associated with discomfort for the two 
sets showing urban landscapes (Figure 3C, Architecture 1: χ2 = 72, 
df = 3, p < 10−14; Architecture 2: χ2 = 122, df = 3, p < 10−15). However, 
that was not the case for the first set of abstract art (Figure 2C, Art 1: 
p = 0.35), and the relationship was inverted for the second set of 
abstract art, in which images encoded with a more isotropic activity 
were associated with more discomfort (Figure 3C, Art 2: χ2 = 169, 
df = 3, p < 10−15). To investigate the low predictive power of isotropy 

FIGURE 2

Illustration of the metrics used as markers of visual discomfort. (A) Activation level of model population response: (from left to right, first panel) Image 
in the set Architecture 1 with the lowest average activation level, (second) corresponding heatmap of activation summed over all membrane times, 
frequency channels and orientations, (third) image with the highest average activation level, and (fourth) corresponding heatmap of activation summed 
as in the second panel; in the heatmaps, the yellower the colour the higher activation. (B) Sparseness of model population response: (first panel) Image 
with the highest value for the sparseness metric in the same set as in panel (A), (second, black curve) corresponding histogram of firing rates and (grey 
curve) histogram for the image in the third panel for comparison, (third) image with the lowest value for the sparseness metric, and (fourth, black 
curve) corresponding histogram of firing rates. (C) Isotropy metric: (first panel) Image with the highest level of the metric in the same set, (second) 
heatmap of isotropy averaged across all membrane time and frequency channels and (inset) example of distribution of responses across orientations 
with isotropy equal to the average for the whole image (1.708), (third) Image with the lowest level of the metric, and (fourth) heatmap of isotropy 
averaged as in panel two and (inset) example of distribution with isotropy equal to the average of the whole image (0.696).
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for the two sets of art, we compared the distributions of this metric for 
Art 1 and 2 to that found in natural images. We found that these 
distributions greatly overlapped those for natural images, as illustrated 
in Figures 4C,D, left panels (Jensen-Shannon divergence with natural 
images, 0.265 for Art 1, 0.233 for Art 2), in contrast with the wider 
distribution and bigger separation with respect to natural scenes in the 
case or the architectural facades (Figures  4A,B, Jensen-Shannon 
divergence, 0.855 for Architecture 1, 0.810 for Architecture 2). 
Accordingly, only a small proportion of the stimuli in Art 1 and 2 had 
isotropy values that fell outside of the distribution of isotropy found 

in natural images, values which were associated with discomfort in the 
sets of urban scenes Architecture 1 and 2.

Table  1 shows the Pearson correlation coefficients of the 
regressions between metrics and discomfort ratings in Figure 3 (see 
inset in each panel).

As previous research has shown that the discomfort an image 
elicits strongly depends on its frequency content (Wilkins et al., 1984; 
O'Hare and Hibbard, 2011; Hermes et al., 2017), we also considered 
the frequency channels in the model separately (Figure 3, “frequency 
channels” in all panels). For the two sets of architecture, we found 

FIGURE 3

Correlations between average reported visual discomfort against the three main metrics of model population activity, namely (A) model population 
response activation level, (B) sparseness of the model response, and (C) isotropy in the model response for the four sets of stimuli (from left to right 
column, Architecture 1, N = 74, Architecture 2, N = 74, Art 1, N = 50, and Art 2, N = 50). Each point represents the Pearson’s correlation coefficient for one 
frequency channel of the model (dots, for the 12 frequency channels of the model) or for the whole model (triangle). The value of p of each regression 
is colour-coded with a level of blue (the darker, the lower the value of p), or with yellow for p-values above the reference threshold 0.05. Each inset 
shows the raw data for the regression in the case of the whole population (triangle). All metrics were normalised to a mean value of 0 and standard 
deviation of 0.5 (see Methods).
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that visual discomfort was best predicted by the three metrics applied 
to the channels tuned to spatial frequencies within the range 
1.5–6 cpd, as shown by the peaks of correlation around these 
frequencies in Figures  3A–C for Architecture 1 and 2 (see  
Supplementary Material S1 for a derivation of the correspondence 
between frequency channels in the model and visual angle in the 
experimental conditions for Architecture 1 and 2). These frequencies 
are those at which human sensitivity is maximal (Campbell and 
Robson, 1968). By contrast, for the images of art the strength of the 
correlations between discomfort and the metrics were higher for the 
channels tuned to the highest frequencies (Figures 3A–C, Art 1 and 
2). We  believe this difference to reflect the variability in spatial 
frequencies caused by the uncontrolled nature of the online format 
in Art 1 and 2.

The three metrics were correlated to each other within each set 
of stimuli (see Supplementary Figures S2–S5, 
Supplementary Material S5.1 and Figures S6–S9). However, for the 
sets of architectural images the best linear combination of the three 
metrics was a better predictor of visual discomfort than any of the 
metrics taken separately (Supplementary Material S5), leading to 
Pearson correlation coefficients of rESH  = 0.63 (p < 10−8; ci = [0.47, 
0.75]) for Architecture 1, rESH  = 0.67 (p < 10−10; ci = [0.52, 0.78]) for 
Architecture 2, explaining, respectively, 40 and 45% of the variance 
in judgements for discomfort. Considering the three metrics 
together did not provide a better predictor for the sets Art 1 and 2 
when the metrics were computed from the full model activity. 
However, for the frequency channel tuned to the highest spatial 
frequencies (Figure 3), a linear combination of the metrics predicted 

FIGURE 4

Comparison of the distribution of isotropy in each set with that in nature and regression of isotropy against average reported discomfort for (A) the set 
Architecture 1, (B) Architecture 2, (C) Art 1, and (D) Art 2. In each panel, the left plot shows the distribution of isotropy in the model for all stimuli in the 
set (grey, left of the central axis) and distribution for a set of natural images (green, right of central axis). The dots show the raw values of the metric for 
each stimulus (Architecture 1, N = 74, Architecture 2, N = 74, Art 1, N = 50, Art 2, N = 50, and natural images, N = 100), the box plot show the first (bottom) 
and third (top) quartile, the notches show the 95% confidence interval for the median, and the star and circle show the mean of the distributions. The 
right plots in each panel show the regression of isotropy against average reported discomfort (grey) as well as the mean value of the metric for the set 
of natural images.

TABLE 1 Pearson correlation coefficients between the three types of metrics and average reported discomfort for the four sets of stimuli.

Architecture 1 Architecture 2 Art 1 Art2

Activation rE = 0.57, p < 10−7

ci = [0.40, 0.71]

rE = 0.65, p < 10−9

ci = [0.49, 0.76]

rE = 0.38, p = 0.0065

ci = [0.11, 0.60]

rE = 0.31, p = 0.029

ci = [0.03, 0.54]

Sparseness rS = − 0.56, p < 10−6

ci = [−0.70, −0.38]

rS = − 0.61, p < 10−8

ci = [−0.73, −0.44]

rS = − 0.37, p = 0.0086

ci = [−0.59, −0.10]

rS = −0.22, ns, p = 0.12; 

ci = [−0.47, 0.06]

Isotropy rH = − 0.53, p < 10−6

ci = [−0.68, −0rE.35]

rH = − 0.57, p < 10−7

ci = [−0.71, −0.40]

rH = −0.13, ns, p = 0.38

ci = [−0.39, 0.16]

rH = 0.51, p = 0.00017

ci = [0.27, 0.69]

The values in bold correspond to the correlations that are both significant (under the 0.05 value) and for which the effect’s polarity agrees with the hypothesis of discomfort associated with an 
overload of activity.
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better observers’ ratings than any of the metrics in isolation (see 
Supplementary Material S5.2), with Pearson correlation coefficients 
of rESH  = 0.39 (p = 0.0047; ci = [0.13, 0.61]) for Art 1, rESH  = 0.52 
(p < 10−3; ci = [0.28, 0.70]) for Art 2. Finally, whilst these two metrics 
are generally correlated, considering activation alongside 
sparseness, or vice versa, strongly increased model fit for 
Architecture 1 and Art 2, suggesting a certain degree of 
independence between them (see Supplementary Material S5.3 and 
theoretical considerations therein).

Experiment 2: impact of excitation/
inhibition balance on the markers of 
discomfort

When inhibition was decreased in the model, the markers of 
discomfort identified in Experiment 1 systematically shifted toward 
values associated with increased discomfort. The shift was toward 
higher activation level (Architecture 1, used for the sake of illustration, 
Figure  5A), a less sparse encoding (Figure  5B), and a decreased 
isotropy in the model response (Figure 5C). These differences with the 
reference model (gain = 1, top right distribution) reached significance 
for all metrics (the highest gain leading to a different distribution was 
gain = 0.375 for the activation level, Kolmogorov–Smirnov test, 
D = 0.297, p = 0.0027, and for sparseness, D = 0.378, value of p <10−4, 
and gain = 0.875 for D = 0.351, p = 0.00019), showing that the effect of 
reducing inhibition was stronger for isotropy than for the two other 
markers. This analysis revealed a similar shift toward values associated 
with visual discomfort for the three other sets of stimuli, apart from 
two metrics, activation level and sparseness, for Art 1 (see 
Supplementary Figures S11–S13).

To evaluate how the changes in the metrics when decreasing 
inhibition would translate into predicted discomfort, we determined, 
for each value of gain, the number of images with a metric value above 
the threshold associated with 15% most discomfort in the original 

model. To establish this threshold, for each of the three metrics, 
we used the linear regression of discomfort judgement against the 
metric using best linear mixed models from Experiment 1 to find the 
metric value that corresponded to the 15% higher percentile of 
discomfort ratings. We next computed the number of images beyond 
this threshold for each value of the gain. We  found a systematic 
increase in the number of images beyond this threshold for decreasing 
values of gain (see Supplementary Figure S14).

To illustrate how the distribution of firing within hypercolumns 
changed as the strength of inhibition was decreased, we followed the 
distribution of the firing activity across orientation at each retinotopic 
location (averaged over all membrane times and frequency channels) 
when the gain of inhibition was decreased. For each image, a “winner-
takes-all” process took place in the model’s hypercolumns in which all 
the activity concentrated in a single orientation for low values of 
inhibition, as if only a single orientation was present in the input 
stimulus (see Supplementary Figure S15). In other words, as the 
strength of inhibition was lowered the activity of the model became 
akin to the activity in response to especially uncomfortable stimuli 
such as stripes.

Discussion

In this study, we identified possible markers of visual discomfort 
in the response of a biologically plausible model of the early visual 
cortex. Informed by theories in visual neuroscience that link brain 
activation and image spatial content, and by a growing body of work 
showing an association between visual discomfort and larger 
metabolic and electrophysiological response, we derived three types 
of measures that were candidates for characterising the model’s 
response to uncomfortable images. We  found that the level of 
activation, the sparseness, and the isotropy of the model population 
response to images from urban scenes and abstract art were good 
predictors of the visual discomfort experienced by observers when 

FIGURE 5

Changes in markers of visual discomfort when the balance of excitation over inhibition is modified. Distributions of (A) activation, (B) sparseness, and 
(C) isotropy metrics for all the stimuli in Architecture 1 and increasing values of gain for the inhibitory layer. The gain ranged from 0, i.e., no inhibitory 
activity in the model (top left, light grey distribution), to 1, i.e., reference model (top right, blue distribution), in steps of 0.125. Differences between 
distributions and the distribution for the reference model were tested using two-sample Kolmogorov–Smirnov tests; p-values are colour coded as in 
Figure 3. See Supplementary Figures S11–S13 for the equivalent distributions for sets Architecture 2, Art 1 and 2.
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viewing the images. Our results therefore provide new insights into 
how overload in the visual system may lead to discomfort by 
suggesting three possible non-mutually exclusive mechanisms: 1. 
Discomfort may arise because the overall amount of activity of the 
neurons in the network, or activation level, is too high; 2. Discomfort 
may arise because too many neurons have a high activity, i.e., the 
encoding is not sparse enough; 3. Discomfort may arise when activity 
in the hypercolumns is concentrated at a given orientation, i.e., when 
the isotropy in the network response is low.

With our second experiment, we  showed that the same three 
mechanisms may also shed light into interindividual differences in 
susceptibility to visual discomfort. To this end, we took advantage of 
the separation between excitatory and inhibitory populations in 
neurodynamic models based on Wilson and Cowan formalism 
(Wilson and Cowan, 1972, 1973), which does not exist in models 
based on divisive normalization (Heeger, 1992; Foley, 1994; 
Cavanaugh et al., 2002; Kay et al., 2013; Schutt and Wichmann, 2017), 
in order to modify the balance between excitation and inhibition. 
When the balance took higher ratios, e.g., because of a deficit of 
GABA neurotransmitter availability, the three markers of discomfort 
shifted toward values associated with increased visual discomfort, 
namely a higher activation, a lower sparseness, and a decreased 
isotropy in the model population response. The modelling therefore 
predicts that more and more stimuli will lead to discomfort as the 
availability of inhibition lowers. This first mechanistic account for 
individual difference in susceptibility to visual discomfort corroborate 
previous findings of a link between GABA concentration and brain 
activation. There is evidence for variation in GABA levels within the 
normal population (Cai et al., 2012). Resting GABA concentration 
predicts peak gamma frequency and fMRI amplitude in response to 
visual stimulation in humans (Muthukumaraswamy et al., 2009) in 
response to striped patterns (Adjamian et  al., 2004; 
Muthukumaraswamy et al., 2009). Intriguingly, our modelling makes 
a link between reduced inhibition and stripes or gratings, visually 
uncomfortable stimuli par excellence (Wilkins et al., 1984; Hermes 
et al., 2017): As inhibition was reduced in the model, the isotropy of 
the model response, which measures the balance of activity across 
spatial orientations, was progressively lost in a winner-takes-all 
process in which a single orientation would take all the activity, as in 
the presence of stripes. Together, our experiments support a unified 
view of visual discomfort in which core properties of the early visual 
system – cells sensitive to oriented luminance edges at different spatial 
orientations and frequencies coupled through a pattern of excitatory 
and inhibitory connections that implement contextual influences – 
partially account for both image-wise differences in induced 
discomfort and individual differences in susceptibility to 
visual discomfort.

Although a link between visual discomfort and an exceptionally 
strong neural response has long been proposed (Wilkins et al., 1984), 
empirical evidence has only emerged recently. Le et al. (2017) used 
near infrared spectroscopy to measure the oxyhaemoglobin response 
from posterior areas of the cortex. The amplitude of the response to 
images of buildings increased with the extent to which the image 
statistics deviated from 1 / f α . When focusing on colour, striped 
patterns comprising two colours were more uncomfortable when the 
chromaticity differences were large (e.g., red and blue) compared to 
small (pink and purple). The large chromaticity differences also 
elicited a larger haemodynamic response in visual cortex (Haigh et al., 

2013), greater alpha suppression (Haigh et al., 2018), greater steady-
state evoked potentials (Lindquist et  al., 2021), and larger event-
related potentials (ERPs) (Haigh et  al., 2019). Individuals with 
migraine also reported greater discomfort and larger ERPs compared 
to headache-free individuals (Haigh et al., 2019), further supporting 
the link between discomfort and strong neural responses.

To our knowledge, the only modelling attempts to understand 
the neural basis of discomfort so far is (Hibbard and O'Hare, 
2015), in which the authors explored a putative relationship 
between discomfort and sparse coding by computing the kurtosis 
of the distribution of responses of a set of Gabor units tuned to 
several spatial frequencies and orientations similar to the first 
component of our model. The response to natural images was 
much sparser than that to sine gratings. Our study extends these 
findings using a model that considers contextual modulations of 
neurons’ activity outside their CRF, carried out through lateral 
connections, and to images of real urban scenes and abstract art 
within a continuum of levels of reported discomfort, instead of 
the two theoretically extreme corpuses of images formed by 
natural images and sine gratings. In future works, considering 
larger, more diverse datasets, for example including interior 
scenes, would provide insights into the generalizability of our 
results to other facets of daily life.

A prevailing thesis in vision science is that the evolution of 
the visual system has been driven by the selective pressure to 
provide an encoding of natural stimuli that is efficient, both in 
terms of transmission of information and metabolism (Attneave, 
1954; Barlow, 1961). For example, there is strong evidence 
supporting a sparse representation of natural images in the visual 
cortex (Vinje and Gallant, 2000, 2002; Weliky et al., 2003; Haider 
et al., 2010). Efficient coding predicts that natural stimuli are 
comfortable to view, which is possibly a basis for the restorative 
effect of nature (Menzel and Reese, 2022). However, and in 
apparent contradiction with the efficient coding hypothesis, 
several studies have shown an association between deviation 
from the statistics of natural images and decreased BOLD 
response. In (Isherwood et al., 2017), synthetic noise images with 
1 / f α spectra triggered a stronger BOLD fMRI response in the 
early visual cortex for a slope closer to 1 / f  than for steeper or 
shallower slopes. In (Olman et  al., 2004), the BOLD fMRI 
response to natural images was stronger than to their whitened 
counterpart. In Rieger et  al. (2013), randomising phases in 
natural images, thereby removing edge information to which the 
visual system is putatively adapted, had no impact on population 
metabolic cost as measured by blood oxygenation level dependent 
(BOLD) response.

The question then is, how to reconcile these findings and the 
theory of efficient coding? Although the theory predicts that 
natural stimuli are efficiently processed, it does not follow 
logically that deviations with respect to nature cause inefficient 
neural processing. Indeed, efficient coding entails that, 
considering all possible images, natural images are included in 
the subset of images processed efficiently, along with some 
non-natural images. And indeed, this inclusion is strict: 
non-natural images with a reduced dynamic range of contrast or 
artificial square-wave gratings with very low frequencies are 
processed typically. To explore this question computationally, 
we contrasted the activation of our model against two measures 
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of deviations with respect to 1 / f : one that sums deviation in 
amplitude contrast with respect to natural images at any 
frequency and spatial orientation in the full two-dimensional 
amplitude spectrum (Penacchio and Wilkins, 2015), and the 
slope of the amplitude spectrum (e.g., Tolhurst et al., 1992), as 
used in Olman et al. (2004) and Isherwood et al. (2017). We found 
strong correlations between activation and deviation with respect 
to the full two-dimensional spectrum of natural images 
(Penacchio and Wilkins, 2015) for all sets but Art 2, but no 
correlation with the spectral slope (Supplementary Material S9,  
Table and Figures S16–S19). This computational finding is in 
agreement with our former empirical measurements in (Le et al., 
2017), in which we  found an association between increased 
metabolism and higher two-dimensional deviation with respect 
to 1 / f  (Penacchio and Wilkins, 2015). Overall, this suggests that 
BOLD fMRI responses are more tuned to the amount of contrast 
at different spatial scales and regions than to the spectral slope 
(Field and Brady, 1997; Isherwood et al., 2017), a dependence 
better captured by measuring deviations in the full 
two-dimensional spectrum (Penacchio and Wilkins, 2015). This 
calls for a theoretical and empirical characterisation of the 
deviations from the statistics of natural scenes that lead to 
inefficient processing.

Nevertheless, several studies have shown that visual discomfort is 
predicted by the spatial distribution of luminance contrast (Fernandez 
and Wilkins, 2008; Juricevic et al., 2010; O'Hare and Hibbard, 2011; 
Penacchio and Wilkins, 2015) or the extent to which the difference in 
chromaticity (Penacchio et al., 2021) deviates from that found in nature. 
In our study, the third marker of discomfort, isotropy, shows a similar 
relationship. In the two sets in which this metric had a large range of 
values (i.e., urban landscapes), how the isotropy of the encoding on an 
image differed from the typical values for natural images predicted how 
uncomfortable to look at it was. The study therefore confirms that 
discomfort can be triggered by some types of deviation from nature while 
giving new insights into how image spatial content (or excessive 
excitation/inhibition ratio) harnesses this deviation.

More generally, by offering three distinct, if partly correlated, 
mechanisms by which discomfort arises, the study provides a direct 
and intuitive account for the propensity of simple, laboratory stimuli 
based on gratings to provoke discomfort, headaches or seizures in 
photosensitive epilepsy (see Wilkins, 1995; Hermes et al., 2017). The 
likelihood of causing discomfort increases with the size or the contrast 
of the gratings (as does the model activation level) and increases if the 
gratings’ frequency is closer to three cpd (the predictive power of all 
three markers is higher around this frequency for the experiments in 
which the visual angle of the stimuli was controlled). This likelihood 
decreases when superimposing gratings with different orientations 
(plaid patterns), therefore increasing the isotropy of the model 
response (Wilkins, 1995).

Nonetheless, the modelling approach is subject to important 
limitations. As it does not include the machinery of colour processing, 
the model cannot account for the contribution of chromatic 
information to discomfort (Haigh et al., 2013; Penacchio et al., 2021; 
O'Hare et al., 2023). More importantly, while visual stress, migraine, 
and photosensitive epilepsy have in common a heightening of 
metabolic and neural response, there is the caveat that our model 
may not be  able to capture the temporal aspect of epilepsy. 
Epileptogenic stimuli not only trigger a hyperneuronal and 

hypermetabolic response as in discomfort and migraine (Haigh et al., 
2012), but also a temporal synchronization in this response (Binnie 
et  al., 1985). There is strong evidence of an association between 
seizure generation and oscillations in the gamma band (30–80 Hz) 
(Hermes et al., 2017). Our firing-rate model is based on Wilson-
Cowan equations (Wilson and Cowan, 1972; Wilson and Cowan, 
1973). Such equations are not able to generate the fast oscillations 
needed for monitoring activity in the gamma band (Devalle et al., 
2017). Lastly, the neural hyperexcitability underlying differences in 
susceptibility to visual discomfort may not simply rest on a higher 
ratio of glutamatergic excitation over GABAergic inhibition, but on 
more complex interconnections between several types of 
neurotransmitters (Saxena et al., 2021). A natural progression of this 
work is to augment the modelling by adopting more elaborate 
equations that allow the generation of fast oscillations (Devalle et al., 
2017) or by using spiking networks, and to consider a bigger diversity 
of neuron and neurotransmitter types (Shaw et al., 2020).

This study demonstrates the ability for a model of the early visual 
system to account for two fundamental aspects of visual discomfort, 
image-wise differences in induced discomfort and individual 
differences in susceptibility to visual discomfort. Three markers of 
model activity predicted more than 40 percent of the variance in 
observers’ reported discomfort from complex, real-life images. More 
efforts to integrate idiosyncratic differences linked to hyperexcitability 
in the modelling approach are now central to generate tools that 
make individual predictions.
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