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Introduction: Emotional disorders are essential manifestations of many

neurological and psychiatric diseases. Nowadays, researchers try to explore

bi-directional brain-computer interface techniques to help the patients. However,

the related functional brain areas and biological markers are still unclear, and the

dynamic connection mechanism is also unknown.

Methods: To find e�ective regions related to di�erent emotion recognition and

intervention, our research focuses on finding emotional EEG brain networks using

spiking neural network algorithm with binary coding. We collected EEG data

while human participants watched emotional videos (fear, sadness, happiness, and

neutrality), and analyzed the dynamic connections between the electrodes and the

biological rhythms of di�erent emotions.

Results: The analysis has shown that the local high-activation brain network of

fear and sadness is mainly in the parietal lobe area. The local high-level brain

network of happiness is in the prefrontal-temporal lobe-central area. Furthermore,

the α frequency band could e�ectively represent negative emotions, while the α

frequency band could be used as a biological marker of happiness. The decoding

accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively,

fully reflecting the excellent emotional decoding performance of the spiking

neural network with self- backpropagation.

Discussion: The introduction of the self-backpropagation mechanism e�ectively

improves the performance of the spiking neural network model. Di�erent

emotions exhibit distinct EEG networks and neuro-oscillatory-based biological

markers. These emotional brain networks and biological markers may provide

important hints for brain-computer interface technique exploration to help related

brain disease recovery.

KEYWORDS

emotion, a�ective computing, brain network, neural oscillation, neuroregulation, self-

backpropagation, spiking neural network, brain-computer interface

Introduction

Emotion influences human rational decision-making, behavior, and cognition and is

indispensable for social communication. Studying neural circuit mechanisms of emotion

is integral to “Brain Science and Brain-Like Intelligence Technology of China” (Poo et al.,

2016). Many mental disorders and diseases are related to abnormal emotional regulation.

With a rapid development of computer science, psychology, and neuroscience, affective

computing attracts more and more research interest. Efficiency decoding of EEG signals

is significant in studying affective computing (Seeber et al., 2019). Neural networks (NN)

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1200701
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1200701&domain=pdf&date_stamp=2023-07-11
mailto:wei.wu@ia.ac.cn
mailto:yanxuexue@bjmu.edu.cn
https://doi.org/10.3389/fnins.2023.1200701
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1200701/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1200701

are widely used in affective computing because of their high

decoding accuracy (Kohn et al., 2014). In recent years, NN has

continued to be improved in structure, depth, and complexity, and

the decoding accuracy of EEG signals reaches a high level with the

advantage of high-performance graphics computers (Mousa and

Hussein, 2021). The process of affection computing is to extract

EEG features first, then feed them into an NN for classification.

The advantage of this method is that it takes emotion-related

features as input, reduces the dimension of input data, and reduces

the difficulty and instability of training the prediction model.

Through the analysis of the learning content of the NN, such as

the classification weight of different features, the critical features

in emotion recognition can be explained, such as frequency band,

channel, and brain area. The disadvantage of this method is that

it extracts features first, which reduces the information entropy

of the original EEG signal related to emotion, and this process

is irreversible. Another method is to take original EEG data as

the neural network input. This method makes full use of the

autonomous learning ability of the neural network to learn the

information and patterns related to emotion from the original EEG.

However, this method also has its disadvantages. The information

and patterns learned by NN are challenging to explain, which limits

the exploration and research of emotional neural activities (Liu

et al., 2021). Given these problems, it is significant to design an NN

based on the characteristics of emotion-related EEG signals to learn

the neural activity information.

The spiking neural network (SNN) is the third-generation

neural network, and the neuron emits a signal by spike. Compared

with the traditional NN, the information transmission of the SNN is

based on the binary signal to encode the information. It is alsomore

conducive to simulating the neurons’ plasticity (Ghosh-Dastidar

and Adeli, 2009). However, the training progress of the SNNmodel

was mainly forward propagation and could not iteratively optimize

the calculation error. The hippocampal neuron was found to be the

existing biological mechanism of backpropagation (Fitzsimonds

et al., 1997). Our study applied the backpropagation mechanism to

the SNN algorithm and constructed the novel SBP-SNN algorithm

(Zhang et al., 2021), significantly reducing the calculation error

and improving the model’s prediction accuracy. Although the

temporal resolution of EEG technique is high, its spatial resolution

is limited. Therefore, it is necessary to take the spatial axis into

the research of EEG. The method “Neurocube” provided the idea

of the fusion of temporal and spatial information (Behrenbeck

et al., 2019). Combining temporal–spatial information fusion and

self-backpropagation would improve the calculation accuracy and

spatial resolution of the SNN.

The emotion generation mechanism results from a dynamic

combination of multiple brain areas. The research of fMRI also

showed that many brain areas were activated during emotion

generation, including the amygdala, lateral prefrontal cortex,

ventrolateral prefrontal cortex, superior temporal gyrus, angular

gyrus, anterior midcingulate cortex, etc. (Liu et al., 2022; Malezieux

et al., 2023). Meanwhile, it is hard to precisely locate the

spatial position of the intervention target of transcranial electrical

stimulation (tES) and determine the parameters of the intervention

signal. Therefore, we assume that there is also an emotional brain

network mechanism based on EEG that can be used for emotional

decoding, using the self-backpropagation spiking neural network

with temporal and spatial compatibility to determine the emotional

brain networks and the biomarker of different emotional brain

networks. It is of great significance for both the diagnosis of mental

disease and the brain–computer interface of neuroregulation.

Materials and methods

Subjects

Forty-nine subjects (24 males and 25 females) were recruited

from Peking University, China. The average age was 23.00

± 2.30 years. One participant was excluded due to excessive

head movements. The Self-Rating Anxiety Scale (SAS) and Beck

Depression Inventory (BDI) were used to screen subjects with

anxiety and depression symptoms. All participants were right-

handed, had a normal or corrected-to-normal vision, and had no

past neurological or psychiatric history. They provided informed

consent following the protocol approved by Biomedical Ethics

Committee, Peking University.

Stimuli

We selected the stimulation from the Chinese Emotional

Video System (CEVS). The CEVS is a normalized and localized

audiovisual stimulation material library. These videos consist of

three basic emotions (i.e., fear, sadness, and happiness) and neutral

emotion. For each emotion, we selected two clips. In total, eight

clips were used in the research (Figure 1A). A blank screen was

shown for 120 s at the beginning of the paradigm, and the video

was then played, each lasting 71–247 s. Subjects spent 60 s to finish

the questionnaire after the clip finished. The playing sequence

was ordered as neutrality 1, neutrality 2, happiness 1, happiness

2, sadness 1, sadness 2, fear 1, and fear 2 (Figure 1B). As shown

in Figures 1C, D, every video was scored every 20 s during the

playing, with the range of [1, 2, . . . , 9]. Then, we conducted a

cross-subject analysis of the dynamic evaluation during the process

of video playing. Video stimulation includes sound and pictures

and is more vivid compared with a single sound, picture, and

slide. It is similar to the actual scene in life, which is more

conducive to the dynamic recognition of emotion. EEG was

recorded using BrainVision Recorder (Brain Products, Germany

http://www.brainproducts.com/) at a sampling rate of 1,000Hz

from a 62-channel active AgCl electrode cap according to the

international 10–20 system. The layout of EEG electrodes on the

cap is shown in Supplementary Figure S1. The impedance of each

electrode was lower than 10 kΩ . A dimly lit, sound-attenuated,

and electrically shielded chamber was used for EEG recording.

During the presentation of clips, the subjects were asked to evaluate

their feelings every 20 s. For example, how scary the video was, the

feeling was scored from 0 to 9. The dynamic changes in emotion

were recorded during the video-playing process. Subjects were

asked to complete the emotional self-assessment questionnaire

with 10 grades at the end of each clip. First, subjects evaluated

the intensity of happiness, sadness, fear, and other emotions

immediately after watching the clip (0 = no such emotion, 5 =

moderate, 10= extremely strong emotion). Then, the subjects were
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FIGURE 1

The protocol of the designed emotion experiment, (A) sequence of emotional videos, (B) process of emotional video clips presentation, (C) scoring

of emotional vide (D) calculation of scoring.

asked to evaluate the extent of arousal (0 = extremely calm, 5 =

no influence, 10 = extremely excited), pleasure (0 = extremely

unpleasant, 5= no influence, 10= extremely pleasant), dominance

(0 = no sense of control, 5 = no influence, 10 = extremely strong

sense of control), liking (0 = extremely disgusted, 5 = neither

disgusted nor liked, 10 = extremely like), and familiarity (0 =

completely unfamiliar, 5 = neither unfamiliar nor familiar, 10 =

very familiar).

Spatial subnetwork division

According to the electrode spatial distribution and the

Harvard-Oxford atlas (Desikan et al., 2006), the scalp brain

area was divided into seven brain subnetworks as shown

in Supplementary Figure S1. Subnetwork 1 mainly covers the

prefrontal and frontal areas (Fp and AF). Subnetwork 2 mainly

covers the frontal lobe area (F). Subnetwork 3 mainly covers the

frontal-central area (FC) and a small frontal-temporal area (FT).

Subnetwork 4 mainly covers the central area and part of the

temporal lobe area (C and T). Subnetwork 5 mainly covers central-

parietal and temporal-parietal areas (CP and TP). Subnetwork 6

mainly covers the parietal brain area (P). Subnetwork 7 mainly

covers the parietal-occipital and occipital areas (Po and O).

Establishment of emotional brain network
and discovery of biomarkers

The analysis of the emotional brain network is shown in

Figure 2. The raw EEG data were cleaned and preprocessed to

remove the artifact of eye movement and 50Hz noise and match

the requirements on matrix structure and quality of encoder

establishment. The three-layer architecture of SNN, in which SBP
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FIGURE 2

Schematic of spatiotemporal SBP-SNN model used to discover best emotional brain network and biomarker.

and local plasticity (short-term plasticity (STP), spike timing-

dependent plasticity (STDP), and homeostatic adjustments of

membrane potential adjustment) were introduced at synapses in

hidden and output layers, and the teaching spike train was given

to the output leaky integrate-and-fire (LIF) neurons. The spatial–

temporal SBP-SNNwith the spatial coordinates was initialized first,

and then, the emotional decoder of SBP-SNN was trained. The

accuracy of two indexes and F1-score were adopted to evaluate the

performance of the decoder. The small world network algorithm

was used to calculate the connection and node weight among all the

electrode nodes. The wavelet transform was used to convert EEG

data from the time domain to the frequency domain. Multi-kernel

learning and discriminative cross-spectral factor analysis non-

negative matrix factorization (dCSFA-NMF) were used to discover

the biological marker of emotion-related neural oscillation. The

directional connection was established using Granger causality

method, and then, the emotional brain pattern was obtained.

Preprocessing

EEG data were preprocessed using MATLAB. The epochs

were from−500ms before the video onset to the video offset.

We used a Butterworth bandpass filter from 0.5Hz to 48Hz to

attenuate power-line noise. Independent component analysis (ICA)

was also used to remove artifacts such as eye movements. The

Infomax ICA algorithm was used for separating the original signal

into independent components. If there were waveforms between

these components that were characteristic of eye movements,

we removed these eye movements from the signal. Blinks were

removed for all participants, and left–right eye movements

were removed whenever present (in approximately 50% of the

participants). We re-referenced the data by subtracting the average

of all the collected electrodes from every single electrode. The

baseline correction was performed based on 500ms data before

the video onset. Wavelet transform was used to decompose the
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time-domain EEG data and then obtained the power of different

frequency bands in the time-frequency domain, δ (0.5–4Hz), θ

(4–8Hz), α (8–12Hz), β (12–30Hz), and γ (30–48 Hz).

Spatiotemporal self-backpropagation
spiking neural network

According to the research of Zhang et al. (2021), to introduce

the SBP mechanism and to provide a simpler demonstration of

its impact on SNN, we used a three-layer SNN. In the input layer,

neurons received spike trains as inputs encoded using a threshold-

based method. The hidden layer consisted of both excitatory

and inhibitory leaky integrate-and-fire neurons that exhibited the

refractory period, non-linear integration, and non-differentiable

membrane potential. The output layer consisted of excitatory LIF

neurons that received spiking signals from hidden layer neurons,

and the supervised teaching signals were presented only in training

procedures. The learning process used both local forms of synaptic

modification, that is, STP (Tsodyks et al., 1998; Zucker and Regehr,

2002) and STDP (Diehl and Cook, 2015). When STDP is induced at

some specific output synapses, the synaptic weight adjustment will

backpropagate with different proportions of long-term potentiation

and long-term depression to produce weight adjustment at hidden

layer synapses. The restricted Boltzmannmachine network (Scellier

and Bengio, 2017) was used to examine the effect of introducing

SBP into SNN.

According to the research of Kasabov (Kasabov, 2014), 471

nods (coordinate point) were introduced into the spatiotemporal

self-backpropagation spiking neural network framework and

the coordinates of these neurons correspond directly to the

Talairach template coordinates with a resolution of 1 cm3. After

preprocessing in different subnetwork models, the EEG data were

used as the input for emotional decoder training. The label was

identified according to video stimuli. Because the EEG signals

are time series data with rich time information, the threshold-

based encoding method is used for binary temporal spiking coding.

The spatial coordinates of spatial nodes and related electrodes are

loaded, and the leaky integrate-and-fire neuron and the small-

world network are used to initialize the brain spatial model. The

SBP-SNN algorithm was used to train the emotional decoder. The

number of neurons in the input layer was 100, the number of

neurons in the hidden layer was 200, and the number of neurons

in the output layer was 1 (for two-class classification) or 4 (for four-

class classification). The number of training epochs was 100. The

excitatory to inhibitory hidden neurons ratio was 1:1, and the batch

size was 20.

Loss function and synaptic weight

The loss function of SBP-SNN is defined as the standard mean

square error, shown as follows:

C =
1

2

K∑

k = 1

(uk−ok)
2

where cost is the difference in output uk and ok is the expected

teaching output. For the RBM using pure backpropagation, the

synaptic weight adjustmentWBP
j,k

andWBP
i,j can be calculated by the

differential chain rule as follows:

WBP
j,k =−η

∂C

∂Wj,k

WBP
i,j =−η

∂C

∂Wi,j

where η is the learning rate, and i, j, and k represent the indices of

neurons in input, hidden, and output layers, respectively.

Cluster analysis

To establish the performance clusters of best fusion models

(BFM) and simplest fusion models (SFM), non-supervised K-

means cluster analysis was used, setting the number of segments

(k) at 2. Each segment is randomly given a center point. The

distance is calculated between the center point and every accuracy

and F1-score. Then, the points nearing the center point are

divided into clusters, and every new cluster’s new center point can

be calculated. Iterating the process above until the center point

remains unchanged by K-means.

Connectivity

Functional brain connectivity manifests the small-world

organization across different time scales (Bullmore and Sporns,

2009). Neurons in a structural or functional area of the brain are

more densely interconnected, and the closer these areas are, the

higher the connectivity between them. Therefore, the electrode

connection was calculated using the small-world connectivity

algorithm (Watts and Strogatz, 1998), where a radius is defined as a

parameter for connecting electrodes within this radius, with small

weight values attached to the connections which are 80% positive.

Long-distance connectivity could be used to calculate connections

beyond the radius of small-world connectivity. Connection weight

is the electrode weight between a pair of electrodes. It is adjusted

during unsupervised learning to reflect the interaction between

the electrodes.

Granger coherence

The spectral Granger causality (Geweke, 1982) features

were calculated using the MATLAB-based Multivariate Granger

Causality (MVGC) toolbox (Barnett and Seth, 2014). Granger

causality values for each window were calculated using a 20-

order ARmodel via the GCCA_tsdata_to_smvgc function. Granger

causality values were calculated for all integer frequency values

within the desired range for all directed pairs of electrodes in the

dataset (Mague et al., 2022).
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Multiple kernel learning analyses of distinct
frequencies

To comprehensively assess the possible contributions of

different frequency bands of activity to task-evoked EEG responses,

we performed a multiple kernel learning (MKL)-based analysis.

TheMKL approach is a machine learning-based method for feature

selection that can be applied to classifying EEG task conditions by

including multiple frequency bands of activity as well as multiple

electrodes in a single model (Kucyi et al., 2020). In addition, easy

MKL was used to classify emotion categories (Aiolli and Donini,

2015).

Results

Evaluation of emotional stimulation
paradigm

The properties of dynamic visual and audio stimuli make

movies one of the most effective ways to elicit emotions (Wang

et al., 2014). After eight videos, subjects scored valence, arousal,

dominance, liking, and familiarity. The affect intensity and hit

rate of six non-neutral videos were calculated. All the results are

shown in Supplementary Table S1. The affect intensity of all the

non-neutral videos is above 5 (medium strength). The hit rate

of the three emotions is over 90%. The results indicate that the

chosen videos are of good validity, which could effectively elicit

related emotions.

Di�erence analysis between emotional and
neutral stimulation

We compared the differences between fear and neutral

emotion-related EEG in the time domain and found that the EEG

amplitude of fear was significantly higher than that of neutral after

30 s (Figure 3). There was also a significant difference between sad

and neutral stimuli, the amplitude of the latter was much lower

than the former, mainly in the late stage of the clip presentation.

The emotion of happiness has similar results to fear and sadness,

and there was a significant difference in the EEG amplitude

between happiness and neutrality, especially in the middle and

late stages. Event-related spectral perturbation (ERSP) of different

emotions further indicated difference in the power between fearful

and neutral conditions. The former is significantly higher than

the latter, especially the frequency band (15–48) Hz during the

late stage of the clip. There were similar results for the sad and

neutral emotions. However, the power of ERSP for happiness

was significantly inhibited in the frequency range of (8–15) Hz,

which still occurred in the middle and late stages, according to

the analysis of the amplitude and power of different emotions

EEG in the time and time-frequency domains above. It could be

seen that the apparent difference mainly occurred in the middle

and late stages of the video playback, which indicated that there

was an energy difference between the emotional component and

the neutral component of the video stimulation. Meanwhile, the

emotional expression had a cumulative effect over time.

Emotional subnetwork model analysis

The best emotional network model and the best electrode

location of seven networks of three emotions were established using

the SBP-SNN. First, as shown in Figure 4, the initial network model

and the contribution of every node in the model were calculated.

Next, the node with the lowest contribution was eliminated

according to prediction accuracy and F1-score to generate a new

subnetwork model, and then, the performance of the new model

and the participation of each electrode node were calculated. This

process would continue until the emotional subnetworkmodel only

had the last node or the prediction model performance continued

to be poor; that is, the brain area covered by the relevant electrode

did not participate in the arousal of the corresponding emotion.

As shown in Figure 4A, in the first subnetwork of fearful

emotion, the electrodes of the initial network at the frontal

area include Fp1, Fpz, Fp2, AF3, and AF4, in which Fp1 had

the largest contribution in the whole model, forming an initial

subnetwork model with Fp1 as the core node, Fpz, AF3, Fp2,

and AF4 electrodes were also involved. In the initial subnetwork

model of the first subnetwork, the accuracy and F1-score were

59% and 0.59, respectively. The contribution of the AF3 electrode

was the smallest, even lower than 1%. Therefore, AF3 would

be eliminated in the next model. According to the principle

of minimum contribution electrode elimination in emotional

subnetwork mining, AF3, Fp1, Fp2, and Fpz were eliminated

in the continuous optimization of the models, and the simplest

subnetwork with an AF4 node was finally determined. The

prediction accuracy and F1-score were 73% and 0.74 in the simplest

subnetwork model. The secondmodel (Fpz, Fp2, AF4, Fp1) had the

best performance in the fear first subnetwork model, the accuracy

was 73%, and the F1-score was 0.74. The optimization process of

the other six subnetwork models is similar to the first subnetwork.

The whole performances of all fear subnetworks models are shown

in Supplementary Table S2.

It should be noted that Fp1 was the core electrode in the

initial subnetwork model of the first subnetwork of fear. However,

the Fp1 electrode was eliminated in the establishment process of

the third subnetwork model, and it did not finally become the

best electrode, which showed that rather than independently, each

electrode played a role as a part of the emotional brain network

model. As we know, emotion generation in the local brain area

usually depends on the whole brain network. Therefore, structural

changes in a specific emotional brain network might correspond

to the overall emotion. From the perspective of the electrode site,

the node that performed best in one of the brain networks might

not be the one that best reflects emotion. The mining process

of the sadness first subnetwork is shown in Figure 4B, and the

core electrode of the initial subnetwork model was AF4. Fp2,

Fpz, Fp1, and AF3 electrodes were also involved. The accuracy

and the F1-score of the initial emotional subnetwork model were

70% and 0.71, respectively. After a series of model optimizations

and the electrode with worst-performance elimination, model 4
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FIGURE 3

Comparison of the neutral amplitude changes in a time domain and event-related spectral perturbation (ERSP) in the time-frequency domain

between di�erent emotions, (A) fear versus neutrality, (B) sadness versus neutrality, and (C) happiness versus neutrality.

achieved the best performance, with an accuracy of 77%, and the

F1-score of 0.75. The core electrode of the simplest subnetwork

model was AF3, the accuracy was 68%, and the F1-score was 0.70

in the model. Similarly, the simplest subnetwork model electrode

was not the best electrode in the initial subnetwork model. The

analysis process of other subnetworks of sadness is similar to the

first subnetwork, and the model performance of all subnetworks is

shown in Supplementary Table S3. The happiness first subnetwork

optimization process is shown in Figure 4C. The initial subnetwork

model was composed of Fp2, Fpz, Fp1, AF3, and AF4, where

AF3 was the core electrode of the model. The model’s prediction

accuracy was 45%, and F1-score was 0.45. The best model was

model 3 after the optimization, the accuracy was 57%, and the F1-

score was 0.54. The electrode of the simplest subnetworkmodel was

AF3, the same as the core electrode of the initial subnetwork. The

other subnetworks of happiness mining processing are similar to

the first subnetwork. The performances of all happiness prediction

models are shown in Supplementary Table S4.
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FIGURE 4

Emotional brain subnetwork model and its optimization process. (A) The first model mining process of fear, (B) the first model mining process of

sadness, and (C) the first model mining process of happiness.
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As shown in Supplementary Table S2, model 2 had the best

performance among all models in subnetwork 1 of fearful emotion.

The simplest model was model 4. The best model was model 1,

and the most straightforward model was model 4 in subnetwork

3. Model 2 had the best performance, and model 4 was the simplest

in the subnetwork 4. In subnetwork 5, model 4 was the best, and

the most straightforward model was model 5. Model 3 was the best,

and model 7 was the simplest in subnetwork 6. In subnetwork 7,

model 3 had the best performance; the most straightforward model

was model 7. Comparing all these models, we found that model

3 in subnetwork 6 had the best performance among all the best

models. The accuracy of model 3 was 84.09%, and the F1-score was

0.84. All performances of sadness subnetwork models are shown in

Supplementary Table S3. Model 3 from subnetwork 6 had the best

performance among all the best models. The prediction accuracy

was 84.09%, and the F1-score was 0.86, which were much higher

than other models. Supplementary Table S4 shows all results of the

happiness prediction models of seven subnetworks. There was the

same performance between model 3 of subnetwork 3 and model

1 of subnetwork 4. The prediction accuracy was 81.82%, and the

F1-score was 0.83. However, according to the subnetwork mining

process, especially the performance of the simplest models of the

two models, the overall performance of subnetwork 3 was better

than that of subnetwork 4.

Emotional subnetwork models fusion
analysis

Although we adopted the accuracy and F1-score to assess the

emotional subnetwork model’s performance quantitatively, it is

difficult to discriminate whether there were differences among

seven subnetworks on the best and simplest models from the

indicators. Therefore, cluster analysis provided the possibility for

model fusion across subnetworks. As shown in Figure 5A, the

best model performance of subnetwork 2 and subnetwork 3 was

not the same class as that of subnetwork 1,4, 5, 6, and 7 by

cluster analysis. The latter’s performance was much better than the

former’s, which meant that the best models from the subnetwork

1, 4, 5, 6, and 7 could better reflect the fearful emotion. The

cluster results on the simplest models showed that the model

performance of subnetworks 1, 4, 5, 6, and 7 was better than that

of subnetworks 2 and 3 in the fear prediction (Figure 5B). The best

model in subnetwork 6 differed from the other six subnetworks

in sad emotion (Figure 5C). As shown in Supplementary Table S3,

the performance of the best model of subnetwork 6 was the

best compared with the other six best models. The prediction

accuracy was 84.09%, and the F1-score was 0.86. The performance

of subnetwork 5 was worse than the other six subnetworks on the

simplest model (Figure 5D). The prediction accuracy of the model

was 47.73%, and F1-score was 0.41. In the analysis of clustering of

subnetwork models of the emotion of happiness, the performance

of the best model of subnetwork 1 was significantly different from

the other six subnetworks (Figure 5E). Subnetwork 1 differed from

the other six subnetworks in the simplest subnetwork (Figure 5F).

Considering the specific indexes in Supplementary Table S4, the

performance of the other six subnetwork models was significantly

better than that of subnetwork 1. The prediction accuracy was

56.82%; F1-score was 0.56. According to the clustering results

above, several networks could be clustered and may contribute

together to emotion generation. Therefore, it is necessary to

explore the role of fusion models from the best model fusion

and the simplest model fusion. Meanwhile, the performance was

compared on best BFM, SFM, and signal best subnetwork models

(BSM) to determine which was the best structure of the emotional

brain network. The basic structure of fear best fusion model

included the best models in subnetworks 1, 4, 5, 6, and 7. The

subnetwork component of the simplest fusion model was the same

as the best fusion model. All seven subnetworks were included

in the best fusion model for sadness model fusion. Subnetworks

1, 2, 3, 4, 6, and 7 were included in the sad simplest fusion

model. The best fusion model of happy included subnetworks

2, 3, 4, 5, 6, and 7. The structure was the same as that of

the simplest fusion model. Therefore, we used multi-subnetworks

EEG data as the input of the SBP-SNN to establish emotion

evaluation models.

As shown in Table 1, the prediction accuracy of the BFM was

70.45%, and F1-score was 0.74. The prediction accuracy of the

SFM was 65.91%, and F1-score was 0.67. However, the prediction

accuracy of the BSM among all the subnetworks was 81.82%, and

the F1-score was 0.84. The prediction accuracy of the BFM of

sadness was 72.23%, and the F1-score was 0.76. The prediction

accuracy of the SFM of sadness was 70.45%, and the F1-score

was 0.73. The prediction accuracy of the BSM among all models

in Supplementary Table S3 was 84.09%, and F1-score was 0.86.

The prediction accuracy of the BFM of happiness was 79.55%,

and the F1-score was 0.84. The prediction accuracy of the SFM

was 77.72%, and the F1-score was 0.78. However, the best model

among all the subnetwork models in Supplementary Table S4 had

the best performance, and the accuracy and the F1-score were

81.82% and 0.83, respectively. According to the results above,

the performance of BFM was better than that of the SFM but

worse than that of the BSM among all subnetworks for all

three emotions.

The emotional EEG brain network is shown in Figure 6. There

were 20 electrodes in the BFM of fear, the corresponding brain

area involved frontal, central, parietal, temporal, and occipital

areas. The central area had the largest number of electrodes. The

number of SFM electrodes was more streamlined comparing the

BFM; it was also distributed in the five brain areas. However, there

was a significant decline in the prediction accuracy and F1-score

from the BFM to the SFM (Table 1). The BSM of fear is located

parietal lobe, and its structure includes P1, P2, P5, P6, and P7. The

results of the BFM of sad showed that there 25 electrodes were

involved. They were distributed in the frontal, central, temporal,

parietal, and occipital areas. The emotional brain area of sadness

was related to the frontal-central-occipital lobe in the SFM. Most

electrodes were located in the frontal lobe. Meanwhile, with the

decrease in the number of electrodes from the BFM to the SFM,

the prediction ability also decreased. The BSM of the sadness was

located parietal lobe, and its structure includes P1, P5, Pz, P7,

and P8. Most electrodes were related to happiness; there were

33 electrode sites activated, involving frontal, central, parietal,

temporal, and occipital areas. The number of electrodes from the

frontal lobe was the largest. The brain area of the SFM of happiness
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FIGURE 5

Performance cluster of subnetwork model, (A) fear best model cluster, (B) fear simplest model cluster, (C) sadness best model cluster, (D) sadness

simplest model cluster, (E) happiness best model cluster, and (F) happiness simplest model cluster.

TABLE 1 Comparison of the emotion prediction performance of BFM, SFM, and BSM.

Index Fear Sadness Happiness

BFM SFM BSM BFM SFM BSM BFM SFM BSM

Acc. (%) 70.45 65.91 81.82 72.73 70.45 84.09 79.55 77.27 81.82

F1-Sc. 0.74 0.67 0.84 0.76 0.73 0.86 0.82 0.78 0.83

included the frontal, central, and occipital lobes. The number of

electrodes from the frontal area was also the largest. The model’s

performance became worse with the decrease in the participated

electrodes. The BSM of happiness was located in frontal-central

and frontal-parietal areas, and its structure includes FC1, FC2, FT7,

and FT8.

Emotional biomarkers and brain network
based on the BSM

Neural oscillation was an important indicator of brain state.

δ (0.5–4Hz), θ (4–8Hz), α (8–12Hz), β (12–30Hz), and γ (30–

48Hz) frequency bands were decomposed using wavelet transform
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FIGURE 6

Structure and functional connectivity of emotional brain network model, BFM, SFM, and BSM.

from time domain emotional EEG data. As shown in Figure 7, the

SBP-SNN was used to decode brain activity of emotion. To our

knowledge, every frequency band was used in the brain to perform

not just one but multiple functions. In turn, each function could be

represented by multiple oscillations. In our research, the changes in

emotion could be reflected by relatively higher frequency bands (α,

β, and γ) for fear, sadness, and happiness. The prediction accuracy

of the β frequency band on fear was significantly different from that

of the δ, θ, and α frequency bands and higher than that of the γ

frequency band. The F1-score of the β band was also higher than

that of the other frequency bands. The same results were found

in sadness prediction. Although the prediction accuracy of the α

frequency band in happiness was significantly different from those

of δ and θ frequency bands, the accuracy was also higher than that of

β and γ frequency bands. The mean F1-score in α frequency bands

was higher than 0.8.

We adopted multiple kernel learning (MKL) to decompose the

relative contributions of the power amplitudes of distinct frequency

bands (Schrouff et al., 2016). Figure 8 shows a significant difference

in the β and the lower frequency bands (δ and θ). Meanwhile, the

contribution of the β frequency band was the highest for fear and

sadness. The contribution of the α frequency band was highest

for happiness, and it significantly differed from the other four

frequency bands. According to the results above, the β frequency

band could be the biological marker of negative emotions: fear

and sadness. However, the β frequency band could not be used to

distinguish the two emotions internally. α oscillation could be used

as a biological marker of happiness.

The connection between neural oscillations from different

neural network nodes was crucial. The best model of fear wasmodel

3 of subnetwork 6. Parietal electrodes including P1, P2, P5, P6, and

P7 were included in the model. Discriminative cross-spectral factor
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FIGURE 7

Neural oscillation modeling and prediction of di�erent emotions by the SBP-SNN. Asterisks indicate significant p value as *p < 0.05, **p < 0.01 and

***p < 0.001 (two-tailed t-tests). Error bars represent SEMs.

analysis non-negative matrix factorization (dCSFA-NMF) (Talbot

et al., 2020) was used to discover the network structure within

neural data. As shown in Figure 9, 13–29Hz (β) oscillation was also

characteristic of fear for all five electrode sites. The transmission

of β oscillation at different nodes was mainly concentrated in the

same frequency band and higher frequency band. The subnetwork

model with the best performance of sadness emotion was model

3 of subnetwork 6. The electrode nodes included P1, P5, Pz,

P7, and P8, which are also located in the parietal lobe. β (13–

29Hz) frequency band was still the main characteristic of emotion

generation in different nodes. The energy connection between

different nodes also mainly occurred in the same frequency band,

a small part of high-frequency and low-frequency oscillation. The

best subnetwork model of happiness was model 3 of subnetwork

3, which included electrode nodes FC1, FC2, FT7, and FT8. These

nodes were located in the frontal-central and frontal-temporal

lobes. Among the four electrode nodes, α (7-13Hz) oscillation

was essential to happiness generation. The connectivity of neural

oscillation between different nodes mainly occurred in the same

frequency band (α) and secondly higher frequency bands (β and γ).

The directional connection of different nodes was an essential

part of the connectivity evaluation of the emotional brain network.

Granger causality analysis of the fearful emotion generation brain

network showed that the projection of β oscillation was from P1

to P2, P5, and P6. There was no prominent projection to P7.

Furthermore, there was an oscillation projection from P2 to P5 and

P7. There was no causality between other electrode nodes, as shown

in Figure 10. The β oscillation from node P1 projected directly to

P5, P8, and P7 for sadness. There were direct projections from P5

to Pz, P7, and P8. There were further direct projections from P5

and P7 to P8. For happy emotion, there were direct projections

from FC2 to FC1, FT7, and FT8. The oscillation from FC1 projected

to FT7 and FT8. Finally, there was a projection from FT7 to FT8.

Therefore, P1 and FC2 could be essential intervention targets in

emotion regulation research.

Performance evaluation of emotion
decoding algorithms

We next compared the effect of different machine learning

algorithms in predicting emotion, including binary classification

and four-class classifications as shown in Table 2. The classification

accuracy of the SNN algorithm for fear, happiness, and sadness

is 76.72%, 75.48%, 78.19%, and 53.88%, respectively. The

performance was superior to logistic regression, naive Bayes, and

K-neighborhood algorithm and was basically equivalent to support

vector machine and random forest algorithm, but far lower than

CNN-LSTM fusion algorithm. By introducing the SBP mechanism,

the accuracy of emotion decoding of the SBP-SNN algorithm was

significantly improved. The prediction accuracy of fear, sadness,

and happiness was 81.82%, 84.09%, and 81.82%, respectively,
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FIGURE 8

Summed contribution of each frequency band to the full model (averaged across folds) using MKL, in percent. Asterisks indicate significant p value as

**p < 0.01 and ***p < 0.001 (two- tailed t-tests). Error bars represent SEMs.

FIGURE 9

Power and synchrony measures compose BSM of three di�erent emotions. Brain areas and oscillatory frequency bands ranging from 1 to 50Hz are

shown around the rim of the circle plot. The highlights around the rim depict spectral power measures that contribute to the BSM, and

cross-spectral (i.e., synchrony) measures are depicted by the lines connecting the brain regions through the center of the circle.

and the accuracy of the four-class classifications was 63.86%.

The classification accuracy of the CNN+LSTM algorithm in the

above four-class classification predictions was 87.50%, 75.00%,

81.25%, and 61.00%, respectively. The SBP-SNN had advantages in

predicting the binary and four-class classification of sadness and

happiness, except that the binary classification performance of fear

was slightly lower than the CNN+LSTM.

As shown in Tables 2, 3, the prediction accuracy and F1-

score of binary and four-class classifications for all algorithms

were improved in the time-frequency domain compared with the

time domain. The prediction accuracy and F1-score of the SBP-

SNN algorithm in fear, sadness, happiness, and four categories

were 86.36% and 0.92, 95.18% and 0.95, 89.09% and 0.80, 70.25%

and 0.73, respectively. The results further proved the reliability

and necessity of biomarker identification of β and α frequency

bands. Compared with the SNN and other algorithms, the SBP-

SNN algorithm retained the spiking efficient coding characteristic

of the third-generation neural network and improved the accuracy

of SNN.

Discussion

As we know, many brain areas are involved in the neural circuit

of emotion generation.Meanwhile, the structure of emotional brain

networks was very complex. The pathways of neural circuits, such

as fear, have been proven to be the ventromedial prefrontal cortex,

amygdala, orbitofrontal cortex, insular cortex, nucleus accumbens,

and other brain regions. However, the neural oscillations sensed

by the EEG were still very complex as it could not dissociate

signals from deep brain areas and cortex after the emotion-related

neural oscillations from the deep brain area were projected to

the cerebral cortex. Therefore, it was necessary to encode and

decode scalp EEG containing important emotional information

efficiently. The spiking neural network algorithm could effectively

simulate and restore the firing state of neurons uniquely in spike

coding. This theory ensured the scientificity and reliability of

the algorithm. Because the early SNN did not have an error

compensation mechanism, it was plagued by accuracy for a long

time. The SBPmechanism, first found in the hippocampal neurons,
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FIGURE 10

Local brain network of di�erent emotions.

TABLE 2 Emotion prediction performance of machine learning algorithms in the time domain.

Class Index LR NB SVM RF KNN CNN-
LSTM

SNN SBP-
SNN

Fearful and

Neutral

Acc. (%) 28.62 47.67 71.94 76.24 66.74 87.50 76.72 81.82

F1-Sc. 0.28 0.55 0.48 0.72 0.58 0.75 0.74 0.84

Sad and

Neutral

Acc. (%) 57.14 52.44 66.71 42.96 56.22 75.00 78.19 84.09

F1-Sc. 0.39 0.39 0.73 0.26 0.52 0.72 0.80 0.86

Happy and

Neutral

Acc. (%) 33.33 47.36 72.41 66.75 60.11 81.25 75.48 81.82

F1-Sc. 0.25 0.25 0.64 0.68 0.58 0.72 0.76 0.83

Four classes Acc. (%) – 55.63 62.62 53.37 56.05 61.00 53.88 63.86

F1-Sc. – 0.44 0.57 0.43 0.50 0.59 0.56 0.66

including long-term activation and long-term inhibition, strongly

supported the backpropagation mechanism of the third-generation

biological neural network. This mechanism significantly improved

the calculation accuracy of the SNN. Because of the unique binary

encoding mechanism, the calculation of model construction was

greatly simplified, reducing the computer’s energy consumption.

Although we did not verify the advantages of computing cost

in the research, previous studies have provided comprehensive

and systematic proof (Zhang et al., 2021). Functional MRI and

EEG technology are essential for studying brain activity and

related mental diseases. However, compared with fMRI, the biggest

shortcoming of EEG technology was low spatial resolution. The

spatial resolution was mainly reflected in whether we could

calibrate the spatial coordinate information of enough EEG

nodes. The spatial coordinate of the whole-brain simulation is

shown in Supplementary Figure S3. It could identify the precise

spatial coordinate of the BSM of different emotions. Using spatial

information in emotional research would play a more significant

role in further study of the deep brain area of the emotional brain

model using EEG.

There were significant differences in energy between emotional

stimulus and neutral stimulus for both the time domain and

time-frequency domain. This difference was concentrated in

the late stage of clip playing, which might be related to the

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1200701
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1200701

TABLE 3 Emotion prediction performance of machine learning algorithms in the frequency domain.

Class Index LR NB SVM RF KNN CNN+LSTM SNN SBP-
SNN

Fearful and

Neutral

Acc. (%) 31.48 52.44 79.13 83.86 73.41 89.25 82.18 86.36

F1-Sc. 0.31 0.61 0.53 0.79 0.64 0.83 0.82 0.92

Sad and

Neutral

Acc. (%) 62.85 57.68 73.38 47.26 61.84 82.50 86.24 95.18

F1-Sc. 0.43 0.43 0.80 0.29 0.57 0.79 0.85 0.95

Happy and

Neutral

Acc. (%) 36.66 52.10 79.65 73.43 66.12 89.38 83.56 89.09

F1-Sc. 0.28 0.28 0.70 0.75 0.64 0.79 0.85 0.80

Four classes Acc. (%) – 61.19 68.88 58.71 61.66 67.10 65.35 70.25

F1-Sc. – 0.48 0.63 0.47 0.55 0.65 0.70 0.73

emotional cumulative effect of the video stimulation paradigm.

This cumulative effect differed from the stimulation paradigm

of pictures, sounds, slides, etc. From the perspective of brain

processing on the stimulation, this process involved at least the

neural pathway joint action of auditory and visual processing

(Wang et al., 2014). It was still unclear what the transmission mode

of the electrical activity in the brain was, especially how to find the

existence of neural circuits through the EEG. The generation of

emotion was with specific patterns of neural oscillatory. Previous

studies proved a long pathway in the “emotional brain,” which

was the critical link in generating emotion in the cerebral cortex.

The electrical activity of the cerebral cortex of the emotions in

the research was presented in a global brain network, which

was widely distributed in the frontal, central, parietal, temporal,

and occipital areas. Therefore, we could collect the neural

spiking related to emotions in these brain areas. This result was

consistent with the topological results of emotional brain activation

(Supplementary Figure S2) and is in line with previous emotional

studies based on fMRI (Liu et al., 2022). However, our comparative

study of emotional subnetwork model performance showed that

the prediction results of a single subnetwork model were superior

to the global network, indicating a higher level of emotional

brain network connection in the local subnetwork. Meanwhile,

many low-level emotional brain network connections existed in

the global network model, which led to an unsatisfactory result

of the emotion prediction of the global fusion model. Meanwhile,

the SFM based on single electrode sites lost too much emotional

information and could not reflect the EEG effect of emotion well,

which further proved the reliability of high-level connections in

the local emotional brain network. Furthermore, how to analyze

and make full use of low-level emotional information in the global

emotional brain network needs further research.

The oscillation was a crucial biological marker to represent

brain activity. The θ frequency band is essential to identify the

emotion. However, our research found that the energy of the β band

had better predictability for negative emotions, including fear and

sadness; the α frequency band had a good prediction for happiness

using the machine learning method. High-amplitude, regular α

oscillation recorded from the occipital cortex represents relaxed

wakefulness (resting condition). High cognitive load is represented

by prolonged α oscillations at the frontal cortex (Oniz and Başar,

2009; Başar, 2012). β frequency band indicated a depressed and

alert emotion state, which was widely used in psychological stress

tests (Kumar and Kumar, 2016). Jenke et al. (2014) proved that α,

β, and γ frequency bands might perform better using different EEG

characteristics. This conclusion was consistent with our results:

The middle- and high-frequency neural oscillation was an essential

marker of emotional changes. The power of the β frequency band

was proved to be related to negative emotions.

Therefore, α and β oscillations were selected as the biological

marker of positive and negative emotions. However, because all the

biological markers were β for negative emotions, we did not find a

specific frequency band to distinguish specific negative emotions,

such as fear and sadness. Therefore, it was necessary to do further

research on the specific frequency band of a specific emotion. On

this basis, the best local brain network model for different emotions

was further established, which was a vital balance for the global

fusion emotional brain network and the single electrode site fusion

emotional brain network. This method not only compensated for

the lack of emotion prediction accuracy of the single electrode sites

fusion emotional brain network but also improved the sparsity

of the global brain network, which was more conducive to the

efficient evaluation of emotion. These results proved that a wide

range of brain areas was involved. Furthermore, the local brain

network could be used to decode emotion’s neural activity more

effectively comparing the global brain networks, which would

provide an essential basis for the design of emotional regulation

targets and signals.

Many methods were used to compute affection, statistics,

machine learning, deep learning, and brain-like learning, such as

support vector machine, k-nearest neighbor, logistic regression,

decision tree, Naive Bayes, random forest, artificial neural network,

convolutional neural networks, long short-term memory, and

spiking neural networks. The power of α and β frequency bands

as the emotional characteristic in the time-frequency domain was

significantly better than that in the time domain in predicting

emotion. α and β frequency bands were essential to identify

real and fake happiness. The accuracies were 94.3% and 84.1%,

respectively (Alex et al., 2020). We found that the accuracy of

the α frequency band was better than that of the β frequency
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band in the prediction of happiness in the research. These results

also supported our results on the α frequency band. The analysis

of the DEAP dataset by Liu and Fu (2021) reached SROCC

(Spearman rank-order correlation coefficient) of 0.789 and PLCC

(Kendall rank-order correlation coefficient) of 0.843 with SVM

being used for training the emotion. Deep learning models such

as CNN, LSTM, and a hybrid of CNN-LSTM models were tested

on the DEAP dataset. The investigation concluded that deep

neural network has higher learning rate than other models and

attained the best convergence with fewer epochs. This study

obtained the best accuracy of 94.17% for the CNN-LSTM model

(Zhang et al., 2020). In a model with a dynamic graph CNN

for the classification of emotions from EEG signals using the

SEED dataset was able to recognize with 90.4% accuracy for

subject-dependent validation and 79.95% for subject-independent

classification. Experiments conducted on the DREAMER dataset

attained 86.23%, 84.54%, and 85.02% of average accuracies for

valence, arousal, and dominance, respectively (Hasanzadeh et al.,

2021). A study extracted entropy and Higuchi’s fractal dimension

features and applied empirical mode decomposition/intrinsicmode

functions and variational mode decomposition on EEG signals.

Their analysis of the DEAP dataset confirmed that CNN had

better accuracy of 95.20% compared with naïve Bayes (92.27%), k-

nearest neighbor (94.03%), and decision tree (88.50%) (Alhalaseh

and Alasasfeh, 2020). The fusion algorithm of CNN and LSTM had

an excellent performance. The prediction accuracies of emotion

were 89.25%, 82.85%, and 89.38% for fear, sadness, and happiness.

The prediction accuracy on the four-class classification was almost

70%. These results were much better than the algorithms of

naive Bayes, k-nearest neighbor, decision tree, logistic regression,

and SVM. The SNN represents the third generation of neural

networks and employs biologically plausible models of neurons.

SNN was used to decode the multimodal physiological signals

and predict the valence of emotion. Its prediction accuracy had

reached the same level as the deep learning algorithm (Tan et al.,

2020). The SNN in the research was proved that it could be

used to predict emotion, and the accuracy was above 80% for

binary classifications. However, the performance was still lower

than that of CNN-LSTM, mainly because the SNN algorithm

only had forward propagation and no backward propagation

mechanism, resulting in a model error that could not be eliminated.

The prediction accuracy of different emotions was significantly

improved after introducing the SBP mechanism (Zhang et al.,

2021). In the prediction results of sadness, happiness, and four-

class classifications, the performance of SBP-SNN exceeded the

traditional machine learning and the CNN-LSTM, which also

reminds us that combining the research of existing neural networks,

the continuous introduction of new neurobiological mechanisms

in spiking neural networks is conducive to improving the neural

decoding performance of brain spired neural network algorithms,

including accuracy, efficiency, and interpretability.

Conclusion

To clarify the EEG brain network mechanisms of emotion,

and to supply the intervention strategy of negative emotions,

the spatiotemporal self-backpropagation spiking neural network

with a biological mechanism was used to mine the EEG brain

network of different emotions. The global and local emotional

brain networks of fear, sadness, and happiness were established.

The local brain network could better reflect the production

of different emotions and significantly improve the sparsity

of the emotional brain network. On this basis, it was found

that the change of β and α band oscillations could better

represent emotional changes, further clarifying the directional

connection of each electrode node of the local emotional brain

network. The critical elements of emotion recognition and

intervention had been formed, including local emotional brain

network nodes, connectivity, and biological markers. It would

prepare for physical therapy for brain diseases. We increased

the efficiency of the emotional brain network by improving

the sparsity of the emotional brain network and biological

encoding and decoding, which was consistent with the biological

mechanism of low energy consumption and high accuracy of the

brain network.
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