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Editorial on the Research Topic

Challenges to EEG/MEG graph analysis and how to face them

Unveiling the interactions between brain areas and determining the topology and

function of the networks connecting them is central to Neuroscience as these networks do

not just integrate multiple inputs but also perform complex information processing. A large

repertoire of connectivity estimators has been put forward to decipher and quantify network

structure and operation; they include linear/non-linear, bivariate and multivariate methods.

Determining connectivity patterns faces many technical challenges which once successfully

addressed, potentially offer an appropriate descriptive brain network framework amenable

to further analysis through complex network theory tools. This collection of papers portrays

some different approaches to achieve that.

The paper of Strijbis et al.: “State changes during resting state (magneto)encephalographic

studies: the effect of drowsiness on spectral, connectivity, and network analyses” used the phase

lag index (PLI) and corrected amplitude envelope correlation (AECc) to generate a network

topology that was appraised through the method of minimum spanning trees. Spectral

analysis over 6 canonical frequency bands was also determined. Structural differences

between open-eye, closed-eye and drowsiness states were examined. State and condition

were far less distinct when seen through the proposed connectivity methods than when

compared via spectral analysis. The best discrimination was achieved using spanning trees

coupled with AECc, whereas only minimal delta band differences were noticed between

drowsiness, closed-eye and open-eye states. Drowsiness had no impact onminimal spanning

tree measures.

The paper of Coelho Ramos et al.: “Spectral density-based clustering algorithms for

complex networks” investigated functional brain network changes during anesthesia. The

authors applied clustering methods including k-means graph classification and model-based

approaches to compare graphs of different sizes. The networks presented by the authors have

very dense structure and equal connection strengths. The paper is a methodological study of

different clustering approaches for binary graph comparison.

The paper by Paz-Linares et al.: “Minimizing distortions in electrophysiological source

imaging of the cortical oscillatory activity via Structured Sparse Bayesian Learning” concerns

the reconstruction of oscillating cortical sources from scalp data. The authors aimed
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at improving contemporary approaches by using Bayesian learning

with variational approximation to the problem of setting “a priori”

connection probabilities. The authors claim that this leads to a

two order of magnitude decrease in distortion compared to other

state-of-the-art methods while still being applicable to large-scale

networks and not just to low-density settings as is the case of

other methods.

The paper of Pidnebesna et al.: “Tackling the challenges

of group network inference from intracranial EEG data” faces

the problem of statistical inference and analysis of brain

networks under inhomogeneous and sparse electrode placement

and its differentiation across patients. The authors developed

a methodological pipeline for estimating this kind of group

network structure. They tested their methodology on intra-

cranial data recorded for the range of visual tasks by using

Directed Transfer Function (DTF)—a multivariate causal measure

of connectivity– that provides directed information flow and

allows representing reciprocal connections and multiple loops

(Blinowska and Zygierewicz, 2022). Though tailored to the nature

of the analyzed data, the methodology is easy to generalize to

other network connectivity estimation methods subject to sparse

inhomogeneous electrode placement constraints. In fact, despite

the difficulties posed by inhomogeneous and sparse electrode

placement, the paper provides new insights into the interaction

between the dorsal and ventral visual streams, one of the iconic

dualities in human cognition.

Within the topic’s framework different approaches to network

construction were examined: minimum spanning tree, clustering,

application of surrogate data for construction of statistically

significant group-level network from inhomogeneous data.

Network architecture depended to a large degree on the chosen

connectivity measure. The bivariate measures of connectivity used

by Strijbis et al. and Coelho Ramos et al. due to the common

drive effect portray a multitude of connections including spurious

ones that blur the observed connectivity pattern (Blinowska and

Kamiński, 2013; Kaminski and Blinowska, 2018). To overcome

them due to the dense redundant emerging patterns, methods such

as cluster analysis and spanning trees are of the essence. The latter

papers can be seen as methodological contributions about different

ways toward quantifying and comparing binary graphs.

The Pidnebesna et al. paper is a valuable contribution as

to how to construct networks under inhomogeneous/sparse

electrode placement. Its multivariate methodology takes

into account connection directionality and weights leading

to a viable data pipeline for estimating group network

structure with robust statistical inference of brain connectivity

network properties thus enabling one to monitor them while

processing information.

One must stress the inherent diversity of approaches presented

herein. On one hand, those relating essentially pairwise (bivariate)

relationships, as in Strijbis et al. and Coelho Ramos et al. that do

not account for the full features and structure of the estimated

networks, and, on the other hand, those that do, as in Pidnebesna

et al. and Paz-Linares et al. The latter ones, due to their multivariate

nature, end up being better descriptions of the actual relationships.

In fact, the use of multivariate directed representations constitute

much more realistic representations.

The present collection of papers was motivated by the largely

unsatisfactory present status of graph theoretical applications to

neural connectivity following valid criticisms of ubiquitous “small

word” descriptions (Hilgetag and Goulas, 2016; Papo et al., 2016;

Hlinka et al., 2017) coupled with the almost exclusive use of binary

unweighted graphs whose realism has been seriously challenged

by tract-tracing experiments showing that large-scale neuronal

assemblies in the brain are arranged as globally sparse hierarchical

modular directed networks whose weights carry crucial biologically

relevant information (Bassett and Bullmore, 2017). We hope the

present set of efforts toward describing, comparing and tracking

the evolution of brain networks under a variety of conditions

contributes to ameliorating the present situation by examination

of a range of connectivity estimation options and different types

of networks employed herein. Alas their diversity still calls for an

all-encompassing common formalism to tackle them. It is with

these limitations in mind and acknowledging that this effort is

at an early stage that we hope the present initiative may foster

further developments.

To sum up the present Special Topic edition provided a

promising panorama of approaches toward constructing brain

networks whether they are binary or weighted directed graphs

thereby opening perspectives for improving their analysis and

systematic comparison.
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