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Introduction: In the past, various techniques have been used to improve motor 
imagery (MI), such as immersive virtual-reality (VR) and kinesthetic rehearsal. While 
electroencephalography (EEG) has been used to study the differences in brain 
activity between VR-based action observation and kinesthetic motor imagery 
(KMI), there has been no investigation into their combined effect. Prior research 
has demonstrated that VR-based action observation can enhance MI by providing 
both visual information and embodiment, which is the perception of oneself as 
part of the observed entity. Additionally, KMI has been found to produce similar 
brain activity to physically performing a task. Therefore, we hypothesized that 
utilizing VR to offer an immersive visual scenario for action observation while 
participants performed kinesthetic motor imagery would significantly improve 
cortical activity related to MI.

Methods: In this study, 15 participants (9 male, 6 female) performed kinesthetic 
motor imagery of three hand tasks (drinking, wrist flexion-extension, and 
grabbing) both with and without VR-based action observation.

Results: Our results indicate that combining VR-based action observation with 
KMI enhances brain rhythmic patterns and provides better task differentiation 
compared to KMI without action observation.

Discussion: These findings suggest that using VR-based action observation 
alongside kinesthetic motor imagery can improve motor imagery performance.
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1. Introduction

Rehabilitation paradigms for patients seeking to improve their motor functions are increasingly 
employing brain computer interface (BCI) assistive devices. These devices utilize motor imagery 
(MI) training, the mental “rehearsal” of movement without the concomitant motor execution, since 
imagining a motor task elicits a short-lasting attenuation of rhythms within the alpha (8–13 Hz) and 
beta (13–25 Hz) frequency bands called event-related desynchronization (ERD) (Pfurtscheller and 
Neuper, 1997; Jeon et al., 2011; Seo et al., 2019). Such ERD is similar to the cortical activity during 
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actual movement execution (Seo et al., 2019), making MI suitable for 
BCI-assisted rehabilitation for patients with motor deficits (Jackson et al., 
2001). One approach to elicit MI is action observation, or the observation 
of movement of the task-related body part (Vogt et al., 2013; Gonzalez-
Rosa et al., 2015; Ono et al., 2018). Observation of actions elicits robust 
activation of the mirror neuron network (MNN), as assessed by 
functional imaging studies (Rizzolatti, 2005). Furthermore, MNN 
activation has been shown to induce cortical plasticity as demonstrated 
by fMRI, PET, and TMS analyses (Jackson et al., 2003; Cramer et al., 
2011; Nojima et al., 2012). These studies suggest that MI training through 
action observation may induce cortical plasticity via MNN activation.

A common method employed to elicit MNN activation is mirror 
therapy, where subjects observe the reflection of the actions made by 
one side of their body that provides an illusion of movement of the 
contralateral side that may have limited motor function (Deconinck 
et al., 2015; Herrador Colmenero et al., 2018). Studies have shown that 
MNN activation is enhanced by visual aid (Sakamoto et al., 2009; 
Eaves et al., 2014; Zhang et al., 2018), specifically, a study by Nagai and 
Tanaka (2019) showed participants having stronger ERD while 
observing their own hands performing a motor task as compared to 
observing another person’s hand or no movement while performing 
motor imagery. Such studies suggest a stronger ERD during MI in the 
presence of immersive visualization and a stronger ownership of the 
presented body (Alimardani et al., 2016; Penaloza et al., 2018; Škola 
and Liarokapis, 2018; Juliano et al., 2020).

Virtual reality (VR) headsets provide an immersive environment 
and have the potential to amplify body ownership (Slater, 2017; Tham 
et al., 2018; Choi et al., 2020). VR headsets have the ability to blur the 
lines between the real and virtual world, creating an environment that 
is perceived as real by the subjects. With these advantages, VR 
headsets have been frequently employed for action observation 
during motor imagery practice (Choi et al., 2020). VR has assisted MI 
in a VR-based neurofeedback system designed to help patients 
improve their MI performance for tasks involving arm or limb 
movements that used visualizations of graphical body movements 
that respond to the participant’s brain activity, providing feedback for 
the motor imagery process (Vourvopoulos and Bermúdez i Badia, 
2016). Both MI and VR therapies share a common emphasis on 
cognitive movement, where MI requires sensory and perceptual 
processes (Lequerica et al., 2002), while VR engages participants in 
cognitive and motor activities simultaneously (Messier et al., 2007; 
Cole et al., 2012). Studies involving VR-based MI have largely targeted 
stroke survivors (Sirigu et al., 1996; Kimberley et al., 2006), where VR 
integrated into motor imagery-based rehabilitation protocols resulted 
in shorter rehabilitation time and improved recovery after injury in 
patients with stroke (Cameirao et al., 2012; Turolla et al., 2013). Faster 
rehabilitation time was also demonstrated in war veterans who 
participated in rehabilitation using the immersive VR-based 
Computer Assisted Rehabilitation Environment (CAREN) system 
(Isaacson et al., 2013). VR-based action observation has been shown 
to elicit improved cortical rhythmic patterns and spatially 
discriminating features compared to conventional action observation 
via computer monitors (Slater, 2017). Such data suggest that action 

observation in an immersive virtual reality environment may offer 
better cortical neuroplasticity compared to conventional 
action observation.

Research has shown that kinesthetic motor imagery, or the ability 
to imagine movement by means of proprioception, elicits an ERD 
response that correlates with actual execution of the motor task 
(Toriyama et  al., 2018). Studies have shown that when MI is 
accompanied by an impression of muscle contraction and limb 
movement, there is an overlap of the task-specific cortical networks 
between imagination and execution of the task in question, implying 
that kinesthetic MI recruits similar neuronal circuits as movement 
itself (Stinear et al., 2006; Toriyama et al., 2018). According to Frith 
and Dolan (1997), KMI depicts an internal simulation of the 
anticipated sensory effects of real task execution in the absence of 
sensory input. The somatotopic structure of the cerebellum and the 
neural connections that connect it to the sensorimotor cortex support 
the idea that the cerebellum plays a part in the development of forward 
models of anticipated sensory feedback during real and imagined 
movement (Miall and Wolpert, 1996). However, the majority of 
studies have performed kinesthetic MI through auditory or abstract 
visual cues. Very little information is available on the role of presence 
of action observation in virtual reality during kinesthetic motor 
imagery in enhancing ERD response. The strong body ownership 
resulting when subjects view the motor task inside an immersive VR 
environment has the potential to enhance the kinesthetic imagination 
of the body parts involved in performing the motor task in question.

Although simple MI-based training is frequently used in 
MI-based BCI training, such as the left and right hand or foot, it is 
mostly ineffective in patients with impaired motor function, such as 
those who have had a paralyzing stroke on one side of the body (Benzy 
et al., 2020; Dahms et al., 2020). These patients merely need to enhance 
their motor skills in the afflicted limb. Simple MI is constrained in 
these situations since it cannot distinguish between the components 
of the same limb. However, complex MI using compound imaging 
utilizing a single limb has been created to replace traditional simple 
MI (Ma et al., 2019) since it is more crucial to use the neurofeedback 
from the affected limb than of both limbs in rehabilitation (Benzy 
et  al., 2020; Dahms et  al., 2020). When it comes to the targeted 
training of a single afflicted limb, complex MI offers an edge over 
traditional simple MI. Additionally, the compound MI from a single 
limb has increased the number of instructions that may be  used 
during MI-based BCI (Yi et  al., 2016), which would enable the 
development of more advanced and functional prostheses or 
assistive devices.

Therefore, the purpose of this study was to determine the effect of 
combining VR-based action observation with kinesthetic motor 
imagery of hand movements on the cortical activity and task 
classification performance for a complex MI. To achieve this, 
we examined brain activities using electroencephalography (EEG) 
during kinesthetic MI with versus without action observation of the 
imagined tasks in a VR environment. The complex MI employed here 
was imagining three different hand tasks using a single given limb. 
Furthermore, machine learning techniques were applied to 
discriminate elicited responses from the sensorimotor cortex during 
different MI tasks. It was hypothesized that VR-based kinesthetic MI 
would elicit a greater neuronal response and spatially discriminating 
cortical rhythmic patterns compared to non-visual aided 
kinesthetic MI.

Abbreviations: MI, Motor Imagery; KMI, Kinesthetic Motor Imagery; VR, Virtual 

Reality; NVA, Non-Visual Aided; EEG, Electroencephalography; ERD, Event-related 

Desynchronization; AO, Action Observation.
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2. Methods

2.1. Subjects

Fifteen healthy right-handed adults (six females and nine males) 
with a mean age of 28 ± 4 years participated in the study. The 
handedness of each subject was assessed using a verbal self-report 
assessment where we questioned each subject the hand the subject use 
for common activities such as writing, throwing, dealing cards, and 
using an eraser (Coren, 1989). The number of subjects was chosen 
based on previous similar studies with MI (Decety and Jeannerod, 
1995; Chiarelli et al., 2018). A post-hoc power analysis yielded a power 
of 0.8 (paired t-test power). All participants verbally disclosed that 
they had no history of upper limb injury or musculoskeletal or 
neurologic disorders. All participants had no prior experience with 
motor imagery or VR. The study protocol was approved by the Vellore 
Institute of Technology Ethical Committee for Studies on Human 
Subjects (VIT/IECH/IX/Mar03/2020/016B). Participants read and 
signed a written informed consent form approved by the Institutional 
Review Board before participating in the experiment.

2.2. Equipment

Allengers’ Virgo (Allengers Medical Systems, Chandigarh, India) 
EEG system was used to record EEG signals by placing an EEG cap on 
the scalp of each participant. EEG signals were recorded from 20 
electrodes (FP1, FPz, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, 
P3, Pz, P4, T6, O1, O2) placed according to the international 10–20 
system. Ground and reference electrodes were located at FPz and Fz, 
respectively. Each electrode site was hydrated using a conductive gel 
to keep the impedance under 5 kΩ and obtain high-quality data. EEG 
data was recorded continuously at 250 Hz during the experiment.

3D avatars that resemble each participant were modeled in 
Blender software (Blender Foundation, Amsterdam, Netherlands) by 
3D scanning the face and taking body measurements for each 
participant. Each avatar was then animated in Blender to perform 
three different right-hand tasks, namely drinking from a cup, flexion-
extension of the right-hand wrist, and grabbing a cup. The avatars 
were then exported to a 3D virtual environment and gamified to 
perform the animation multiple times using Unity game engine (Unity 
Technologies, San Francisco, CA, USA). Participants wore an Oculus 
Rift-S (Oculus VR, Menlo Park, CA, USA) VR headset after wearing 
the EEG cap so that the VR headset was on top of the EEG cap. The 
VR headset displayed the graphical scenario with the avatar 
performing the hand tasks in an immersive VR environment to 
the participants.

2.3. Experimental design

To evaluate whether using a VR environment to provide action 
observation during kinesthetic motor imagery would enhance 
MI-induced cortical activity two experiments were performed, namely 
VR-based kinesthetic motor imagery (VR-KMI) and Non-visual aided 
kinesthetic motor imagery (NVA-KMI). The experimental design was 
adapted from a previous study by Choi et al. (2020), where EEG was 
recorded while subjects performed action observation with the visual 

scenario presented through either a monitor or a VR headset. The 
experiments were conducted in a quiet room with minimal 
environmental distractions. Participants were instructed to sit 
comfortably in a chair with their arms on the arm rest (Figure 1A). 
Subjects were given clear instructions to not make any movements 
during the experiment, including any movement related to the tasks 
being imagined and also eye blinks and head movement to avoid 
artifacts in the EEG. Each MI experiment consisted of three blocks 
with one block each for the three different right-hand tasks (Drinking, 
Flexion-Extension, and Grabbing). Each block had five sessions with 
ten consecutive trials of MI in each session. Adequate rest was 
provided between each session. Each MI trial consisted of a 3-s 
instruction period followed by a 4-s MI period then a 2-s rest. Overall, 
each participant performed 150 MI trials for each experiment, with 50 
trials per hand task. The order of the two experiments and the order 
of the blocks within each experiment were randomized for each 
participant. EEG was recorded continuously during an entire block.

2.3.1. Experiment 1 – VR-KMI
In VR-KMI, each participant performed kinesthetic MI while they 

watched a 3D avatar that resembled the participant through a VR 
headset, perform the three right hand tasks. Participants were asked 
to observe their 3D avatar performing the task and imagine 
kinesthetically the same movement. Instructions were given for each 
of the three tasks to ensure proper performance of KMI. For instance, 
the instruction given for the flexion-extension task was “imagine 
flexing and extending your wrist in time with the animation, and the 
feeling that this produces.” A practice run with 10 trials was performed 
to make the participants comfortable with imagining the task at the 
pace it was performed by the avatar. The practice session included 
actual execution of the tasks for the first 5 trials and then imagining it 
for the remaining trials. At the beginning of each session, a countdown 
of 3 s was displayed before the first MI trial started (Figure 1B). An 
auditory cue was also given to indicate the start of the trial.

2.3.2. Experiment 2 – NVA-KMI
In this experiment, participants were asked to imagine 

kinesthetically the same three right hand tasks without any visual aid. 
Prior to NVA-KMI, participants were shown an animation video of 
their 3D avatar performing the three hand tasks to aid them 
understand how each task was performed and the pace at which it was 
performed. Subjects were also made to perform a practice run of 10 
trials before the actual data collection started, where they executed the 
task movement for the first five trials and then practiced imagining 
the trials for the remaining five trials. During the actual experiment, 
participants were asked to close their eyes and were given an auditory 
cue to indicate the start of each trial. Participants were instructed to 
form an impression of their own right hand performing the task after 
they heard the auditory cue. The instruction given, for instance the 
grabbing task was “imagine grabbing the cup and letting it go at the 
pace you practiced, and the feeling that this produces.”

2.4. EEG analysis

2.4.1. Pre-processing
The EEG data analysis was performed using the toolboxes in 

MATLAB (The MathWorks, Natick, MA). ERD analysis was 
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performed using the EEGLAB toolbox, while the task discrimination 
analysis was performed using the Neural Network toolbox. The 
recorded EEG data was pre-processed by band pass filtering between 
1 and 50  Hz and re-referencing the data by applying the average 
reference over all the electrodes. Independent component analysis 
(ICA) was performed on the data to remove sources of artifacts using 
the ADJUST algorithm (Mognon et al., 2011). The data was then 
epoched from −1000 to 6000 ms relative to the start for each MI trial. 
This pre-processed EEG data was used for further analyses.

2.4.2. Time-frequency analysis
The C3 electrode was used for the ERD analysis corresponding to 

the three different MI hand tasks since the left sensorimotor area 
corresponding to the C3 electrode correlates with the contralateral 
right-hand activities. Time-frequency analysis was performed to find 
the Event-related spectral perturbations (ERSP) for the EEG data from 
C3 electrode. The ERSP provides the dynamic change in the amplitude 
of the linearly spaced frequency spectrum between 1 and 50 Hz as a 
function of the time length of the epoch. The time length of the epoch 
was linearly spaced to 200 time points. The ERSP provided the neural 
activity during a MI task in the form of an ERD, or a decrease in the 
frequency amplitude in the time period the task was imagined.

The ERSP for individual epochs were determined and normalized 
by dividing by their respective baseline spectra. Average ERSP was 
finally calculated by averaging all the normalized ERSP for each 
participant. The alpha band (8–12 Hz) and beta band (13–30 Hz) were 
chosen for the ERD analysis since previous studies have shown ERD 
activity being largely elicited in these bands during MI (Pfurtscheller 

and Neuper, 1997; Jeon et al., 2011; Lakshminarayanan et al., 2023). 
The alpha and beta band ERD activity was calculated by averaging 
over each frequency band. Specifically, the ERD were ERSP averaged 
over the 4-s MI period (0–4000 ms) for each of the two frequency 
bands. The ERD results of the C3 electrode were calculated for each 
of the three tasks in both VR-KMI and NVA-KMI conditions. For 
statistical analysis, repeated-measures ANOVAs were performed on 
the task-related average ERD activity in alpha and beta bands 
separately. The independent variables included experiment (VR-KMI 
vs. NVA-KMI), and task (Drinking, Flexion-Extension, and 
Grabbing). The statistical analysis was performed using SigmaStat 4.0 
(Systat Software Inc., San Jose, CA, USA). An α level of 0.05 was 
considered for statistical significance.

2.4.3. Discriminant analysis
Neural activity discrimination of the three tasks during the two 

experiments was evaluated by constructing machine learning models. 
For this purpose, the MATLAB nprtool module of the Neural Network 
Toolbox was utilized. The toolbox uses a two-layer feedforward 
network, with a scaled conjugate gradient backpropagation algorithm-
based learning process (Beale et al., 2010). Discriminant characteristics 
that are associated with each task were extracted from the ERSP data 
for training and testing the classifier. A 3-s [1000–4000 ms] window 
of ERSP data was extracted for each trial of each task. The extracted 
window corresponded to the time period ERD occurred during MI of 
the tasks. The extracted ERSP data was averaged across two frequency 
bins – alpha (8–12 Hz) and beta (13–30 Hz) to obtain alpha and beta 
ERD activity, respectively. The extracted features were then 

FIGURE 1

(A) Experimental setup for VR-KMI. For NVA-KMI, the VR headset was removed, and subjects were asked to close their eyes. (B) Timeline of a single 
motor imagery task.
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concatenated. The input data to the neural network consisted of 
average alpha and beta ERD activity over time with 150 data points 
each corresponding to the ERD for each of the 50 trials from the three 
tasks. A target vector with a dimension of 3 × 150 representing the 
three tasks’ labels (Drinking, Flexion-Extension, and Grabbing) was 
also inputted to the neural network. The input layer consisted of 150 
neurons (N) corresponding to the 150 data points, while the output 
layer had 3 neurons (M) for the three task classes. The number of 
neurons in the hidden layer was set at 22 using the following formula 
(Fadiyah and Djamal, 2019).

 N x M

The neural network was trained on 70% of the data and was 
validated and tested on the remaining 30% of the data with 15% each 
for the validation and testing. Once the hidden layer neurons were 
determined, the neural network was run 100 times to reduce the 
influence of the randomly chosen training data. The accuracy 
percentages from the 100 runs were averaged to obtain the final 
classification accuracy percentage. To conduct the statistical analysis, 
a paired t-test was performed on the classification accuracy from the 
two experiments. Statistical analysis including power analysis was 
performed in SigmaStat 4.0 (Systat Software Inc., San Jose, CA, USA).

3. Results

In the current study, subjects performed trials with periods of 
kinesthetic MI while either keeping their eyes closed (NVA-KMI) or 
observing action in VR (VR-KMI). Figure 2 shows the average time-
frequency maps of all subjects at the C3 channel for all three hand 
tasks under both experiment conditions (VR-KMI and NVA-KMI). 
The time-frequency maps (Figure 2A) clearly show a long-lasting 
event-related desynchronization (ERD) during the task performance 
(0–4000 ms) with larger ERD amplitude in VR-KMI condition 
compared to NVA-KMI. Furthermore, to study the activation of the 
sensorimotor area, the spatial patterns over the 4-s motor imagery 
period during VR-KMI and NVA-KMI for the three hand tasks in the 
alpha and beta bands combined (8–30 Hz) are shown in Figure 2B. The 
mean EEG potential was topographically located in the contralateral 
sensorimotor area consistent with previous studies (Simonyan et al., 
2012). VR-KMI showed a stronger potential at the contralateral 
sensorimotor area compared to NVA-KMI at both frequency bands 
for all three tasks.

Statistical analysis was performed to test if the differences between 
the two experiment conditions were significant. A repeated-measures 
ANOVA was applied to study the differences between VR-KMI vs. 
NVA-KMI. As a first step, the assumptions made by the ANOVA on 
the ERD results were verified. There were no significant outliers that 
were identified. Shapiro–Wilk normality test indicated that the 
normality was not violated for all groups (p > 0.05) and the results 
followed a normal distribution. Sphericity is the condition where the 
variances of the differences between experiment conditions are equal. 
A Brown-Forsythe test was performed to test this assumption and the 
results confirmed equal variance (p > 0.05).

ERD during motor imagery was compared between two 
experiment conditions namely VR-based kinesthetic motor imagery 
(VR-KMI) and Non-visual aided kinesthetic motor imagery 

(NVA-KMI) (Figure 3). In the alpha band, repeated measures ANOVA 
showed that ERD significantly differed by experiment (VR-KMI vs. 
NVA-KMI, p = 0.034) but not by task (Drinking, Flexion-Extension, 
and Grabbing, p = 0.286). Furthermore, the interactions were not 
found to be significant (p = 0.658). Specifically, the ERD (dB) increased 
in VR-KMI compared to NVA-KMI (M = −2.8, SD = 1.2 for VR-KMI, 
M = −2.2, SD = 0.75 for NVA-KMI). The powers of performed tests 
with alpha = 0.05 was 0.5 for the experiment and 0.09 for the task.

In the beta band, the repeated measures ANOVA showed similar 
results as the alpha band with ERD significantly differing between the 
experiments (p = 0.016) but not by activity (p = 0.509). The ERD (dB) 
showed a significant increase (decrease in EEG power) in VR-KMI 
(M = −2.9, SD = 1.0) compared to NVA-KMI (M = −2.4, SD = 0.7) 
(Figure 3B). ERD did not differ by task or the interaction between task 
and experiment (p = 0.741). The powers of performed tests with 
alpha = 0.05 was 0.7 for the experiment and 0.05 for the task.

The classification accuracy was defined as the percentage of 
correctly classified tasks for each experiment condition. Table 1 shows 
the classification percentage for the two experiments for each 
participant. One-sample t-tests were performed on the accuracy 
values from each of the two conditions (VR-KMI and NVA-KMI) and 
the sample mean of the group exceeded the hypothesized mean by an 
amount that is greater than would be expected by chance for both 
conditions (p < 0.05). A Shapiro–Wilk normality test indicated that the 
values were normally distributed (p > 0.05). A paired t-test revealed 
that VR-KMI showed a significantly higher (p = 0.001) accuracy 
percentage (M = 61.9%, SD = 8.3%) compared to NVA-KMI 
(M = 54.3%, SD = 6.0%) indicating that ERD during VR based 
kinesthetic motor imagery showed a higher discrimination between 
the three tasks namely Drinking, Flexion-Extension, and Grabbing 
compared to kinesthetically imagining the tasks with no visual cue.

4. Discussion

In the current study, repeated kinesthetic motor imagery was 
performed with and without action observation in an immersive, 
graphical virtual reality scenario to investigate the effect of combining 
VR-based action observation with kinesthetic rehearsal of hand tasks 
on motor imagery performance in healthy adults. The ERD in the 
alpha and beta bands and the task discrimination analysis using neural 
networks from the current study have provided evidence that 
perceiving actions through VR vs. performing kinesthetic motor 
imagery with eyes closed produce different motor imagery-related 
cortical activities. Specifically, we observed that participants showed 
a larger kinesthetic MI-induced ERD response with VR compared to 
without any visual presentation. The results from the study not only 
confirmed that repeated MI training kinesthetically have an effect on 
the cortical activity as seen in other studies (Stinear et  al., 2006; 
Toriyama et  al., 2018), and VR-based action observation is more 
effective in improving motor imagery classification performance as 
suggested by other studies (Simonyan et al., 2012; Maselli and Slater, 
2013; Sun et al., 2016; Waltemate et al., 2018), but also confirmed that 
combining the immersive action observation in VR and kinesthetically 
performing motor imagery resulted in eliciting a greater ERD 
response and an increased spatial discrimination of hand task-related 
brain activity compared to only kinesthetic motor imagery without 
any visual presentation.
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FIGURE 2

(A) Averaged time-frequency maps of all participants at C3 electrode. (B) Averaged topographical distribution of power during MI for alpha and beta 
bands combined (8–30 Hz). Blue indicates ERD.
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The ERD during motor imagery was investigated for VR-KMI and 
NVA-KMI for right-handed tasks from the contralateral left motor 
cortex (C3). Figure  2 illustrates that ERD activity was primarily 
located contralaterally across all tasks and experimental conditions. 
According to previous research, ERD activity especially in the beta 
band is associated with motor tasks (Khanna and Carmena, 2015). 
The ERD activity increased significantly during the kinesthetic motor 
imagery period in both alpha and beta bands. The significant 
difference in the ERD response between VR-KMI and NVA-KMI only 
during motor imagery indicated that the increased ERD during 

VR-KMI was elicited by the better motor imagery performance. 
Furthermore, the ERD response was not significantly different across 
the three tasks (Drinking, Flexion-Extension, and Grabbing) for both 
VR-KMI and NVA-KMI indicating that MI performance was not task 
dependent. The results from the current study suggest that including 
VR-based action observation during kinesthetic motor imagery 
enhanced performance of the imagery.

The current study focused on whether the inclusion of action 
observation with kinesthetic motor imagery would be effective. The 
ERD and the task discrimination results have verified our hypothesis 
by showing an increased ERD and higher task classification accuracy. 
Specifically, the higher classification accuracy between the three hand 
tasks during VR-KMI from the same single electrode (C3) has 
implications in rehabilitation and especially brain-computer interface 
applications. The major component that contributed to the 
enhancement in motor performance is action observation in the VR 
environment, which has been reported in previous studies to improve 
illusion and embodiment (Stecklow et al., 2010; Liang et al., 2016; 
Roth et  al., 2017; Choi et  al., 2020). Although, repeating motor 
imagery kinesthetically in both VR-KMI and NVA-KMI conditions 
elicited ERD response and showed task discriminability, combining 
kinesthetic MI with action observation in VR showed a better MI 
performance. Incorporating both action observation (AO) and MI, 
the experimental design of the present study aimed to elicit a greater 
desynchronization, as previously demonstrated by Berends et  al. 
(2013). In order to ensure participants engaged in both AO and MI 
simultaneously, explicit instructions were provided to encourage 
kinesthetic imagining of observed movements. Vogt et al. (2013) have 
suggested that AO and MI training should be used in conjunction, 
rather than viewed as separate treatment methods. This 
recommendation was based on a review of several studies. Thus, 
congruent VR-based action observation and kinesthetic motor 
imagery may improve motor imagery performance at a less time cost 

FIGURE 3

Boxplot and individual data points of ERD for all participants from alpha and beta bands for both experiment conditions (NVA-KMI and VR-KMI) for 
each task.

TABLE 1 Classification accuracy percentage for each subject.

Subject VR-KMI NVA-KMI

1 80.3% 52.9%

2 52.9% 62.6%

3 47.9% 43.5%

4 57.8% 51.3%

5 56.6% 50.9%

6 68.1% 53.6%

7 62.4% 57.2%

8 77.6% 69.8%

9 62.2% 51.1%

10 60.8% 50.1%

11 59.4% 55.8%

12 60.8% 55.8%

13 58.5% 56.5%

14 62.2% 51.3%

15 61.8% 52.1%
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compared to no visual presentation during kinesthetic motor 
imagery practice.

The study has some limitations. Although much research has 
confirmed that using an immersive graphical scenario affects motor 
imagery performance (Liang et al., 2016; Roth et al., 2017), studies 
have also shown that different visual scenarios may result in different 
MI-induced cortical response (Lebon et al., 2012; Choi et al., 2020). 
Our study used a graphical scenario that differed from other studies, 
where the subjects saw a 3D avatar of themselves performing the 
motor tasks akin to a third person perspective. Therefore, the findings 
from our study could not be generalized to any graphical scenario 
presented via VR. Secondly, the study has a relatively small sample 
size. Although the trials were repeated, there still were variations in 
each participant’s performance. Furthermore, the study lacked an 
objective method to measure any erroneous movement the subjects 
might have made during the imagery tasks. Although the subjects 
were given instructions to not make any movement during the 
experiment, we lacked EMG to measure any muscle activation during 
MI. Thus, the results from the current study need to be interpreted 
carefully. Lastly, the study was limited in the amount of memory 
required for running the machine learning algorithm, restricting the 
neural network to just one electrode and two features (alpha and beta 
ERD). The limitation led to our classification percentage though 
significantly different between the two experimental conditions, still 
being relatively low compared to other studies. Future studies will 
focus on recruiting more features in the neural network.

5. Conclusion

Our study focused on the combined effect of action observation 
and kinesthetic motor imagery, unlike previous research, which has 
largely focused on comparing visual scenarios for action observation 
during motor imagery or kinesthetic motor imagery versus action 
observation. With other studies showing the positive effects of 
immersive and enhanced illusion through VR on improving motor 
imagery performance, we investigated whether observing actions of a 
3D avatar that resembled each participant in VR could improve the 
already effective kinesthetic motor imagery.

We have examined two different aspects of brain activity during 
kinesthetic motor imagery: the oscillatory rhythm changes in the 
motor imagery-related brain regions, and the discrimination between 
tasks based on the spatial characteristics of the brain signals, explored 
using a machine learning algorithm. The results from the ERD and 
discrimination analyses showed that VR-based kinesthetic motor 
imagery resulted in higher oscillatory changes and greater spatial 
discrimination in the neural activity. Thus, the current study proposes 
using VR for action observation along with kinesthetic motor imagery 
for an enhanced motor imagery performance.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The study protocol was approved by the Vellore Institute of 
Technology Review Board (VIT/IECH/IX/Mar03/2020/016B). 
Subjects read and signed a written informed consent form approved 
by the Institutional Review Board before participating in 
the experiment.

Author contributions

KL and RS analyzed the data and wrote the manuscript with the 
other authors contributing to revisions. KL recruited the subjects and 
conducted preliminary tests for eligibility, collected data from the 
subjects, and worked as the guarantor and, as such, had full access to 
all the data in the study and takes responsibility for the integrity of the 
data and the accuracy of the data analysis. KL, RS, SD, VM, YY, and 
DM designed the study. All authors contributed to the article and 
approved the submitted version.

Funding

This research was supported by the Department of Science and 
Technology, India (Grant number SRG/2021/000283).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Alimardani, M., Nishio, S., and Ishiguro, H. (2016). The importance of visual feedback 

design in BCIs; from embodiment to motor imagery learning. PLoS One 11:e0161945. 
doi: 10.1371/journal.pone.0161945

Beale, M. H., Hagan, M. T., and Demuth, H. B. (2010). Neural network toolbox user’s 
guide. MathWorks, 2, 77–81. Available at: https://ge0mlib.com/papers/Books/04_
Neural_Network_Toolbox_Reference.pdf

Benzy, V. K., Vinod, A. P., Subasree, R., Alladi, S., and Raghavendra, K. (2020). Motor 
imagery hand movement direction decoding using brain computer interface to aid 

stroke recovery and rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 3051–3062. 
doi: 10.1109/TNSRE.2020.3039331

Berends, H. I., Wolkorte, R., Ijzerman, M. J., and Van Putten, M. J. A. M. (2013). 
Differential cortical activation during observation and  
observation-and-imagination. Exp. Brain Res. 229, 337–345. doi: 10.1007/
s00221-013-3571-8

Cameirao, M. S., Badia, S. B. I., Duarte, E., Frisoli, A., and Verschure, P. F. (2012). The 
combined impact of virtual reality neurorehabilitation and its interfaces on upper 

https://doi.org/10.3389/fnins.2023.1201865
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1371/journal.pone.0161945
https://ge0mlib.com/papers/Books/04_Neural_Network_Toolbox_Reference.pdf
https://ge0mlib.com/papers/Books/04_Neural_Network_Toolbox_Reference.pdf
https://doi.org/10.1109/TNSRE.2020.3039331
https://doi.org/10.1007/s00221-013-3571-8
https://doi.org/10.1007/s00221-013-3571-8


Lakshminarayanan et al. 10.3389/fnins.2023.1201865

Frontiers in Neuroscience 09 frontiersin.org

extremity functional recovery in patients with chronic stroke. Stroke 43, 2720–2728. doi: 
10.1161/STROKEAHA.112.653196

Chiarelli, A. M., Croce, P., Merla, A., and Zappasodi, F. (2018). Deep learning for 
hybrid EEG-fNIRS brain–computer interface: application to motor imagery 
classification. J. Neural Eng. 15:036028. doi: 10.1088/1741-2552/aaaf82

Choi, J. W., Kim, B. H., Huh, S., and Jo, S. (2020). Observing actions through 
immersive virtual reality enhances motor imagery training. IEEE Trans. Neural Syst. 
Rehabil. Eng. 28, 1614–1622. doi: 10.1109/TNSRE.2020.2998123

Cole, S. W., Yoo, D. J., and Knutson, B. (2012). Interactivity and reward-related neural 
activation during a serious videogame. PLoS One 7:e33909. doi: 10.1371/journal.
pone.0033909

Coren, S. (1989). Left-handedness and accident-related injury risk. Am. J. Public 
Health 79, 1040–1041. doi: 10.2105/AJPH.79.8.1040

Cramer, S. C., Sur, M., Dobkin, B. H., O'Brien, C., Sanger, T. D., Trojanowski, J. Q., 
et al. (2011). Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609. 
doi: 10.1093/brain/awr039

Dahms, C., Brodoehl, S., Witte, O. W., and Klingner, C. M. (2020). The importance of 
different learning stages for motor sequence learning after stroke. Hum. Brain Mapp. 41, 
270–286. doi: 10.1002/hbm.24793

Decety, J., and Jeannerod, M. (1995). Mentally simulated movements in virtual reality: 
does Fitt's law hold in motor imagery? Behav. Brain Res. 72, 127–134. doi: 
10.1016/0166-4328(96)00141-6

Deconinck, F. J., Smorenburg, A. R., Benham, A., Ledebt, A., Feltham, M. G., and 
Savelsbergh, G. J. (2015). Reflections on mirror therapy: a systematic review of the effect 
of mirror visual feedback on the brain. Neurorehabil. Neural Repair 29, 349–361. doi: 
10.1177/1545968314546134

Eaves, D. L., Haythornthwaite, L., and Vogt, S. (2014). Motor imagery during action 
observation modulates automatic imitation effects in rhythmical actions. Front. Hum. 
Neurosci. 8:28. doi: 10.3389/fnhum.2014.00028

Fadiyah, A. U., and Djamal, E. C. (2019). Classification of motor imagery and 
synchronization of post-stroke patient EEG signal. 2019 6th international conference 
on electrical engineering, computer science and informatics (EECSI) (pp. 28–33). 
Yogyakarta IEEE.

Frith, C., and Dolan, R. J. (1997). Brain mechanisms associated with top-down 
processes in perception. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1221–1230. doi: 
10.1098/rstb.1997.0104

Gonzalez-Rosa, J. J., Natali, F., Tettamanti, A., Cursi, M., Velikova, S., Comi, G., et al. 
(2015). Action observation and motor imagery in performance of complex movements: 
evidence from EEG and kinematics analysis. Behav. Brain Res. 281, 290–300. doi: 
10.1016/j.bbr.2014.12.016

Herrador Colmenero, L., Perez Marmol, J. M., Martí-García, C., Querol Zaldivar, M. D. 
L. Á., Tapia Haro, R. M., Castro Sánchez, A. M., et al. (2018). Effectiveness of mirror 
therapy, motor imagery, and virtual feedback on phantom limb pain following 
amputation: a systematic review. Prosthetics Orthot. Int. 42, 288–298. doi: 
10.1177/0309364617740230

Isaacson, B. M., Swanson, T. M., and Pasquina, P. F. (2013). The use of a computer-assisted 
rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation 
regimens. J. Spinal Cord Med. 36, 296–299. doi: 10.1179/2045772313Y.0000000119

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., and Doyon, J. (2001). Potential 
role of mental practice using motor imagery in neurologic rehabilitation. Arch. Phys. 
Med. Rehabil. 82, 1133–1141. doi: 10.1053/apmr.2001.24286

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., and Doyon, J. (2003). 
Functional cerebral reorganization following motor sequence learning through mental 
practice with motor imagery. NeuroImage 20, 1171–1180. doi: 10.1016/
S1053-8119(03)00369-0

Jeon, Y., Nam, C. S., Kim, Y. J., and Whang, M. C. (2011). Event-related (De) 
synchronization (ERD/ERS) during motor imagery tasks: implications for brain–
computer interfaces. Int. J. Ind. Ergon. 41, 428–436. doi: 10.1016/j.ergon.2011.03.005

Juliano, J. M., Spicer, R. P., Vourvopoulos, A., Lefebvre, S., Jann, K., Ard, T., et al. 
(2020). Embodiment is related to better performance on a brain–computer interface in 
immersive virtual reality: a pilot study. Sensors 20:1204. doi: 10.3390/s20041204

Khanna, P., and Carmena, J. M. (2015). Neural oscillations: beta band activity 
across motor networks. Curr. Opin. Neurobiol. 32, 60–67. doi: 10.1016/j.
conb.2014.11.010

Kimberley, T. J., Khandekar, G., Skraba, L. L., Spencer, J. A., Van Gorp, E. A., and 
Walker, S. R. (2006). Neural substrates for motor imagery in severe hemiparesis. 
Neurorehabil. Neural Repair 20, 268–277. doi: 10.1177/1545968306286958

Lakshminarayanan, K., Shah, R., Yao, Y., and Madathil, D. (2023). The effects of 
subthreshold vibratory noise on cortical activity during motor imagery. Mot. Control. 1, 
1–14. doi: 10.1123/mc.2022-0061

Lebon, F., Lotze, M., Stinear, C. M., and Byblow, W. D. (2012). Task-dependent 
interaction between parietal and contralateral primary motor cortex during explicit 
versus implicit motor imagery. PLoS One 7:e37850. doi: 10.1371/journal.pone.0037850

Lequerica, A., Rapport, L., Axelrod, B. N., Telmet, K., and Whitman, R. D. (2002). 
Subjective and objective assessment methods of mental imagery control: construct 

validations of self-report measures. J. Clin. Exp. Neuropsychol. 24, 1103–1116. doi: 
10.1076/jcen.24.8.1103.8370

Liang, S., Choi, K. S., Qin, J., Pang, W. M., Wang, Q., and Heng, P. A. (2016). 
Improving the discrimination of hand motor imagery via virtual reality based visual 
guidance. Comput. Methods Prog. Biomed. 132, 63–74. doi: 10.1016/j.
cmpb.2016.04.023

Ma, X., Qiu, S., Wei, W., Wang, S., and He, H. (2019). Deep channel-correlation 
network for motor imagery decoding from the same limb. IEEE Trans. Neural Syst. 
Rehabil. Eng. 28, 297–306. doi: 10.1109/TNSRE.2019.2953121

Maselli, A., and Slater, M. (2013). The building blocks of the full body ownership 
illusion. Front. Hum. Neurosci. 7:83. doi: 10.3389/fnhum.2013.00083

Messier, J., Adamovich, S., Jack, D., Hening, W., Sage, J., and Poizner, H. (2007). 
Visuomotor learning in immersive 3D virtual reality in Parkinson’s disease and in aging. 
Exp. Brain Res. 179, 457–474. doi: 10.1007/s00221-006-0802-2

Miall, R. C., and Wolpert, D. M. (1996). Forward models for physiological motor 
control. Neural Netw. 9, 1265–1279. doi: 10.1016/S0893-6080(96)00035-4

Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). ADJUST: an automatic 
EEG artifact detector based on the joint use of spatial and temporal features. 
Psychophysiology 48, 229–240. doi: 10.1111/j.1469-8986.2010.01061.x

Nagai, H., and Tanaka, T. (2019). Action observation of own hand movement 
enhances event-related desynchronization. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 
1407–1415. doi: 10.1109/TNSRE.2019.2919194

Nojima, I., Mima, T., Koganemaru, S., Thabit, M. N., Fukuyama, H., and Kawamata, T. 
(2012). Human motor plasticity induced by mirror visual feedback. J. Neurosci. 32, 
1293–1300. doi: 10.1523/JNEUROSCI.5364-11.2012

Ono, Y., Wada, K., Kurata, M., and Seki, N. (2018). Enhancement of motor-imagery 
ability via combined action observation and motor-imagery training with proprioceptive 
neurofeedback. Neuropsychologia 114, 134–142. doi: 10.1016/j.
neuropsychologia.2018.04.016

Penaloza, C. I., Alimardani, M., and Nishio, S. (2018). Android feedback-based 
training modulates sensorimotor rhythms during motor imagery. IEEE Trans. Neural 
Syst. Rehabil. Eng. 26, 666–674. doi: 10.1109/TNSRE.2018.2792481

Pfurtscheller, G., and Neuper, C. (1997). Motor imagery activates primary 
sensorimotor area in humans. Neurosci. Lett. 239, 65–68. doi: 10.1016/
S0304-3940(97)00889-6

Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anat. 
Embryol. 210, 419–421. doi: 10.1007/s00429-005-0039-z

Roth, D., Lugrin, J. L., Latoschik, M. E., and Huber, S. (2017). Alpha IVBO-
construction of a scale to measure the illusion of virtual body ownership. In Proceedings 
of the 2017 CHI conference extended abstracts on human factors in computing systems 
Denver, CO (pp. 2875–2883).

Sakamoto, M., Muraoka, T., Mizuguchi, N., and Kanosue, K. (2009). Combining 
observation and imagery of an action enhances human corticospinal excitability. 
Neurosci. Res. 65, 23–27. doi: 10.1016/j.neures.2009.05.003

Seo, N. J., Lakshminarayanan, K., Lauer, A. W., Ramakrishnan, V., Schmit, B. D., 
Hanlon, C. A., et al. (2019). Use of imperceptible wrist vibration to modulate 
sensorimotor cortical activity. Exp. Brain Res. 237, 805–816. doi: 10.1007/
s00221-018-05465-z

Simonyan, K., Feng, X., Henriquez, V., and Ludlow, C. (2012). Combined laryngeal 
inflammation and trauma mediate long-lasting immunoreactivity response in the 
brainstem sensory nuclei in the rat. Front. Integr. Neurosci. 6:97. doi: 10.3389/
fnint.2012.00097

Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., and Agid, Y. (1996). The 
mental representation of hand movements after parietal cortex damage. Science 273, 
1564–1568. doi: 10.1126/science.273.5281.1564

Škola, F., and Liarokapis, F. (2018). Embodied VR environment facilitates motor 
imagery brain–computer interface training. Comput. Graph. 75, 59–71. doi: 10.1016/j.
cag.2018.05.024

Slater, M. (2017). Implicit learning through embodiment in immersive virtual reality. 
In Smart computing and intelligence, virtual, augmented, and mixed realities in education 
Liu, D., Dede, C., Huang, R., and Richards, J. (pp. 19–33). Springer, Singapore

Stecklow, M. V., Infantosi, A. F. C., and Cagy, M. (2010). EEG changes during 
sequences of visual and kinesthetic motor imagery. Arq. Neuropsiquiatr. 68, 556–561. 
doi: 10.1590/S0004-282X2010000400015

Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., and Swinnen, S. P. (2006). 
Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp. 
Brain Res. 168, 157–164. doi: 10.1007/s00221-005-0078-y

Sun, Y., Wei, W., Luo, Z., Gan, H., and Hu, X. (2016). Improving motor imagery 
practice with synchronous action observation in stroke patients. Top. Stroke Rehabil. 23, 
245–253. doi: 10.1080/10749357.2016.1141472

Tham, J., Duin, A. H., Gee, L., Ernst, N., Abdelqader, B., and McGrath, M. (2018). 
Understanding virtual reality: presence, embodiment, and professional practice. IEEE 
Trans. Prof. Commun. 61, 178–195. doi: 10.1109/TPC.2018.2804238

Toriyama, H., Ushiba, J., and Ushiyama, J. (2018). Subjective vividness of kinesthetic 
motor imagery is associated with the similarity in magnitude of sensorimotor event-

https://doi.org/10.3389/fnins.2023.1201865
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1161/STROKEAHA.112.653196
https://doi.org/10.1088/1741-2552/aaaf82
https://doi.org/10.1109/TNSRE.2020.2998123
https://doi.org/10.1371/journal.pone.0033909
https://doi.org/10.1371/journal.pone.0033909
https://doi.org/10.2105/AJPH.79.8.1040
https://doi.org/10.1093/brain/awr039
https://doi.org/10.1002/hbm.24793
https://doi.org/10.1016/0166-4328(96)00141-6
https://doi.org/10.1177/1545968314546134
https://doi.org/10.3389/fnhum.2014.00028
https://doi.org/10.1098/rstb.1997.0104
https://doi.org/10.1016/j.bbr.2014.12.016
https://doi.org/10.1177/0309364617740230
https://doi.org/10.1179/2045772313Y.0000000119
https://doi.org/10.1053/apmr.2001.24286
https://doi.org/10.1016/S1053-8119(03)00369-0
https://doi.org/10.1016/S1053-8119(03)00369-0
https://doi.org/10.1016/j.ergon.2011.03.005
https://doi.org/10.3390/s20041204
https://doi.org/10.1016/j.conb.2014.11.010
https://doi.org/10.1016/j.conb.2014.11.010
https://doi.org/10.1177/1545968306286958
https://doi.org/10.1123/mc.2022-0061
https://doi.org/10.1371/journal.pone.0037850
https://doi.org/10.1076/jcen.24.8.1103.8370
https://doi.org/10.1016/j.cmpb.2016.04.023
https://doi.org/10.1016/j.cmpb.2016.04.023
https://doi.org/10.1109/TNSRE.2019.2953121
https://doi.org/10.3389/fnhum.2013.00083
https://doi.org/10.1007/s00221-006-0802-2
https://doi.org/10.1016/S0893-6080(96)00035-4
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1109/TNSRE.2019.2919194
https://doi.org/10.1523/JNEUROSCI.5364-11.2012
https://doi.org/10.1016/j.neuropsychologia.2018.04.016
https://doi.org/10.1016/j.neuropsychologia.2018.04.016
https://doi.org/10.1109/TNSRE.2018.2792481
https://doi.org/10.1016/S0304-3940(97)00889-6
https://doi.org/10.1016/S0304-3940(97)00889-6
https://doi.org/10.1007/s00429-005-0039-z
https://doi.org/10.1016/j.neures.2009.05.003
https://doi.org/10.1007/s00221-018-05465-z
https://doi.org/10.1007/s00221-018-05465-z
https://doi.org/10.3389/fnint.2012.00097
https://doi.org/10.3389/fnint.2012.00097
https://doi.org/10.1126/science.273.5281.1564
https://doi.org/10.1016/j.cag.2018.05.024
https://doi.org/10.1016/j.cag.2018.05.024
https://doi.org/10.1590/S0004-282X2010000400015
https://doi.org/10.1007/s00221-005-0078-y
https://doi.org/10.1080/10749357.2016.1141472
https://doi.org/10.1109/TPC.2018.2804238


Lakshminarayanan et al. 10.3389/fnins.2023.1201865

Frontiers in Neuroscience 10 frontiersin.org

related desynchronization between motor execution and motor imagery. Front. Hum. 
Neurosci. 12:295. doi: 10.3389/fnhum.2018.00295

Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., et al. (2013). Virtual 
reality for the rehabilitation of the upper limb motor function after stroke: a prospective 
controlled trial. J. Neuroeng. Rehabil. 10, 85–89. doi: 10.1186/1743-0003-10-85

Vogt, S., Di Rienzo, F., Collet, C., Collins, A., and Guillot, A. (2013). Multiple roles of 
motor imagery during action observation. Front. Hum. Neurosci. 7:807. doi: 10.3389/
fnhum.2013.00807

Vourvopoulos, A., and Bermúdez i Badia, S. (2016). Motor priming in virtual reality 
can augment motor-imagery training efficacy in restorative brain-computer interaction: 
a within-subject analysis. J. Neuroeng. Rehabil. 13, 1–14. doi: 10.1186/s12984-016-0173-2

Waltemate, T., Gall, D., Roth, D., Botsch, M., and Latoschik, M. E. (2018). The impact 
of avatar personalization and immersion on virtual body ownership, presence, and 
emotional response. IEEE Trans. Vis. Comput. Graph. 24, 1643–1652. doi: 10.1109/
TVCG.2018.2794629

Yi, W., Qiu, S., Wang, K., Qi, H., He, F., Zhou, P., et al. (2016). EEG oscillatory patterns 
and classification of sequential compound limb motor imagery. J. Neuroeng. Rehabil. 13, 
11–12. doi: 10.1186/s12984-016-0119-8

Zhang, J. J., Fong, K. N., Welage, N., and Liu, K. P. (2018). The activation of the 
mirror neuron system during action observation and action execution with mirror 
visual feedback in stroke: a systematic review. Neural Plast. 2018, 1–14. doi: 
10.1155/2018/2321045

https://doi.org/10.3389/fnins.2023.1201865
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.3389/fnhum.2018.00295
https://doi.org/10.1186/1743-0003-10-85
https://doi.org/10.3389/fnhum.2013.00807
https://doi.org/10.3389/fnhum.2013.00807
https://doi.org/10.1186/s12984-016-0173-2
https://doi.org/10.1109/TVCG.2018.2794629
https://doi.org/10.1109/TVCG.2018.2794629
https://doi.org/10.1186/s12984-016-0119-8
https://doi.org/10.1155/2018/2321045

	The effect of combining action observation in virtual reality with kinesthetic motor imagery on cortical activity
	1. Introduction
	2. Methods
	2.1. Subjects
	2.2. Equipment
	2.3. Experimental design
	2.3.1. Experiment 1 – VR-KMI
	2.3.2. Experiment 2 – NVA-KMI
	2.4. EEG analysis
	2.4.1. Pre-processing
	2.4.2. Time-frequency analysis
	2.4.3. Discriminant analysis

	3. Results
	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

