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Survey on the research direction
of EEG-based signal processing

Congzhong Sun and Chaozhou Mou*

School of Mathematics and Statistics, Shandong University, Weihai, China

Electroencephalography (EEG) is increasingly important in Brain-Computer

Interface (BCI) systems due to its portability and simplicity. In this paper, we

provide a comprehensive review of research on EEG signal processing techniques

since 2021, with a focus on preprocessing, feature extraction, and classification

methods. We analyzed 61 research articles retrieved from academic search

engines, including CNKI, PubMed, Nature, IEEE Xplore, and Science Direct.

For preprocessing, we focus on innovatively proposed preprocessing methods,

channel selection, and data augmentation. Data augmentation is classified into

conventional methods (sliding windows, segmentation and recombination, and

noise injection) and deep learning methods [Generative Adversarial Networks

(GAN) and Variation AutoEncoder (VAE)]. We also pay attention to the

application of deep learning, and multi-method fusion approaches, including

both conventional algorithm fusion and fusion between conventional algorithms

and deep learning. Our analysis identifies 35 (57.4%), 18 (29.5%), and 37 (60.7%)

studies in the directions of preprocessing, feature extraction, and classification,

respectively. We find that preprocessing methods have become widely used in

EEG classification (96.7% of reviewed papers) and comparative experiments have

been conducted in some studies to validate preprocessing. We also discussed

the adoption of channel selection and data augmentation and concluded several

mentionable matters about data augmentation. Furthermore, deep learning

methods have shown great promise in EEG classification, with Convolutional

Neural Networks (CNNs) being the main structure of deep neural networks

(92.3% of deep learning papers). We summarize and analyze several innovative

neural networks, including CNNs and multi-structure fusion. However, we also

identified several problems and limitations of current deep learning techniques

in EEG classification, including inappropriate input, low cross-subject accuracy,

unbalanced between parameters and time costs, and a lack of interpretability.

Finally, we highlight the emerging trend of multi-method fusion approaches

(49.2% of reviewed papers) and analyze the data and some examples. We also

provide insights into some challenges of multi-method fusion. Our review lays a

foundation for future studies to improve EEG classification performance.

KEYWORDS

electroencephalography (EEG), brain-computer interface (BCI), preprocessing, feature

extraction, classification, deep learning (DL), multi-method fusion

1. Introduction

The Brain-Computer Interface (BCI) is a communication system that allows humans

to send messages and commands to the outside world without relying on peripheral

nerves and muscles (Wolpaw et al., 2000). The BCI system is composed of four primary

components: signal acquisition, signal processing, control equipment, and feedback link.

Signal acquisition technology in BCI systems can be divided into two categories: non-

invasive methods and invasive methods. While invasive methods, such as implanting
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electrodes directly into the brain, have been explored in some

studies, they are not commonly used due to the potential

risks and complicated operations. Thus, non-invasive methods

are used in many studies. Non-invasive methods include

functional Magnetic Resonance Imaging (fMRI), functional

Near-Infrared Spectroscopy (fNIRS), Magnetoencephalography

(MEG), Electroencephalography (EEG), and Positron Emission

Tomography (PET).

Among the aforementioned methods, EEG signals are

commonly utilized due to their features of safety, portability, ease

of use, high temporal resolution, and low cost (Singh et al., 2021).

EEG signals are a useful tool for directly reflecting the activities

of the brain, in both BCI and clinical applications (Wolpaw et al.,

2000; Michel and Murray, 2012). For example, a typical application

of EEG-BCI systems is to control a robot arm by brain signals,

which will be greatly helpful for not only the disabled but also

general people to improve their life (Jeong et al., 2020). Therefore,

it is important to process and analyze EEG signals so as to fit

multitudes of applications in BCI. EEG signal processing typically

involves three main steps: preprocessing, feature extraction, and

classification.

EEG signals are typically collected using multiple electrodes

placed on the scalp, with electrodes placed on different scalp

locations to collect signals from various brain areas. The

positioning or arrangement of electrodes is called the montage,

and there are two broad categories of montages: bipolar and

referential (Kumar and Bhuvaneswari, 2012). The former compares

an electrode with its neighbors and outputs their difference as

a channel, while the latter chooses one reference electrode and

compares all other electrodes with this electrode (Sanei and

Chambers, 2021). After acquisition, the raw EEG signals are

represented as 2D tensors (multi-channel 1D sequences) with

shape C × T, where C and T represent the number of channels

and time samples, respectively. Many datasets adopt referential

montage, and thus in those datasets, one channel corresponds to

one electrode. The collected signal can be considered as complex

mixtures of the activities of many brain cells, resulting in EEG

signals exhibiting various rhythms that reflect diverse cognitive

states and are associated with different brain activities. Different

rhythms can be broadly categorized into several bands based

on frequency, including delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), beta (13–25 Hz), and gamma (≥25 Hz; Kumar and

Bhuvaneswari, 2012; Singh et al., 2021). Additionally, EEG signals

can have different paradigms, referring to different types of tasks

or stimuli. Common paradigms include P300 (Bashashati et al.,

2007), Motor Imagery (MI; Cano-Izquierdo et al., 2012), Steady-

State Visual Evoked Potential (SSVEP; Wolpaw et al., 2003), etc.

These paradigms often relate to specific brain activities and signal

processing tasks. For example, when a person imagines his/her

limb moving, some specific changes in EEG signals will occur, the

paradigm of which is called MI, and this will relate to the task of

controlling a device to move.

However, in order to effectively process EEG signals, it is

important to consider some of their inherent characteristics,

including:

1. Low spatial resolution and low Signal-to-Noise Ratio (SNR).

EEG signals are susceptible to interference and artifacts.

Therefore, signal processing must address the challenges

of separating noise from abnormal signals and extracting

meaningful features.

2. Dimensionality disaster. EEG signals have multiple channels

during acquisition, leading to exponentially increasing

computation as dimensionality increases.

3. Non-stationariness. The statistics of EEG signals change rapidly

over time.

4. Lack of large labeled training samples. Due to the requirement

for high participant focus during data acquisition, it is difficult

to obtain a large number of brain data. For example, frequent

visual stimulation during Visual Evoked Potential (VEP) signals

acquisition can cause visual fatigue. Consequently, many

datasets have a limited number of samples.

5. Subject-specificity. EEG signals differ significantly among

individuals, leading to poor stability and generalization. Models

trained on specific subjects may not perform well on new

subjects (Lashgari et al., 2020).

Furthermore, unlike image processing and natural language

processing, we lack specific knowledge of the physiological activity

of our brains. This means that we cannot intuitively understand

EEG signals or apply our a priori knowledge to them.

The rest of this article is organized as follows: In the

next part of Section 1, we introduce three steps of EEG

signal processing and summarize several previous reviews.

In Section 2, we summarize the relevant information for

the proposed approaches and how the papers were selected

and assessed. In Section 3, discussions are introduced, where

specific methods are compared, including preprocessing, deep

learning, and multi-method fusion. In Section 4 we show our

conclusions finally.

1.1. Preprocessing

After collecting EEG signals, it is necessary to preprocess the

data in order to remove irrelevant noise and reduce computational

complexity. In the following text, we will introduce some

preprocessing methods.

1.1.1. Basic preprocessing methods
Basic preprocessing methods are based on some basic

characteristics of EEG signals. These methods including

filtering, electrode positioning, deletion of useless data,

baseline correction, heavy reference, downsampling, removal

of artifacts, removal of bad segments, etc. These methods can

be easily invoked by the EEGLAB toolbox, a useful Matlab

toolbox that facilitates various preprocessing operations of

EEG signals (Delorme and Makeig, 2004; Bashashati et al.,

2007).

Filtering is one of the most frequently used preprocessing

methods. EEG signals have low SNR and different rhythms; thus,

band-pass filtering is suitable to eliminate noise that has a different

frequency from EEG signals and separate useful rhythms from the

source (Saeidi et al., 2021).
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1.1.2. Data augmentation
To address the problem of small dataset, data augmentation

is an effective method, which includes both non-deep learning

methods like sliding windows, noise injection, and segmentation

and recombination, as well as deep learning methods like

Generative Adversarial Networks (GAN) and Variation

AutoEncoder (VAE; Lashgari et al., 2020; He et al., 2021).

Many models, especially deep learning models, require a large

amount of training data to achieve high classification accuracy

and avoid overfitting. However, collecting a large number of EEG

data is difficult due to the intrinsic characteristics of EEG signals.

Data augmentation can generate new data from a small dataset,

providing enough training data.

Among non-deep learning methods, sliding window crops the

signals into several segments by sliding a window on the signals.

The length and overlap of segments depend on the window size

and window step. Sliding window increases the number of training

data but also eliminates long-term information. Segmentation

methods can cut out specific time intervals based on the temporal

characteristics of EEG signals (Lu et al., 2022). Gaussian noise

injection injects a random matrix from a Gaussian distribution

into the original data to achieve data augmentation (Okafor

et al., 2017). These methods are intuitive and simple, but they

may exacerbate the overfitting of models due to their similarity

after augmentation.

GAN and its variants can generate artificial data by training a

generative network and a discriminative network (Zhang A. et al.,

2021). The generative network accepts randomnoise from a specific

distribution (e.g., Gaussian) and attempts to generate synthetic data

similar to real data, while the discriminative network is trained

to classify the real and synthetic data. These two networks are

adversarial, and after adequate training, the generative network will

produce verisimilar signals. For VAE, like a normal autoencoder

(which will be introduced below), the encoder converts the raw data

into latent data, and the decoder maps the latent data back to real

data. To generate new data, the VAE randomly samples points from

the learned latent space, and then passes these samples through the

decoder network, which reconstructs them into new samples. Both

GAN and VAE generate new samples indirectly.

1.1.3. Channel selection
During acquisition, every electrode records a channel of

data. Thus the raw EEG signals has C channels, which is

known as the multi-dimensionality of EEG signals. Different

channels correspond to different areas of the brain. For a specific

task, some channels may contain task-irrelevant or redundant

information (Liu et al., 2016), which increases data size and

time cost, and can negatively impact the performance of BCI

(Asensio-Cubero et al., 2013). Channel selection is a method

to select the most salient channels of task-related regions as

the optimal channels so as to improving performance and

efficiency. However, multichannel EEG data contain complex

channel correlations rather than simple adjacencies (Cona

et al., 2009; Hamedi et al., 2016). Therefore, we should seek

selection criteria based on the features of channels, such as

correlation, electrode distance, and task characteristics, to select

the channels that preserve the signal features to the maximum

extent possible.

1.1.4. Dimensionality reduction
EEG signals are multi-dimensional signals. Compared

to traditional 1D signals, EEG signal processing has high

computational complexity. Therefore, we usually need to impose

corresponding constraint assumptions according to the structure

of EEG signals and reduce the dimensionality to further improve

the extraction effect and classification robustness of feature signals.

Many algorithms can reduce the dimension. For instance,

Principle Component Analysis (PCA) can decompose the EEG

signal into linearly uncorrelated components which have the

maximum variance. Redundant components such as interference

from eyes and muscles can be separated by PCA before

reconstructing the EEG signal (Liu and Yao, 2006). Independent

Component Analysis (ICA) separates artifacts from EEG signals

as independent components based on data features (Saeidi et al.,

2021). Geng et al. (2022) proposed that preprocessing can

decompose complexmixed signals into independent signals by ICA

to achieve separation of P300 signals from noise. However, because

the ICA algorithm was not trained to learn the characteristics of

noise signals, some valuable signals may be removed as noise,

causing some brain activity information loss. By using the Wavelet

Transform (WT), the feature of EEG signals can be extracted, and

then by ICA-WT filtering, the noise artifacts can be effectively

eliminated, thus effectively improving the accuracy of EEG signals

of different subjects (Ayoobi and Sadeghian, 2022). Ayoobi and

Sadeghian (2022) also investigated the AutoEncoder (AE) for

preprocessing, where the encoder extracts the information of the

input raw data into a small latent space and then decodes the

latent data to reconstruct the dataset. Since the latent variables carry

information of raw signals but have fewer dimensions, we can use

latent variables as the input of subsequent steps.

1.2. Feature extraction

Feature extraction generally refers to the extraction of hidden

brain information features from signals. Next, we will introduce

some feature extraction methods, including both conventional

algorithms (non-deep learning) and deep learning algorithms.

1.2.1. Feature extraction by conventional
algorithms

The conventional algorithms adopted in feature extraction

include Common Spatial Pattern (CSP), Fourier Transform (FT),

Power Spectral Density (PSD), Wavelet Transform (WT), Wavelet

Packet Decomposition (WPD), Empirical Mode Decomposition

(EMD), Autoregression (AR), andHjorth parameters, etc. (Wolpaw

et al., 2003; Kim et al., 2018; Torres et al., 2020).

Common Spatial Pattern (CSP) is a space domain filtering

algorithm used for binary classification tasks. CSP extracts the

spatial distribution components of each class of the multi-channel

EEG signal and seeks the best projection direction to maximize the

variance of one class and minimize that of the other class (Meng
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et al., 2022). Since CSP maximizes the difference among EEG

signals, it is more capable of mining the features of EEG signals.

However, the number of electrodes needs to be further optimized

because a large number of electrodes are required for multichannel

analysis of EEG signals. There are alsomany variants of CSP, such as

Common Space Spectral Pattern (CSSP), Filter Bank CSP (FBCSP),

etc. (Park et al., 2018; Maruyama et al., 2020; Kumar et al., 2021).

EEG signals exhibit various frequency bands, each associated

with distinct brain activities. Therefore, analyzing EEG signals in

the frequency domain and time-frequency domain is a common

approach. Fourier Transform (FT), particularly Fast Fourier

Transform (FFT) as a fast version, is a fundamental tool in

frequency analysis. It can transform stationary signals to the

frequency domain to extract frequency features. Power Spectral

Density (PSD), the FT of the autocorrelation function of a

signal, reveals the power (energy) distribution across different

frequencies. However, FT and PSD can only analyze the frequency

content across the entire series. To analyze the frequency changes

over time, time-frequency analysis methods are necessary. Short-

Time Fourier Transform (STFT) segments signals into short

time intervals before applying Fourier transform to analyze

the frequency variance. Wavelet Transform (WT), an improved

method of STFT, is suitable for analyzing non-stationary signals

such as EEG signals (Al-Fahoum and Al-Fraihat, 2014). Wavelet

Packet Decomposition (WPD), a modification of WT, further

decomposes the high-frequency sub-bands and provides better

frequency resolution. Following the time-frequency analysis, the

signal shape becomes F × T × C, where F represents the frequency

resolution.

Furthermore, Autoregression (AR) is a popular approach used

in time-series prediction. AR assumes that the current value of

a time series depends linearly on its past values (Saeidi et al.,

2021). Another technique used to analyze non-stationary EEG

signals is Empirical Mode Decomposition (EMD). EMD is a

non-linear method that decomposes a signal into its intrinsic

modes of oscillation (El-Kafrawy et al., 2014). This method has

been used to study the time-frequency characteristics of EEG

signals. Finally, Hjorth parameters are statistical features used to

extract information about EEG signals (Du et al., 2021). The three

Hjorth parameters are Activity, Mobility, and Complexity. Activity

measures the signal’s energy, Mobility measures its frequency

content, and Complexity reflects the signal’s nonlinearity.

1.2.2. Automatic feature extraction by deep
learning

Traditional feature extraction algorithms such as CSP and

PSD have limitations. For instance, feature extraction and

classification are performed separately, and much experience or

priori knowledge is manually added during feature extraction.

In contrast, deep learning algorithms utilize a deep architecture

consisting of many hidden layers to automatically extract

spatiotemporal features of EEG signals using a large number

of training parameters and data (Aellen et al., 2021). The

location of discriminative patterns of deep learning in spatial

detection is irrelevant, which often leads to neural networks

outperforming conventional machine learning algorithms. Deep

learning algorithms are capable of learning useful features that

capture the underlying structure of EEG signals, without the need

for explicit feature extraction. Furthermore, deep learning methods

have the potential to overcome the limitations of traditional feature

extraction methods and to enable more accurate classification of

EEG signals.

1.3. Classification algorithms

General tasks of machine learning can be sorted into two

categories: regression and classification. There are several novel

papers adopting regression methods, such as Jeong et al. (2020)

which adopted deep learning to track the movement of a robot

arm. But among the research on EEG, most studies focused on

classification, since the labels of tasks and outputs of processing

are usually categorical variables. The development of higher

performance and more robust classification algorithms is a key

focus in EEG research. The selection of a classification algorithm

plays a crucial role in determining the performance of the system.

1.3.1. Conventional classification algorithms
Conventional BCI classification algorithms include Support

Vector Machine (SVM; Li et al., 2018), Linear Discriminant

Analysis (LDA; Vidaurre et al., 2011), and k-Nearest Neighbor

(KNN; Tang et al., 2019). SVM can be used for linearly separable

data by finding an optimal hyperplane through optimization

algorithms. For linearly inseparable problems, a kernel function

can be used to transform the data into a higher dimensional space.

LDA is a simple linear classifier that projects all samples onto a line

to maximize the inter-class distance and minimize the intra-class

variance. KNN is a method for classification that counts the class

number of the k nearest samples with the least distance to the new

sample.

While SVM and LDA are popular algorithms with good

performance, SVM can be computationally complex and LDA

requires linear separability. KNN is simple and easy to use, but can

be weak in generalization.

1.3.2. Deep learning algorithm
Deep learning algorithms have been shown to be effective

in extracting features from high-dimensional data. They are

particularly useful for processing EEG signals, which are often high-

dimensional and complex. Deep learning methods use Artificial

Neural Networks (ANN) to process data, which can automatically

learn features that are relevant to the task, and can generalize

well across different tasks. The structure of ANN is shown at the

top of Figure 1. Common deep learning algorithms and ANNs

applied to EEG signal processing include Multilayer Perceptrons

(MLP), Convolutional Neural Network (CNN; Mane et al., 2020),

Recurrent Neural Network (RNN; Luo et al., 2018), etc.

The most simple deep learning algorithm is the Multilayer

Perceptron (MLP). An MLP is a network constructed by Fully

Connected (FC) layers (also called Dense layer or Linear layer

in some papers), in which a linear transform and a subsequent
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FIGURE 1

The structure of artificial neural networks in deep learning. Each

layer in the network can be an FC layer (left bottom), a

convolutional layer of CNN (middle bottom), or a recurrent layer of

RNN (right bottom).

nonlinear activation function are used sequentially. Let x ∈ R
m

be the input, the output y ∈ R
n of a single FC layer is calculated by

y = σ (Wx+ b); (1)

where W ∈ R
m×n, b ∈ R

n and σ are weight matrix, bias and

activation function, respectively (Zhang A. et al., 2021). The bottom

left of Figure 1 illustrates an example of the FC layer. MLP is seldom

used alone now, but FC is often combined with other networks,

used as the last layer to classify the features.

One deep learning algorithm that has been widely used in EEG

signal processing is the Convolutional Neural Network (CNN).

CNN adopts convolution operations to automatically extract

features from the data. CNN consists of multiple convolutional

layers, which accept a 2D image or a 3Dmulti-channel image as the

input and apply convolution operation on it. For a given input X ∈

R
c×m×n, a convolutional layer gives the output Y ∈ R

d×m′×n′ by

Yd,i,j =

δ1
∑

p=−δ1

δ2
∑

q=−δ2

c
∑

r=1

Kd,r,p,qXr,i+p,j+q; (2)

where c and d denotes the input and output channels, respectively;

K ∈ R
d×c×(2δ1+1)×(2δ2+1) is the kernel and also parameters of CNN

(Zhang A. et al., 2021). A graph of convolutional layers is shown

at the bottom middle of Figure 1. Since c and d are decided by

the layers, the shape of kernel K is often shorted to (2δ1 + 1) ×

(2δ2 + 1). The operation of a convolution layer is actually a spatial

filter, but its parameters can be updated by the backpropagation

algorithm automatically. Also, different sizes of kernels can be used

for different tasks. When the input tensor has size C × T, like raw

EEG signals, if we set the size of the kernel to 1 × n, it will extract

the features along the time dimension; if m × 1, it will seek the

correlations of different channels.

Plenty of CNN structures have been applied to EEG signal

processing, such as residual network (ResNet; He et al., 2016) and

ConvNet (Azizpour et al., 2016). EEG-specific neural networks

have also been proposed, such as EEGNet. EEGNet is a compact

CNN with only three convolutional layers, and it adopts two

special structures—depthwise convolutional layers and separable

convolutional layers to reduce the number of parameters and

computational costs (Lawhern et al., 2018). EEGNet is proposed in

2018, and has been shown to be more robust, more compact, and

less data-intensive to different paradigms of EEG signals, and thus

has widespread application in EEG signal processing.

Recurrent Neural Networks (RNN) are another type of deep

learning algorithm that has been used in EEG signal processing.

RNN appends a hidden state into conventional MLP and passes the

hidden state into the next unit, which is fit for extracting long-term

relations of time series models. EEG signals, as a kind of context-

sensitive sequences, are also suitable for using RNN to extract

temporal features. A recurrent unit of RNN accepts a sequence

x ∈ R
T as input, and will calculate the hidden state h and output

y by

{

ht = σ (W1xt +W2ht−1 + b2);

yt = W3ht + b2;
(3)

where W1,W2,W3 are weight matrices, b1, b2 are biases and

σ is the activation function. The structure of a recurrent layer

is illustrated in the bottom right of Figure 1. Long Short-Term

Memory (LSTM) network (Wang et al., 2018) and Gated Recurrent

Unit (GRU; Nakagome et al., 2020) are two popular variants of

RNN. By appending several gate units into conventional RNN, they

inherit the advantages of RNN and lead to more accurate analysis

of sequence data.

Batch Normalization (BN), dropout, and attentionmechanisms

are also spreadly used. During the mini-batch feedforward step, the

data passing BN will subtract the mean and divided by the variance,

converted into zero mean and unit variance (Zhang A. et al., 2021).

BN is usually used before an activation function so as to improve

the distinction of the activation function. Dropout is a method

that makes the unit of networks stop with a probability p to avoid

overfitting, which is only used during training (Zhang A. et al.,

2021). Attention mechanisms simulate the attention functions of

our brain to make significant information prominent. Attention

mechanisms are not a single algorithm, but a set of methods

including conventional methods and CNN-based methods.

In addition, the Transfer Learning (TL) algorithm supplements

the limited training data with data transferred from other domains

to improve the system portability and solve the problem of long

training time while ensuring accuracy (Zhang et al., 2020). TL uses

the similarities between two tasks, and transfers what has been

learned from the source network into the target network to enhance

the model. Facing a small dataset, TL has become an effective

method to improve performance.
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1.4. Research issues and contribution

In previous research, Alzahab et al. (2021) provided a

comprehensive summary of hybrid deep learning algorithms used

in EEG-based BCI systems between 2015 and 2020 and compared

their accuracy. However, they also highlighted the lack of evidence

regarding the impact of preprocessing on the accuracy of EEG

classification. Vallabhaneni et al. (2021) surveyed articles that used

deep learning to decode EEG signals in different applications, and

outlined some existing deep learning problems. Chen and Xie

(2019) suggested that the choice of data processing methods should

be based on the characteristics and size of the EEG signals. He

et al. (2021) reviewed the application of data augmentation in EEG

and found that it could improve classification performance and

overcome the challenges of small-scale datasets. Saeidi et al. (2021)

systematically reviewed the machine learning-based EEG decoding

methods in terms of different tasks and concluded that CNN, SVM,

and WT become the most effective deep learning, conventional

machine learning, and feature extraction methods. These studies

have contributed to the advancement of BCI-EEG and highlighted

the existing challenges in this field.

In this paper, we analyze the latest studies since 2021 and

compare them to the reviews and articles before 2020. We choose

post-2021 articles since there have been plenty of reviews focused

on the articles before 2020, and we want to summarize the latest

development. Based on the articles we reviewed, we provide an

overview of the research landscape in EEG-based BCI signals and

the emerging trends. We focus on answering the following research

questions: What are the current research topics in BCI signal

processing? How can we evaluate BCI performance and improve

it? What are the innovative approaches being explored in this field?

We also evaluate the strengths and limitations of different methods.

Our main contributions are as follows:

1. We summarize various methods of EEG-based signal processing

of BCI systems and the major research trends. We also propose

solutions to potential issues.

2. We attempt to seek valid, reasonable, and useful indicators of

BCI performance.

3. We confirm the effectiveness of preprocessing on the

performance.

4. We discuss deep learning and multi-method fusion studies in

different aspects and summarize several existing problems.

2. Search methods and reviewed table

2.1. Search methods

Research articles were selected for review on 31 June 2022.

The following databases were conducted: CNKI, PubMed, Nature,

IEEE Xplore, and Science Direct. The search covered studies

published between 2021 and 2022. The following query terms are

used: (“brain-machine interface” OR “brain-computer interface”

OR “BCI”) AND (“EEG” OR “electroencephalography”) AND

(“preprocessing” OR “feature extraction” OR “classification”).

This search resulted in 61 research papers, as shown in

Figure 2.

2.2. Reviewed papers

By collecting and summarizing the papers on EEG-based BCI

signal processing, we sort out a variety of new methods for

EEG signal processing and analyze the characteristics of their

performance.

Since the table of all the reviewed papers is too large, we only

provide a list of the papers reviewed in this article. A detailed

table with information on the directions and performance of each

paper can be found in the Supplementary material. The following

reviewed papers are presented in ascending order of their published

date (Aellen et al., 2021; Asheri et al., 2021; Ashwini and Nagaraj,

2021; Awais et al., 2021; Cai et al., 2021; Dagdevir and Tokmakci,

2021; De Venuto and Mezzina, 2021; Du et al., 2021; Fan et al.,

2021, 2022; Ferracuti et al., 2021; Gao N. et al., 2021; Gao Z. et al.,

2021; Gaur et al., 2021; Lashgari et al., 2021; Lian et al., 2021; Liu

and Jin, 2021; Liu and Yang, 2021; Liu et al., 2021; Qi et al., 2021;

Rashid et al., 2021; Sun et al., 2021; Varsehi and Firoozabadi, 2021;

Vega et al., 2021; Vorontsova et al., 2021;Wahid and Tafreshi, 2021;

Wang andQuan, 2021; XuC. et al., 2021; Xu F. et al., 2021; Yin et al.,

2021; Zhang K. et al., 2021; Zhang Y. et al., 2021; Algarni et al., 2022;

Ali et al., 2022; Asadzadeh et al., 2022; Ayoobi and Sadeghian, 2022;

Bagchi and Bathula, 2022; Chang et al., 2022; Chen J. et al., 2022;

Chen L. et al., 2022; Cui et al., 2022; Geng et al., 2022; Islam et al.,

2022; Jia et al., 2022; Kim et al., 2022; Ko et al., 2022; Li and Sun,

2022; Li H. et al., 2022; Lin et al., 2022; Li Q. et al., 2022; Lu et al.,

2022; Ma et al., 2022; Mattioli et al., 2022; Meng et al., 2022; Pei

et al., 2022; Song et al., 2022; Suhaimi et al., 2022; Tang et al., 2022;

Xu et al., 2022; Ying et al., 2022; Zhao et al., 2022).

3. Results and discussion

The BCI system based on EEG signals analyzes the instructions

issued by the human brain. The processing and classification of

EEG signals determine the performance of the BCI system. In the

study of EEG signal processing, several questions arise, including:

1. What is the current development trend of EEG signal processing

techniques?

2. How to select a processing method suitable for EEG signal

characteristics?

3. How to apply deep learning algorithm properly to enhance

performance?

4. Why do we need multi-method fusion, and are they valid?

Considering the characteristics of EEG signals, the processing

of EEG signals aims to find a feasible method to fuse the

signal pattern to seek high-performance and strong applicability

processing methods. Currently, many preprocessing, feature

extraction, and classification algorithms are applied to EEG signals,

each with its own advantages and disadvantages. Therefore,

appropriate methods should be selected according to specific

situations. In this paper, we classify algorithms according to the

categories introduced in Section 1. In the following, we will discuss

the directions and numbers of reviewed studies.

For preprocessing, by increasing data samples and identifying

valid data, it can obtain better features of signals and reduce

computation costs. By studying the 61 papers, we found that the
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FIGURE 2

The search method for identifying studies about EEG signal processing.

number of preprocessing studies is 35 (57.4%). This suggests that

preprocessing is an important step to seekmore prominent features

and achieve higher performance of EEG signals. As for feature

extraction, since deep learning has a strong ability in automatic

feature extraction learning of EEG signals, feature extraction

tends to be completed automatically by deep learning algorithms.

Therefore the number of feature extraction studies is only 18

(29.5%). The number of classification algorithms is 37 (60.7%),

indicating that the innovation of classification algorithms is still the

main method to improve the performance of BCI. Thus it is the

focus and hotspot of current EEG processing research. The study

number of these three directions is shown in Figure 3.

3.1. Indicators of EEG

Various indicators are used to measure the performance of

classifiers in EEG classification. Accuracy (ACC) remains the most

widely used indicator across papers as it provides an intuitive

measure of classification performance. However, several other

indicators, such as the confusion matrix (Algarni et al., 2022)

and kappa (Lian et al., 2021), are also commonly employed. The

confusion matrix compares the number of predicted and actual

labels in an n × n matrix. On the other hand, kappa measures the

consistency of classification and is used in multiple studies to gauge

performance improvement.

Although accuracy is the primary indicator, 16 papers also

compare other factors like parameter number, Information

Translating Rate (ITR), and computation time. Parameter number

is used to measure the complexity of a model, especially for

neural networks. ITR and computation time reflect the speed of

classification and are crucial factors in many studies. Notably, six

studies improve ITR, with the maximum ITR reaching 170.67

bit/min in Zhang K. et al. (2021). Seven studies achieve time cost

reduction, reflecting the importance of computational efficiency.

Given the subject-specificity of EEG signals, researchers

also investigate the variation between subject-dependent (within-

subject) and subject-independent (cross-subject) accuracy. Subject-

independent tasks involve testing models on new individuals

whose data are not included in the training data, whereas subject-

dependent tasks test on different segments of the same individuals’

data. Singh et al. (2021) has highlighted the importance of subject-

independent tasks— they play a crucial role in designing a plug-

and-play calibration-free BCI device. While many studies report

high within-subject accuracy, which can exceed 90% in several

cases, cross-subject accuracy is still lower (mostly around 50%;

Lashgari et al., 2021; Fan et al., 2022). Improving cross-subject

accuracy has become a significant direction.

3.2. Preprocessing

In the 35 studies about preprocessing, innovative

preprocessing methods include channel selection (10

papers, 28.6%), dimension reduction (11 papers, 31.4%),

data augmentation (16 papers, 45.7%), etc., as shown in

Figure 4. Dimension reduction is commonly used to reduce

computation complexity, but only around half of the studies

applying dimension reduction have innovative methods.

While channel selection and sliding windows are also widely

used, many papers proposed new channel selection or sliding

window approaches.

According to Alzahab et al. (2021), among studies on hybrid

Deep Learning (hDL) from 2015 to 2020, 21.28% did not
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FIGURE 3

Numbers of di�erent directions of EEG signal processing. The numbers of preprocessing (P), feature extraction (F), and classification algorithm (C)

papers are 35, 18, and 37, respectively. The numbers of papers about both P and F, both P and C, and both F and C (all including two papers in the

center) are 4, 21, and 6, respectively. There are two papers focus on all three directions.

FIGURE 4

Comparison of preprocessing methods. Blue bars denote the number of papers involving a method, and the orange bars denote modified or new

methods proposed.

apply any preprocessing step, 61.7% applied basic preprocessing

such as bandpass filtering, and 17.02% applied more advanced

preprocessingmethods such as ICA and PCA. Our study shows that

since 2021, 24 (100%) and 15 (62.5%) of the studies applying hDL

performed preprocessing and advanced preprocessing methods,

respectively. In addition, Alzahab et al. (2021) also pointed out

that since none of the papers they reviewed compared performance

between the presence and the absence of preprocessing, it

cannot be confirmed whether preprocessing can improve accuracy.

However, we found that several papers since 2021 have conducted

comparative experiments on preprocessing and have clearly

concluded that appropriate preprocessing methods can improve

accuracy performance. For example, Lashgari et al. (2021) showed

that by selecting the optimal channel (ACC= 81.73%) compared to

no channel (ACC = 71.47%), the accuracy of the hybrid CNN and

GRU algorithm was improved by 10.26%. Therefore, it has been

proved that appropriate preprocessing methods can improve the

performance of the entire processing task.
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In the following section, we will discuss several directions

of preprocessing research, including innovative preprocessing

methods, channel selection, and data augmentation (including

sliding windows, segmentation and recombination, noise injection,

GAN, and VAE).

3.2.1. Innovative preprocessing methods
The number of studies on improving classifier performance

through preprocessing has increased significantly, with 60

(98.4%) of the 61 papers including preprocessing, and 35

(57.4%) of them improving performance through innovative

preprocessing approaches.

Many innovative preprocessing methods are related to the

structure of deep learning networks. For example, Liu and Yang

(2021) and Bagchi and Bathula (2022) both transform raw signals

into 3D tensors, as shown in Figure 5. The former simply represents

the positions of electrodes in a matrix roughly and fills zeros for

the cells without electrodes, while the latter applies Azimuthal

Equidistant Projection (AEP, a method to project a globe onto a

plane) to transform the distribution of 3D electrodes into a 2D

heatmap image and keep the relative distance of electrodes. After

AEP and interpolation, the EEG signals become a video-like stream

with plenty of 2D thermodynamic images and can be analyzed by

ConvTransformer, which will be discussed in Section 3.3.1.

Autoencoder can extract the features and reduce the dimension

of raw EEG signals by transforming them into a small vector. In

Ayoobi and Sadeghian (2022), an LSTM-AutoEncoder is trained

unsupervisedly, and the latent variables are used as the input of

feature extraction algorithms. This shows that AE can extract valid

features and greatly reduce the size of input signals.

3.2.2. Selecting optimal channels
Among the 35 papers focused on preprocessing, 12 (34.3%)

addressed channel selection, indicating that selecting optimal

channels is a promising direction for improving classification

performance. In the study conducted by Liu and Jin (2021),

channel selection using the proposed Bispectrum and Euclidean

Distance-based Channel Selection (BECS) algorithm resulted in

significant improvements in classification accuracy for 18 out of

35 subjects (paired t-test, p < 0.05). The accuracy and ITR

increased by 7.38% and 18.4%, respectively. However, performance

did not significantly change for 10 subjects, and seven subjects

experienced a decrease in accuracy. They also supposed that by

ordering all the leads and fusing them with a fuzzy system, it is

possible to automatically determine whether to select channels,

thus avoiding performance degradation. Yin et al. (2021) using

a voting approach to select optimal channels, which not only

significantly improved the classification rate (p < 0.01) when

compared with the traditional FBCSP algorithm, but also reduced

computing complexity.

3.2.3. Data augmentation
In our study, we reviewed 22 studies that applied data

augmentation techniques to enhance EEG signal processing.

Among them, we found that 16 studies adopted innovative

data augmentation methods, which can be classified into several

categories: sliding window (10 papers, 45.5%), segmentation and

recombination (4 papers, 18.2%), Gaussian noise (one paper, 4.6%),

GAN (4 papers, 18.2%), and VAE (one paper, 4.6%). Since a study

may use multiple data augmentation methods, the total percentage

exceeds 100%.

Many studies have adopted conventional data augmentation

methods, including sliding windows and segmentation and

recombination. For instance, Gaur et al. (2021) employed SW-

Mode technology based on sliding window to reduce the differences

among subjects, achieving superior performance compared to the

best available technology in the dataset of stroke patients (ACC

= 80%, p < 0.05). In another study by Lian et al. (2021),

time windows were divided into 1 s to increase the number of

training samples and satisfy the requirements of CNN, enhancing

the stability and reducing the impact of individual differences

(kappa = 0.78). Similarly, in a study by Islam et al. (2022), the

dataset was divided into three different short decision windows

(1, 2, and 3 s). They concluded that choosing a shorter decision

window can reduce computational complexity, minimize the use

of additional functionality for a single decision, and make the

system faster. In yet another study by Ayoobi and Sadeghian (2022),

the preprocessing step involved comparing fragments of various

time windows, where the authors found that by clipping into

short segments to match up self-attention mechanisms, the average

classification accuracy increased by 13.9%, and computation

complexity was reduced.

GAN can imitate the samples in the dataset and generate

new EEG samples to improve the accuracy (Lashgari et al., 2021).

However, poor training stability is a problem. For example, Song

et al. (2022) used Auxiliary Classifier GAN (ACGAN), a variant of

GAN, to generate new data to expand the training dataset, which

met the requirements of deep learning and increased the accuracy

by 1.7%.

Research has also explored diffusion models. Diffusion Model

(DM), as an up-to-date substitute for GAN, can generate high-

quality images and has a wide range of applications in AI painting.

Thus, it is believed that diffusion models can also generate

verisimilar EEG signals. For example, Duan et al. (2023) used

diffusion to remove artifacts and improve cross-subject accuracy.

However, there are few papers about the diffusion model in EEG

signal generation, and more research is needed.

However, data augmentation also has some limitations which

must be considered in its application. Here we list three

main factors.

First, generating too much data through data augmentation

is not appropriate. Beyond a certain amount, generating more

data into the training dataset only increases the training time and

will not improve the generalization of the model. For example, in

the study by Lashgari et al. (2021), the model achieved the best

accuracy (93.6%) after applying 15 times data augmentation on BCI

Competition IV dataset 2a. If 20 times augmentation is adopted, the

accuracy will decline instead.

Second, a major difference between synthetic EEG signals

and images is that EEG signals cannot be directly interpreted.

While GANs and other deep learning-based generators have

demonstrated success in synthetic image generation, it is

challenging to interpret the differences between real and synthetic
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FIGURE 5

Two 3D representation methods of EEG signals in Liu and Yang (2021) and Bagchi and Bathula (2022), respectively. Both of them are in the shapes of

width× height× time samples. The figure are partly cropped and modified from these two articles.

EEG signals. Sliding windows and noise injection methods ensure

that the augmented data are similar to real EEG signals, but GANs

andVariational Autoencoders (VAEs) are less transparent, resulting

in a new “black box”.

Third, selecting appropriate data augmentation methods in a

given situation is crucial as different methods have both advantages

and disadvantages. For example, sliding windows and segmentation

and recombination can directly augment data in the input space,

which is intuitive and has a low calculation cost (He et al., 2021).

However, this method also increases the similarity of training data,

which may cause overfitting and reduce the classification accuracy

of the model.

3.3. Deep learning algorithms

As is mentioned in Section 1.3.2, CNN can extract temporal

and spatial kernels by setting different sizes of kernels, and

RNN can extract long-term temporal kernels. In our study,

we find that most of the papers about DL use CNN alone

or with other structures to extract features and use FC as

the last layer to sort extracted features into given categories.

Some papers also add an RNN layer after CNN. Also, batch

normalization (BN) and dropout layers are applied widely to

avoid overfitting.

Among the papers reviewed in our study, 28 studies used

DL algorithms, with the majority relying on CNNs (26 papers,

92.9%), followed by RNNs (eight papers, 28.6%) and MLP (one

paper, 3.6%). Most of the CNN and RNN algorithms proposed

innovative methods. Notably, since 2021, CNN-based algorithms

have accounted for 42.6% of the 61 reviewed papers, indicating

that CNN is the mainstream classification and DL approach

for EEG signal processing. Out of the 28 DL papers reviewed,

20 studies used time-domain signals as input, while six studies

used time-frequency domain signals. The number of different

methods or structures is depicted in Figure 6. As some studies

used multiple methods, the sum of each sector may exceed the

total number.

Our research indicates that the prevalence of DL and the

popularity of CNNs as a classification algorithm can be attributed

to three factors:

1. DL can be applied to not only the spatial and time domains

but also the frequency and time-frequency domains. CNNs are

predominantly used to extract spatial features, while RNNs can

extract longer temporal features than CNNs.

2. Classification accuracy is highly dependent on the amount

of training data, and limited training data often leads to

low accuracy. Data augmentation and transfer learning have

partially resolved this issue in recent years. Data augmentation

expands the amount of data by applying various preprocessing

techniques, while transfer learning leverages knowledge and

experience from other fields to train a model with a smaller

dataset. Transfer learning shortens the training time and is less

affected by individual differences.

3. DL algorithms reduce the computational burden and enhance

BCI performance by sharing parameters or constructing a

shallow neural network that is consistent with the characteristics

of EEG.
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FIGURE 6

The number of di�erent deep learning methods used in reviewed papers. The orange sector represents MLP, with one paper. Special CNN includes

graph CNN, etc.

3.3.1. Application and innovation in CNN
CNNs are capable of extracting both spatial and short-term

temporal features using 1 × M and N × 1 kernels, respectively,

when the input has the shape C × T. Research on CNNs can be

classified into three categories: (1) improving proposed networks,

(2) modifying networks from other domains, and (3) proposing

innovative network structures.

First, to improve proposed networks. As mentioned in

Section 1.3.2, EEGNet is a network designed specifically according

to the characteristics of EEG signals (Lawhern et al., 2018). Various

modifications have been made to EEGNet to improve performance.

For example, Li H. et al. (2022) added an FC layer to concatenate the

output of three convolution layers to aggregate different features

and improve the accuracy of EEGNet. Vega et al. (2021) added

a Fuzzy Neural Block (FNB) after EEGNet and demonstrated

that FNB can slightly enhance the accuracy of subject-dependent

classification.

Second, to adapt the networks from other realms. Researchers

have applied innovative structures from the fields of imaging

processing and computer vision to EEG signal processing.

For instance, Bagchi and Bathula (2022) modified the

ConvTransformer network, originally designed for video

processing, to process EEG signals and achieve the highest

accuracy among several methods. Here, the raw EEG signals

are preprocessed into a video-like stream, which serves as the

input of ConvTransformer, similar to the approach used in video

processing. However, the ConvTransformer model has a large

computational complexity due to a large number of parameters. In

addition, Lin et al. (2022) inserted the Spatial AttentionMechanism

(SAM) from the field of imaging processing into their network to

extract the salient frequency of EEG signals.

Third, to propose an innovative network structure. Compared

to traditional 2D-CNN, variousmethods of deep learning have been

developed. Mattioli et al. (2022) proposed a 1D CNN, a special

convolutional layer that accepts input of shape T × C and uses

Q × C-shaped kernels to process the input, thereby squeezing the

second dimension and outputting a tensor of shape T×O, whereO

is the number of output channels. Multi 1DCNNswere constructed

sequentially, which reduces computational cost while achieving

high accuracy. Lashgari et al. (2021) proposed a relatively simple

network that uses a shared-parameter convolutional layer as sliding

windows to process signals without any conventional preprocessing

methods. They then employ CNN and self-attention mechanisms

to extract features and an FC layer for classification. The network

achieved the highest accuracy compared to other state-of-the-art

networks, mainly because it abandoned prior methods such as

preprocessing and manual hyperparameter selection, allowing all

parameters to be trained and updated automatically.
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There are also deep learning studies focusing on particular

applications of EEG-BCI. For instance, aiming to develop a BCI for

people with communication disabilities to control the movement

of a device, Vorontsova et al. (2021) designed a simple network

using ResNet and GRU but without the last FC layer to classify

the EEG signals into correct words during silent speech. They

hypothesized that a smaller dataset on one subject (i.e., subject-

dependent dataset) will contribute to higher accuracy, which

was demonstrated by their experiment results. Similarly, Vega

et al. (2021) applied P300-based EEG signals on controlling smart

appliances. They collected EEG signals from both healthy and post-

stroke subjects and designed the aforementioned EEGNet with

FNB to classify these data. The performance of these applications

has shown the effectiveness and prospect of deep learning-based

EEG signal processing methods and the possibility of real-life BCI

devices.

3.3.2. Multi-network structure fusion
There exist various neural networks and structures, such as

CNN, RNN, attention mechanisms, and AutoEncoder (Encoder-

Decoder) structures, each with different performance in various

application scenarios. The fusion of multiple structures can

improve classification accuracy by combining different features

(Singh et al., 2021). It has been observed that many studies

apply dropout, BN, and attention mechanisms to deep learning

algorithms. Among the 28 papers surveyed, 11 (39.3%) used

dropout, 11 (39.3%) used BN, and 7 (25%) used attention

mechanisms.

Lin et al. (2022) proposed Phase Learning and Frequency

Attention Network (PLFA-Net), which combines a phase-learning

module, SAM, feature-extracting CNN, and a fully connected

layer. The phase-learning module calculates the linear combination

of the real and imaginary parts of FFT outputs to learn phase

information. The SAM extracts frequency features as mentioned

above. The feature-extracting CNN, a conventional convolutional

layer, extracts features of both time and channels. PLFA-Net

performs better than CCA in high frequency but worse in low

frequency, probably because it extracts low-amplitude information

of high frequency well but is affected by low-frequency noise.

Lian et al. (2021) combined a Shallow CNN (SCNN), BiLSTM,

and attention mechanisms to improve EEG classification. The

design of SCNN is inspired by Visual Geometry Group (VGG), but

SCNN uses rectangular kernels with shapes of 1 × 5 and 1 × 3

instead of square kernels to extract temporal features. Attention

mechanisms are used after BiLSTM to fuse the features of SCNN

and BiLSTM.

Li and Sun (2022) used modified EEGNet and ConvLSTM to

process EEG signals. ConvLSTM uses convolution operations to

pass the hidden state, combining both RNN and CNN. Attention

mechanisms are also adopted before the input of ConvLSTM. This

model achieved better results on several datasets.

3.3.3. Problems and future directions of deep
learning

Although deep learning has been shown to be effective in

processing EEG signals, several notable problems still exist, which

also serve as future directions for research in EEG signal processing

with deep learning. In the following sections, we highlight some of

these issues and provide potential avenues for addressing them.

The first problem is related to the shape of the input. While

CNNs typically accept 2D images or 3D multi-channel images as

input, EEG signals are multi-channel 1D sequences with a shape

of C × T. Directly using a 2D C × T matrix as input can lead

to insufficient feature extraction during convolutional operations

due to the electrodes being adjacent to four surrounding electrodes

on a 3D sphere, as opposed to only two adjacent electrodes in the

matrix. Figure 7 illustrates this issue. Some researchers ignore the

input shape and properties of CNNs, using inappropriate inputs

and conventional 2D convolutional layers, which can result in

poor correlation extraction. For example, in Islam et al. (2022),

after applying wavelet transform as a feature extraction step, the

spectrograms of all channels are concatenated into a large 2D

image, which may extract redundant features due to the lack of

apparent relations between the border of the image. To overcome

these issues, researchers have proposed innovative solutions such as

considering each channel as an independent sample, transforming

the signals into 3D tensors to preserve the relative positions of

electrodes (Liu and Yang, 2021; Bagchi and Bathula, 2022), or using

a C × 1 kernel for depthwise convolutional layers in models such

as EEGNet (Lawhern et al., 2018) and EEG-TCFNet (Vega et al.,

2021). In the future, further attention is needed in designing CNN

structures that can accommodate the shape and characteristics of

EEG signals to effectively extract features.

Another problem concerns the accuracy of cross-subject tasks,

where many studies have shown high accuracy in within-subject

tasks but lower accuracy in cross-subject tasks. For instance, in the

study of Mattioli et al. (2022), the accuracy drops sharply from

99% in within-subject tasks to approximately 50% when applying

transfer learning to other subjects, indicating that the parameters

overfit the given individuals and cannot be generalized easily to new

individuals. This issue presents a bottleneck for EEG applications

and BCI technology, where a universal classifier for all participants

is yet to be designed. In fact, Singh et al. (2021) have summarized

some methods to improve subject-independent accuracy, but most

of them are non-deep learning methods or fusions of non-DL and

DL methods. Further research on deep learning-based EEG signal

processing to address this problem and improve cross-subject

accuracy is still needed.

The balance between accuracy and time cost is another

challenge that requires consideration in many cases. Deeper

and more complex networks often lead to higher accuracy

but also longer computing time, which can be problematic

in real-time EEG-based applications like BCI for controlling

devices. Some studies, such as the study of Bagchi and Bathula

(2022), pursue higher accuracy but achieve it with a large

number of parameters and high time cost. On the other

hand, some studies have used special structures like separable

convolutional layers, which can maintain high accuracy without

significantly increasing computing time. In the future, achieving

a balance between accuracy and computing time will remain an

important consideration.

Finally, the lack of interpretability in both EEG and deep

learning hinders further development. As the functions of our

brains are still not fully understood, interpreting EEG signals
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FIGURE 7

If 2D electrodes (A) are squeezed into a 1D channel arrangement (B), the spatial relationship of electrodes is lost. An m× n CNN kernel cannot

extract the information fully, since it only extracts n channels every time. For EEGNet (C), a C× 1 kernel is used to extract the features from all

channels. (A) 2D sphere of collecting device. (B) 1D representation and a normal CNN kernel. (C) C× 1 kernel of EEGNet.

and understanding the workings of deep learning models can

be challenging. Deep learning is often considered a “black box”

(Adadi and Berrada, 2018), which can make it difficult to

explain and understand EEG DL models. Additionally, the lack

of interpretability is also a factor contributing to the low cross-

subject accuracy, as we do not know the specific variations in

EEG signals between different individuals. Many papers attempt

to explain the reason why their networks are efficient in terms

of network structure, but the existing reasons are still very

subjective. Furthermore, Vallabhaneni et al. (2021) stated that

pathological mechanisms are more important than classification

accuracy in medical and psychological applications of EEG and

BCI. But from the papers we reviewed, researchers are still

mainly paying attention to high performance, or more precisely,

high accuracy. Hence in medical realms, deep learning of EEG

cannot still be put into practical applications, leaving a significant

unsolved problem.

3.4. Fusion of di�erent methods

Currently, there exist numerous classification algorithms.

However, their performance varies significantly across different

paradigms and application scenarios. The No Free Lunch

Theorem asserts that it is impossible to find a single algorithm

that generalizes well on any distribution of data (Wolpert

and Macready, 1997). Additionally, many algorithms encounter

challenges during processing, such as insufficient feature extraction,

overlooking global network characteristics, and inability to

identify the physical function of the brain. Furthermore, as

preprocessing methods and deep learning algorithms develop and

merge, the partitions between preprocessing, feature extraction,

and classification become blurred. In the review conducted by

Saeidi et al. (2021), ICA and PCA are classified into both

preprocessing and feature extraction methods. In most deep

learning studies, features are considered automatically extracted by

neural networks, so there is not a single step of feature extraction.

Multi-algorithm fusion, as opposed to a single algorithm, can

optimize feature selection, decrease computational complexity, and

improve classification accuracy (Singh et al., 2021).

Our survey reveals that 45 studies (73.8%) employed the fusion

of more than two methods for feature extraction and classification,

leading to a significant improvement in performance. Multi-

algorithm fusion is becoming a new trend in EEG signal processing.

Additionally, 14 papers utilized the BCI Competition IV 2a dataset

for their studies, as shown in Figure 8. Liu et al. (2021) utilized

the fusion of LSTM and self-attention and achieved the highest

accuracy (97.7%) among 14 papers.

3.4.1. Multi-conventional method fusion
Despite the prevalence of deep learning, many conventional

feature extraction methods are still applied to EEG signals,

especially in feature extraction. In practice, when choosing a variety

of conventional algorithms, it is necessary to consider the influence

of various factors such as the number of samples that can be

obtained, training time, and test methods. Through combination,

the optimal feature-extracting ability can be obtained, and the time

cost of training and classification can be saved, along with good

generalization ability. Our research shows that 16 papers (26.2%)

using feature extraction algorithms involve feature extraction

fusion algorithms, indicating that feature extraction algorithms also

have a trend of fusion development. The accuracy and accuracy

increment are shown in Figure 9. Although different benchmarks

or classification algorithms are used among different studies, they

all achieve at least 1% accuracy increments.

For example, Sun et al. (2021) proposed the Discriminative

Canonical Pattern Matching (DCPM) algorithm, which

integrates DSP, CCA, and pattern matching, and achieved

the best performance in various situations. Compared with

LDA-related algorithms, DCPM performs better when

the number of training samples is small or the number

of features is too large. Compared with SVM-related
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FIGURE 8

Accuracy comparison of di�erent methods on the BCI competition IV dataset 2a. Each label on the vertical axis represents a method in a study,

which is from Gaur et al. (2021), Lashgari et al. (2021), Lian et al. (2021), Liu and Yang (2021), Liu et al. (2021), Qi et al. (2021), Ali et al. (2022), Ayoobi

and Sadeghian (2022), Chang et al. (2022), Chen L. et al. (2022), Ko et al. (2022), Li and Sun (2022), Li H. et al. (2022), and Tang et al. (2022), from top to

bottom, respectively.

FIGURE 9

The accuracy and accuracy increment of di�erent fusion methods. The benchmark algorithms are often methods in previous studies or conventional

algorithms like simply CSP, whose accuracy is denoted by blue bars. The innovative methods mean new methods proposed in the papers, whose

accuracy increments are denoted by orange bars. Each label on the vertical axis represents a method in a study, which is from Du et al. (2021), Gao

N. et al. (2021), Qi et al. (2021), Rashid et al. (2021), Wang and Quan (2021), Xu C. et al. (2021), Yin et al. (2021), Zhang Y. et al. (2021), Algarni et al.

(2022), Cui et al. (2022), Jia et al. (2022), Ma et al. (2022), Pei et al. (2022), and Tang et al. (2022), from top to bottom, respectively.

algorithms, DCPM avoids the long-term parameter

selection process during use, making the application

process easier.

Ma et al. (2022) proposed the CCA-CWT-SVM fusion

algorithm, which combines the features extracted by

CCA with CWT, to achieve feature complementarity, and
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thus significantly improves the target accuracy within a

limited time.

Yin et al. (2021) proposed a channel-based optimal sparse

time-frequency block common space pattern (OCSB-CSP) feature

extraction method to improve model classification accuracy and

computational efficiency. A channel selection method based on

Pearson correlation coefficients is first invoked to reduce the

redundant information between channels and to mark the best

channel for subsequent processing. Then, the discriminative ability

of each time-frequency block is measured by defining the Fisher

ratio index to sparse the time-frequency blocks, which significantly

reduces the data dimensionality, and the selected time-frequency

blocks are mostly distributed in the frequency bands related to

the MI task. Finally, the p-shape analysis of Lasso regression is

performed to select the extracted multi-block CSP features and

use SVM for classification. The results show that the proposed

OCSB-CSP algorithm achieves higher classification accuracy while

reducing the computational burden of the model.

3.4.2. Fusion of conventional methods and deep
learning

In addition to modifying deep learning algorithms as discussed

in Section 3.3.1, some studies have explored the fusion of

conventional methods and deep learning. In this section, we review

some innovative fusions of both conventional methods and deep

learning.

Islam et al. (2022) proposed a fusion of CNN and KNN. The

features extracted by CNN are treated as 1D vectors in R
m and

classified by KNN using Euclidean distance.

Algarni et al. (2022) proposed a fusion of Hurst index,

WPD, statistical features, Binary GrayWolf Optimization (BGWO)

algorithm, and BiLSTM. Hurst index is used to measure the

long-term memory changes of time series, WPD is used to

better filter the discrete-time signal, and statistical features are

used to analyze time-domain features. The fusion of Hurst,

WPD, and statistical features is used to extract features. BGWO

is applied to select features and eliminate redundant features

while retaining important information. BiLSTM is then used

to extract features further, and finally, an FC layer is used

for classification.

3.4.3. Future directions of multi-method fusion
Multi-method fusion is a promising trend in EEG signal

processing. We will attempt to give some reasons why multi-

method fusion is important and summarize the tendencies of

multi-method fusion in this section.

First, the characteristics of the brain have not been fully

explored. EEG comes from the neural activities in our brain, and the

aim of EEG signal processing is to decode and obtain information

from our brain. However, nowadays there are few researchers

who adopt machine learning fusion focusing on the explanations

of the effectiveness of algorithms, as well as associating the

algorithms with cognitive mechanisms. While the effectiveness of

fusionmethods can be indirectly demonstrated through comparing

performance like accuracy, what feature each method exactly

extracts, and what the neurologic meanings of features are, are

not clear, so the cognitive mechanisms behind the fusion methods

are not fully understood. Thus, the optimal solutions or a general

explanation of algorithm selection have not been proposed (Chen

J. et al., 2022).

Second, in addition to algorithm fusion, other fusion

approaches such as multi-sample fusion are also worth exploring.

Fan et al. (2021) used multi-sample fusion to classify EEG signals

using SVM, where multiple samples from the same experimental

conditions were combined to improve classification accuracy. This

significantly improved the accuracy of SVM classification than that

of a single sample.

Third, a single feature may not effectively capture the

physiological behavior of the brain. Future studies may introduce

more parameters to improve classification accuracy. However,

method fusion may lead to increased time and space complexity,

resulting in longer training and prediction times, which limits the

practical application of the model (Lu et al., 2022). Therefore, it is

important to balance the parameter number and time cost to avoid

overfitting and excessive time and space complexity. For example,

in Section 3.4.2, we discussed the study of Algarni et al. (2022)

that used multi-feature extraction stages and BiLSTM to reduce

the dimensionality of data and improve classification accuracy.

BiLSTM reduces the high dimensionality of data, which reduces

complexity and leads to less classification time and improved

performance.

In summary, multi-method fusion is a promising direction for

EEG signal processing, and more research is needed to fully explore

its potential. Future studies may focus on understanding the

cognitive mechanisms behind the fusion methods, exploring other

fusion approaches, and reducing the limitations and complexity of

the model.

4. Conclusions

In this paper, we have reviewed 61 studies of EEG signal

processing. We have discussed different preprocessing methods

and highlighted the effectiveness of proper preprocessing

methods to increase accuracy, which solves the problems

in the review of Alzahab et al. (2021). Furthermore, we

have observed the wide adoption of deep learning methods

in EEG signal processing and discussed some reasons why

they have become prevalent. We have also noted that many

studies apply multi-method fusion, using both conventional

algorithms and deep learning. This summarization can show

some future directions to the researchers focusing on EEG

signal processing.

Despite these advancements, we still face significant

challenges in EEG-based BCI systems and EEG signal

processing due to our limited understanding of the brain.

The problem of low cross-subject accuracy also remains

unsolved, indicating a limited generalization ability.

Designing a more robust system with stronger generalization

ability and less time cost remains an open question for

future research.
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