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Multimodal brain image fusion
based on error texture elimination
and salient feature detection

Xilai Li and Xiaosong Li*

School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China

As an important clinically oriented information fusion technology, multimodal

medical image fusion integrates useful information from di�erent modal images

into a comprehensive fused image. Nevertheless, existing methods routinely

consider only energy information when fusing low-frequency or base layers,

ignoring the fact that useful texture information may exist in pixels with lower

energy values. Thus, erroneous textures may be introduced into the fusion results.

To resolve this problem, we propose a novel multimodal brain image fusion

algorithm based on error texture removal. A two-layer decomposition scheme

is first implemented to generate the high- and low-frequency subbands. We

propose a salient feature detection operator based on gradient di�erence and

entropy. The proposed operator integrates the gradient di�erence and amount

of information in the high-frequency subbands to e�ectively identify clearly

detailed information. Subsequently, we detect the energy information of the

low-frequency subband by utilizing the local phase feature of each pixel as the

intensity measurement and using a random walk algorithm to detect the energy

information. Finally, we propose a rolling guidance filtering iterative least-squares

model to reconstruct the texture information in the low-frequency components.

Through extensive experiments, we successfully demonstrate that the proposed

algorithm outperforms some state-of-the-art methods. Our source code is

publicly available at https://github.com/ixilai/ETEM.

KEYWORDS

brain imaging, multimodal brain image fusion, medical assistance, error texture

elimination, salient feature detection

1. Introduction

Multimodal brain image fusion (MBIF) (Azam et al., 2022) has important clinical

applications, such as tumor segmentation (Zhu et al., 2023), cell classification (Guo et al.,

2016), and neurological studies (Catana et al., 2012), and researchers are increasingly

drawn to it owing to its ability to utilize multimodal information simultaneously, thereby

offering a comprehensive understanding of a particular pathology. The goal of MBIF

is to improve image readability and clarity by integrating complementary information

from images of different modalities. Positron emission tomography (PET), computed

tomography (CT), magnetic resonance imaging (MRI), and single-photon emission CT

(SPECT) are typical medical imaging methods that are useful in medical diagnosis. They

exhibit unique advantages and inherent drawbacks owing to their different mechanisms.
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A plethora of MBIF methods (Kong et al., 2021; Nie et al.,

2021) have emerged in the last few years. They can be classified into

traditional-based and deep learning (DL)-based techniques. Spatial

domain-based (SDB) (Nie et al., 2021) and transform domain-

based (TDB) methods (Ullah et al., 2020; Jie et al., 2022; Li et al.,

2023) are two types of representative traditional-based methods.

TDB methods decompose images into subbands that represent

different aspects of the image and design suitable fusion rules

based on the distinctive characteristics of each component. Finally,

the result is reconstructed by applying the inverse transformation.

For instance, Ullah et al. (2020) devised a non-downsampling

shear wave transform-based MBIF method. This approach aimed

to extract crucial feature information from the source image

and enhance the contrast and fidelity of the fusion outcomes.

By operating at different scales, from coarse to fine levels, the

method can capture significant pixel information. Li et al. (2018)

implemented the task of MBIF in the local Laplace transform (LLP)

domain to solve the problem of color distortion caused by the

fusion process. Furthermore, they introduced generalized intensity-

hue-saturation in LLP to ensure the complete transmission of color

information. Although TDBmethods can obtain good visual effects

owing to their multidirectional and multiscale characteristics, they

generally have high computational complexity and tend to lose

detailed information. SDB methods are used to analyze or calculate

the features of the pixels directly in the source image with high

computational efficiency. However, these methods are prone to

energy loss and residual artifacts during the fusion process, leading

to suboptimal fusion results.

Furthermore, some hybrid-based methods (Du et al., 2020;

Li et al., 2021a,b; Zhu et al., 2022) were proposed. Li et al.

(2021b) proposed a two-layer decomposition model using joint

bilateral filtering, which decomposes brain images into an energy

layer that contains rich intensity information and a structure

layer that reflects structural and detailed information. This model

is computationally efficient and can effectively identify useful

information. Tan et al. (2021) used multilevel edge-preserving

filtering to decompose images into a fine structure, coarse structure,

and basic layers, and they achieved a classification of image

pixels. Zhu et al. (2022) proposed a hybrid image decomposition

model for extracting texture information from source images,

taking advantage of the transform and spatial domains. Li et

al. (2021) combined dynamic threshold neural P systems with a

non-subsampled contourlet transform to develop an MBIF model.

However, these decomposition models (Li et al., 2021; Tan et al.,

2021; Zhu et al., 2022) may not fully capture the pixel information

at different scales and have low computational efficiency when

multilayer decomposition is implemented.

DL-based methods (Amin-Naji et al., 2019; Li X. et al., 2020;

Xu and Ma, 2021) can roughly be classified into non-end-to-

end and end-to-end methods. Typically, non-end-to-end methods

(Amin-Naji et al., 2019; Li J. et al., 2020) leverage only the feature

extraction capabilities of DL to identify relevant information from

disparate source images and create fusion weight maps based

on the extracted features. Additionally, end-to-end methods (Xu

and Ma, 2021; Le et al., 2022; Ma et al., 2022; Xu et al., 2022)

generally perform fusion in an unsupervised manner; they may

dispense with the need for brain image datasets in parameter

debugging, potentially resulting in a loss of detailed information

within the fusion results. Furthermore, the fusion problem is solved

by subjectively defining the features of the fusion process, but this

may also lead to the distortion of some useful information (Xu and

Ma, 2021). To address this problem, Xu and Ma (2021) proposed

a brain image fusion network that can preserve chromaticity

information and texture details in source images. Conventional DL-

based methods often lack consideration of inter-scale information

and input source images into a single network, resulting in the

potential loss of crucial details. To address this limitation, Tang

et al. (2022) proposed an MBIF based on multiscale adaptive

transformers. Fu et al. (2021) introduced a novel multiscale residual

pyramidal attention network to capture multiscale information

in images. This network combines the strengths of both residual

attention and pyramidal attention networks, resulting in enhanced

performance for MBIF tasks. Wang C. et al. (2022) proposed

an unsupervised information gate network for MBIF that can

control the contribution of each encoder feature level to the

decoder. Additionally, a multiscale cross-attention module was

designed to extract salient information at different scales of

the source image. Although deep learning has excellent fusion

performance in the MBIF domain, the lack of high-quality brain

image datasets and over-reliance on the design of loss functions

impose significant limitations on these methods. Moreover, DL-

based methods typically rely on convolutional operations and can

identify locally significant information effectively, but they may be

limited in their ability to retain global information.

Recently, some image three-layer decomposition fusion models

(Du et al., 2020; Li et al., 2021a) have also emerged. Li et al.

(2021a) proposed a three-layer decomposition model based on

sparse representation, in which interval gradient filtering was used

to decompose the low-frequency layer. Du et al. (2020) used

local polar and low-pass filters to decompose each input image

into smooth, texture, and edge layers. Although these models

could improve the finer classification of pixels, there is room for

improvement in their ability to differentiate between basic and

intricate information, and the issue of filter selection remains a

significant challenge.

In summary, several existing methods (Li et al., 2021a,b) only

consider the energy of the pixels when designing fusion rules for

the low-frequency components. Some useful texture information

may be distributed in the low-frequency components with lower

pixel values. The cost of ignoring this useful pixel information is

that false textures are introduced in the fusion results, affecting a

physician’s clinical diagnosis.

In this study, we propose an error texture elimination strategy.

During the fusion of low-frequency components, we prioritize

designing fusion rules based on pixel energy to preserve the

useful energy information from the source images. Because not all

texture information in the low-frequency components is useful, the

erroneous textures should be removed during texture information

fusion. Iterative least squares (ILS) is a recently developed

technique. It can exhibit competing edge-preserving smoothing

capabilities with limited iterations (Liu et al., 2020b). In this

study, we combine rolling guidance filtering (RGF) with ILS and

propose a novel image smoothing model, RGF-ILS. The proposed

RGF-ILS can effectively filter out texture information from the

fused low-frequency components and re-extract the texture in the

low-frequency images for fusion. Moreover, considering variations

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1204263
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li and Li 10.3389/fnins.2023.1204263

in gradient values and image information in high-frequency

components, we propose a salient feature extraction operator

that leverages gradient differences and entropy measures. By

using this operator, we can effectively identify and retain the

most representative detailed textures in the image, resulting in a

high-quality fused image. This study’s primary contributions are

as follows:

1. We propose an MBIF algorithm based on error texture

elimination that can effectively retain useful information while

eliminating the error texture in source images.

2. We propose an image smoothing model, RGF-ILS, which can

effectively separate the energy layer in the fused low-frequency

image; the error texture is obtained by subtracting the energy

layer from the source images.

3. We propose a significant feature extraction operator based

on the gradient difference and entropy that can identify

clear high-frequency details and capture and use the global

information in the high-frequency components effectively.

2. Related works

2.1. Local phase coherence

Blurred images can be interpreted as a loss of local phase

coherence (LPC), and LPC intensity can be used as an indicator

of image clarity. Hassen et al. (2013) developed an LPC-based

algorithm for image sharpness measurement that can effectively

detect large variations in the sharpness of an image. A given

sharpness-evaluated image is passed through a series of log-Gabor

filters with scale N and orientation M. Let Cs,o,k be the complex

coefficient at the o-th orientation, s-th scale, and k-th spatial

location. The LPC strength at the k-th location and o-th orientation

can be computed as follows:

S
{j,k}
LPC =

R
{

∏N
s=1 C

ωs
s,o,k

}

∣

∣

∣

∏N
s=1 C

ωs
s,o,k

∣

∣

∣

(1)

where the real part of a complex number is denoted by R {·}. The
weights are determined based on the magnitude of the first scale

factor, C1,o,k, such that directions with higher energy are assigned

greater weights.

S
{k}
LPC =

∑M
o=1

∣

∣C1,o,k

∣

∣ S
{o,k}
LPC

∑M
o=1

∣

∣C1,o,k

∣

∣+ V
(2)

where V is a constant. The set of S
{k}
LPC values obtained at all

locations form a spatial LPC map that reflects the information of

pixels with significant sharpness variations in the input image. Give

an input image, f , we denote the operation of obtaining LPC maps

from LPC intensity measurements as

SFP = LPC
(

f
)

(3)

where SFP represents the output salient feature map, LPC (·) is the
obtained LPC intensity measurement operation, and f is the input

source image. Refer to Hassen et al. (2013) for further information

regarding LPC.

2.2. ILS

Edge-preserving filters (Mo et al., 2021; Yao et al., 2022;

Zhang and He, 2022) have attracted increasing attention in

the field of image processing in recent years because they can

preserve different hierarchies while smoothing images. As edges

generally contain important image information and represent

large differences between the local pixels of an image, the

main purpose of an edge-preserving filter is to preserve high-

contrast edges and remove low-contrast or subtle variations in

the edge detail. The details and texture information are extremely

important for the description of lesions in brain image fusion,

and the introduction of errors or omission of certain textures may

cause difficulties in diagnosis. Therefore, the effective extraction

of details and texture information from brain images is an

important task.

Liu et al. (2020b) proposed an image smoothing filter based

on ILS that can effectively achieve image smoothing and edge

preservation. The filter involves the minimization of the following

objective functions:

E(u, f ) =
∑

s
((us − fs)

2 +
∑

∗∈{x, y}
φp(▽ u∗, s)) (4)

where u is the output result, s is the pixel position, and

∇u∗
(∗ ∈

{

x, y
})

represents the gradient of u along the x-axis/y-

axis. The penalty function, φp (·), is defined as

φp (x) =
(

x2 + ε
)

p
2 (5)

Similar to that in Liu et al. (2020b), and constant ε is set to 0.0001 in

this study. The norm power, p, is set to 0.8 in this study. According

to Liu et al. (2020b), (4) can be rewritten as

un+1

=argmin
u

∑

s

(

(

us − fs
)2+λ

∑

∗∈{x,y}
1
2

(√
c∇u∗,s− 1√

c
µn
∗,s

)2
)

(6)

where c = pǫp/2 > 1 and n represents the number

of iterations and is set to 3 in this study. Furthermore,

µn
∗ ,s is the optimal condition, which can be defined

as follows:

µn
∗ ,s = c∇un∗ ,s − p∇u∗ ,s

(

(

∇un∗ ,s
)2 + ε

)

p
2−1

,∗ ∈
{

x, y
}

. (7)

Each iteration in Eq. (6) is a least-squares problem, and u is

calculated iteratively; thus, Eq. (6) can be expressed as ILS. We use
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the Fourier transform (FT) and inverse FT (IFT) to solve Eq. (6),

as follows:

un+1

= F−1





F(f )+ λ
2

(

F(∇x)

)

·F(µn
x)+

(

F(∇y)

)

·F
(

µn
y

)

F(1)+ c
2 ·λ
(

F(∇x)

)

·F(µn
x)+

(

F(∇y)

)

·F
(

µn
y

)



 , (8)

where F (·) and F−1 (·) represent the Fourier transform (FT) and

inverse FT, respectively. F (·) denotes the complex conjugate of

F (·), while F (1) denotes the FT of the delta function. Refer to Liu

et al. (2020b) for more details on ILS.

3. Proposed method

The schematic diagram of the proposed MBIF is shown

in Figure 1, which involves three steps: image decomposition,

subband fusion, and error texture removal and fusion result

reconstruction. First, a low-pass filter comprising discrete gradient

operators is used to decompose the source image; then, different

fusion rules are designed to fuse the different subbands. Moreover,

we propose a new saliency measurement operator to effectively

detect the significant detailed information in the high-frequency

components. After obtaining the low-frequency fusion result,

the proposed RGF-ILS model is used to filter the texture

information in the fused low-frequency image and re-extract

useful texture information to construct the final fusion result.

Figure 1 depicts the anatomical brain image fusion example;

the anatomical and functional brain image fusion is outlined

in Section 3.4.

3.1. Image decomposition

We first decompose the source images by solving the following

optimization function:

argmin
f lt

∥

∥

∥
ft − f lt

∥

∥

∥

2

F
+ β

(

∥

∥

∥
ga ∗ glt

∥

∥

∥

2

F
+
∥

∥

∥
gb ∗ glt

∥

∥

∥

2

F

)

, (9)

where ft is the t-th source image and f lt represents its low-

frequency layer. The operators ga = [−1, 1] and gb =
[−1, 1]T are the gradient operations in the vertical and horizontal

directions, respectively, and ∗ denotes the convolution operation.

Our study adopts a regularization parameter, β , value of 3.

Equation (9) can be expressed as a Tikhonov regularization term.

Because it relies solely on the F-parameter, this objective function

can be efficiently solved in the discrete Fourier domain. Next,

the high-frequency components are obtained by applying the

following formula:

f ht = ft − f lt . (10)

3.2. Subband fusion

Figure 2 depicts the normalized intensity changes in different

image components. Specifically, the low-frequency subband

exhibits a slow change in the pixel intensity and is smoother

compared with the source image but can maintain the most

intensity information. By contrast, the high-frequency subband

represents the detailed information, corresponding to the part

where the pixel intensity values change faster and the pixel

intensity values are smaller. Therefore, different fusion rules should

be designed for different subbands to effectively retain useful

information. If inappropriate fusion rules are adopted, residual

artifacts, an excessive contrast level, and color distortion will appear

in the fusion results. In this study, we propose different rules to

fuse the subbands according to their respective characteristics. The

specific process is outlined as follows.

3.2.1. High-frequency subband fusion
The parts of the source image with more drastic gradient value

changes correspond to the clear details of the image, whereas

the entropy of the image reflects the amount of information that

is contained therein. When the number of clear details in the

high-frequency components is high, the entropy value is large.

Therefore, inspired by Tai and Brown (2009), a new fusion

rule based on the gradient difference and entropy are proposed

to capture the clear details and fuse the high-frequency subbands,

as follows:

GEt
(

i, j
)

=
max

∣

∣

∣
∇f ht

(

i
′
,j
′)∣
∣

∣
×Ct

max
{

max
∣

∣

∣
∇f ht

(

i
′
,j
′
)
∣

∣

∣

}

−min
{

min
∣

∣

∣
∇f ht

(

i
′
,j
′
)
∣

∣

∣

} , (11)

where
(

i
′
, j

′
)

∈ N
(

x, y
)

is the neighborhood of
(

i, j
)

; we set N
(

x, y
)

to be a local window of size ψ × ψ , and Ct is expressed as

Ct =
(

max ft

(

i
′
, j

′
)

−min ft

(

i
′
, j

′
))

× e
0.3×Emax

∣

∣

∣
∇f ht

(

i
′
,j
′)∣
∣

∣

, (12)

where Emax

∣

∣

∣
∇f ht

(

i
′
, j

′
)
∣

∣

∣
denotes the entropy of max

∣

∣

∣
∇f ht

(

i
′
, j

′
)
∣

∣

∣
.

In this manner, when numerous clear details are contained in the

high-frequency components, the entropy is high, and a large weight

is obtained in the GEt . Finally, the high-frequency fusion result is

obtained after determining the decision map of the high-frequency

components by comparing the pixel value size:

FH =
T
∑

t

f ht ×HMPt (13)

where

HMPt
(

i, j
)

=

{

1, if argmax
t

{

GE1
(

i, j
)

,GE2
(

i, j
)

, ...,GEt
(

i, j
)

, ...
}

0, otherwise.

(14)
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FIGURE 1

Framework of the proposed method.

FIGURE 2

Intensity changes in the source image and the corresponding high- and low-frequency components.

3.2.2. Low-frequency subband fusion
3.2.2.1. Initial decision map acquisition

The energy information of an image, such as its brightness and

contrast, is generally concentrated in the low-frequency subbands.

In general, pixel points with higher energy have larger pixel values.

Therefore, a preliminary low-frequency fusion decisionmap (LMP)

can be produced by comparing pixel values across various low-

frequency subbands:

LMPt =







1, if argmax
t

{

f l1, f
l
2, ..., f

l
t , ...

}

0, otherwise.
(15)

The output of the low-pass filter typically results in a blurred

and smooth image. This blurring can be interpreted as a reduction

in high-frequency energy, a reduction in contrast, or an extension

of the edge width. As such, the blurred visual perception can

be considered a loss of LPC. Therefore, LPC intensity can be

introduced as a measure of significant information in the image

(Hassen et al., 2013). Consequently, we introduce an image

sharpness evaluation algorithm based on LPC to extract the

brightness information in low-frequency images, as follows:

SFPt = LPC
(

f lt

)

. (16)
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Then, decision map SMP is obtained by comparing the pixel

value size:

SMPt =

{

1, if argmax
t

{SFP1, SFP2, ..., SFPt , ...}

0, otherwise.
(17)

As the LPC-based algorithm can only identify the pixel points with

a large variation in sharpness, the remaining valid pixel points are

obtained by comparing the sizes of the pixel values in the source

image and generating decision map SLMP:

SLMPt =

{

1, if argmax
t

{

f1, f2, ..., ft , ...
}

0, otherwise.
(18)

Finally, we propose a pixel selection rule to integrate the significant

pixel points that are identified in SMP and SLMP to obtain a

decision map TLMP.

TLMPt =

{

1, SLMPt
(

i, j
)

= 1 and SMPt
(

i, j
)

= 0

SLMP
(

i, j
)

, otherwise.
(19)

3.2.2.2. Final decision map acquisition

Step 1. Image smoothing

A guided filter (GF) is used to smooth the LMP and TLMP

obtained earlier.

GMPA = GF
(

f1, LMP1, r, ς
)

(20)

GMPB = GF
(

f1,TLMP1, r, ς
)

, (21)

where GF (·) denotes the guided filtering operation (Sasidharan

et al., 2015), GMPm represents the output of the guided filter, and

r and ς indicate the spatial and range weights and are set to 5 and

0.3, respectively.

Step 2. Decision map optimization

After GMPA and GMPBare obtained, the random walk (RW)

(Yao et al., 2022) is used to combine the two decision maps to

generate the final low-frequency decision map (i.e., to extract the

representative energy feature information in the low-frequency

subbands so that robust fusion can be achieved).

To begin, weights for the edges connecting the node xi and seed

Sk (denoted as yik) and for the edges connecting adjacent nodes xi
and xj (denoted asωij) need to be assigned. Similar to Grady (2006),

we set ωij to

ωij = exp

(

−
(

gi − gj
)2

σ 2

)

, g = f1 (22)

where g is the source image f1, and σ is set to 0.1 in this study.

Furthermore, yim can be defined as

yim =











GMPim, GMPim > 0.8

1− GMPim, GMPim < 0.2

0, otherwise,

(23)

where m = {A,B} and GMPim denotes the intensity value of pixel

i in GMPm. According to the foregoing analysis, pixels with the

largest or smallest intensity values are more likely to be selected for

the final decisionmap. Therefore, we set yim = GMPim whenGMPim
is greater than 0.8 (GMPm is normalized to [0,1]), yim = 1−GMPim
when GMPim is <0.2, and yim = 0 when GMPim is between 0.2

and 0.8.

According to Grady (2005), Shen et al. (2011), and Ma et al.

(2017), to obtain the unknown probabilities umX , it is necessary to

minimize the energy function given below:

Jm =
(

um
)T

Lum. (24)

According to Grady (2005), solving for the probability of reaching

the seed SA for the first time and determining whether the estimated

decision map based on the estimated probability is possible:

M (xi) =

{

GMPA (xi) , uAX (xi) > 0.5

GMPB (xi) , otherwise.
(25)

Step 3. Final decision map acquisition

Finally, by evaluating the consistency between the center pixel

and surrounding pixels, we can delete the incorrect pixels to obtain

the final low-frequency fusion decision map, FLMP:

FLMP
(

i, j
)

=

{

1, if
∑

(a,b)∈8 FM
(

i+ a, j+ b
)

≥ 8
2

0, otherwise,
(26)

where 8 is a square field centered at
(

i, j
)

with size 9 × 9. Then we

can construct the fused low-frequency subband, FL, based on the

final low-frequency decision map, FLMP :

FL = f l1 × FLMP + f l2 × (1− FLMP) . (27)

Although the low-frequency fusion results that are obtained at this

point can effectively retain the useful information in the source

image, a small fraction of useful image texturesmay appear in places

where the pixels are not very active and are overlooked during the

fusion process, thereby introducing erroneous texture information.

A small part of the texture may form an important basis for doctors’

diagnoses of brain images. Thus, the texture information in the FL

is reconstructed to remove the pixel information that is misjudged

as correct.

3.3. Error texture removal and
reconstruction of fusion results

In the fusion of low-frequency subbands, popular brain

image fusion algorithms (Li et al., 2021b; Huang et al., 2022;

Wang G. et al., 2022; Zhang et al., 2022) prioritize retaining

as much energy information as possible in the low-frequency

components, often disregarding the residual texture information

present in these components. Furthermore, the texture and detailed
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information are fused with the energy information. However,

certain algorithms (Li et al., 2021b; Zhang et al., 2022) design

fusion rules for the low-frequency subbands based on energy or

contrast and do not specifically target the residual texture details

therein. Therefore, some incorrect textures may appear in the low-

frequency component fusion, and some useful information may be

lost, resulting in reduced image contrast and sharpness.

We propose an error texture removal strategy based on RGF-

ILS to solve the aforementioned problems and avoid the influence

of error texture information on the fusion results. This model

can filter the texture information present in the low-frequency

components of the fusion without affecting the distribution of the

energy information.

3.3.1. Error texture removal
3.3.1.1. Proposed RGF-ILS

Liu et al. (2020a) developed an image smoothing filter for

edge preservation by embedding edge retention filtering into the

least-squares model. The RGF (Qi et al., 2014) can effectively

remove the gradients with small changes in the gradient map and

retain the large gradients that reflect significant pixel changes.

Furthermore, the RGF can automatically refine the edges with

a rolling mechanism to retain large-scale structural information

optimally compared with the edge-preserving filter that was used

in Liu et al. (2020a). Inspired by Liu et al. (2020a), we propose

the RGF-ILS model to effectively combine the advantages of edge-

preserving filters with those of the ILS model presented earlier.

Letting p and q index the pixel coordinates in the image, we express

the RGF as

Jη+1
(

p
)

= 1
Kp

∑

q∈N(p) exp

(

−‖p−q‖2
2σ 2s

− ‖Jη(p)−Jη(q)‖
2σ 2r

)

I
(

q
)

, (28)

where

Kp =
∑

q∈N(p)

exp

(

−
∥

∥p− q
∥

∥

2

2σ 2
s

−
∥

∥Jη
(

p
)

− Jη
(

q
)
∥

∥

2σ 2
r

)

, (29)

in which Jη+1
(

p
)

is the result in the η-th iteration, and η is

the number of iterations and is set to 2 in this study. Moreover,

I is the input image, and σs and σr control the spatial and range

weights and are set to 10 and 0.008, respectively. N
(

p
)

is the set

of neighboring pixels of p. In this study, FRGF (I, σs, σr , η) is used

to represent the RGF operation. Subsequently, we embed the RGF

into the ILS model and rewrite Eq. (7) as

µn
∗ ,s = c∇Hn

∗ ,s − p∇H∗ ,s

(

(

∇Hn
∗ ,s

)2 + ε
)

p
2−1

,∗ ∈
{

x, y
}

, (30)

where

Hn
∗ ,s = FRGF

(

un∗ ,s, σs, σr , η
)

. (31)

As illustrated in Figure 3, the proposed RGF-ILS model can

effectively smooth the texture and details in the image and retain

the edges with significant changes.

3.3.1.2. Texture information reconstruction

First, we use the RGF-ILS model to filter out the texture

information in the FL and obtain the filtered low-frequency

subband, FL.

Subsequently, the difference between the low-

frequency subband, f lt , and FL is determined to extract the

texture information:

TEt = f lt − FL. (32)

At this point, not all the acquired texture information, TEt ,

is useful. Thus, we use the pixel values of the different texture

maps to consider whether the texture information is required, i.e.,

to compare the pixel value size for obtaining the texture decision

map, TMP:

TMPt =

{

1, if argmax
t

{TE1,TE2, ...,TEt , ...}

0, otherwise.
(33)

The final fused texture component, denoted as FT, can be obtained

based on the TMP:

FT = TE1 × TMP + TE2 × (1− TMP) . (34)

3.3.2. Reconstruction of fusion results
After obtaining the high-frequency fusion result, FH, texture

fusion result, FT, and filtered low-frequency component, FL, we can

reconstruct the final fusion result F:

F = FH + FT + FL. (35)

As illustrated in Figure 4, if the FL and FH are summed to

obtain the initial fusion result, IF, that is,

IF = FL+ FH. (36)

The fusion results may lead to a loss of some useful detailed

information. The red boxes in the last column in Figure 4

contain incorrect texture information, and a decrease

in contrast and loss of energy information occurs. The

proposed method effectively eliminates error texture, restores

image contrast, and achieves higher-quality fusion results

[see Figure 4 (F)].

3.4. Fusion of anatomical and functional
brain images

For anatomical and functional image fusion tasks, we

convert color images into YUV color space, where Y channels
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FIGURE 3

Smoothing example of the proposed RGF-ILS model. The input image is on the (left), and the output image is on the (right).

FIGURE 4

Experimental results of error texture removal strategy. Left to right: MRI image, CT image, fused low-frequency subbands, initial fusion results, final

fusion results, and error texture frequency.

represent brightness and U and V channels describe color and

saturation, respectively.

4. Experiments

Extensive experimental analyses and comparisons are

conducted to verify the effectiveness of the proposed algorithm.

In the following sections, we abbreviate the proposed algorithm

as ETEM.

4.1. Experimental setup

4.1.1. Comparison methods
Nine representative state-of-the-art methods are compared

in our experiment, which are as follows: TDSR (Li et al.,

2021a), MLMG (Tan et al., 2021), JFBM (Li et al., 2021b),

LRD (Li X. et al., 2020), U2Fusion (Xu et al., 2022), EMFusion

(Xu and Ma, 2021), MATR (Tang et al., 2022), MSRPAN (Fu

et al., 2021), and SwinFusion (Ma et al., 2022). Among them,

U2Fusion and SwinFusion are general methods; the remaining
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comparison methods are designed for brain image fusion, thereby

making the comparison experiment targeted and fair. Moreover,

the parameters of all comparison methods are set exactly as

recommended in the relevant literature.

4.1.2. Dataset and experimental platform
The popular publicly available dataset from the Harvard

Medical School database1 is used as the dataset; it contains 300

sets of alignedmultimodal brain images. These source images cover

three multimodal brain image fusion tasks: CT-MRI, PET-MRI,

and SPECT-MRI.

The experiment for testing the proposed method and nine

comparisonmethods is conducted on a computer equipped with an

AMD Ryzen 5 4600H Radeon graphics processor and an NVIDIA

GeForce GTX 1650 graphics card.

4.1.3. Evaluation metrics
Eight objective evaluation metrics are used to comprehensively

evaluate the quality of the experimental results. The metrics are the

normalized mutual information (QMI), Piella metric (QS), Chen–

Blum metric (QCB), non-linear correlation information entropy

(QNCIE) (Liu et al., 2012), average gradient (AG) (Cui et al., 2015),

structural similarity index (SSIM) (Wang et al., 2004), spatial

frequency (SF) (Zheng et al., 2007), and peak signal-to-noise ratio

(PSNR) (Zhang, 2022). QMI measures the mutual information

between the source and fused images. QNCIE evaluates the retained

non-linear correlation information entropy in the fused image.

QCB can evaluate the fused image from the perspective of visual

salience. The SSIM metric evaluates the similarity in structure

between the fused and source images, considering luminance,

contrast, and structural information. The SF measures the spatial

sharpness of the fused image by calculating the row and column

frequencies. Moreover, a higher objective index score indicates a

better fusion result. The combined use of these metrics allows for a

comprehensive and objective assessment of fusion results.

4.2. Parameter analysis

In this algorithm, two important parameters are the

regularization parameter, β , in Eq. (13) and parameter ψ in

Eq. (15) that controls the window size. In our experiments, 10

pairs of CT-MRI images are selected to determine the settings of

these two parameters. Initially, the fixed parameter, ψ , is 2. The

mean objective evaluation scores of the fused images for β∈[2,
3, 4, 5, 6, 7, 8] are displayed in Table 1, where the highest scores

for each indicator are bolded. As indicated in Table 1, the scores

of QMI, QNCIE, QS, QCB, and SSIM continue to increase as β

decreases, whereas the scores of AG, SF, and PSNR are reversed.

Therefore, considering the comprehensiveness of the performance

of the proposed algorithm on each metric, we set the value of the

regularization parameter, β , to 3.

The fusion results corresponding to different values of

parameter ψ when β is fixed to 3 are depicted in Figure 5. Upon

1 http://www.med.harvard.edu/aanlib/home.html.

closer inspection of Figure 5, it becomes apparent that the proposed

fusion algorithm suffers from a loss of organ structure information

in the source image, particularly in the form of black dots within

the white brightness area of the MRI map, as the window size is

increased. To obtain a comprehensive understanding of the impact

of various parameter values, we conducted a series of quantitative

comparison experiments. The mean objective evaluation scores

of the fused images across different parameter values of ψ are

reported in Table 2, revealing that the optimal scores are obtained

when ψ is set to 3. This parameter value yields superior fusion

performance while retaining detailed information in the source

image, as supported by both subjective and objective evaluations.

Consequently, we set ψ to 3 in our proposed algorithm.

4.3. Ablation experiments

We develop a new operator based on the gradient difference

and entropy to effectively capture the clear details in the

high-frequency components and extract the significant pixel

information. We conduct an ablation study to verify whether this

method could effectively improve the fusion performance of the

proposed algorithm. We randomly selected 20 pairs of source

images from the CT-MRI fusion task and compared them with

three popular fusion rules based on salient feature measures. These

fusion rules replaced the original rule in the proposed algorithm

to form new comparison methods (A-ETEM, B-ETEM, and C-

ETEM), as described in the following.

4.3.1. A-ETEM
In A-ETEM, we use the energy of Laplacian (EOL) (Huang and

Jing, 2007) as a feature extraction algorithm for the high-frequency

components. The EOL uses the Laplace operator to analyze the

high spatial frequencies that are associated with the sharpness of

image boundaries. We replace the original high-frequency fusion

rule in the proposed algorithm with the EOL and use it to measure

the significant pixel information in the high-frequency component;

that is, Eq. (15) is rewritten as

GEt
(

i, j
)

= EOL
(

f ht
(

i, j
)

,ϑ
)

, (37)

where EOL (·) denotes the EOL detection operator (Huang and

Jing, 2007) and ϑ is the size of the Gaussian filter, which we set

to 5 in our experiments.

4.3.2. B-ETEM
In B-ETEM, we employ the sum-modified Laplacian (SML) (Li

et al., 2022) as a feature extraction algorithm for the high-frequency

components; it introduces a modified Laplacian that avoids the

cancelation of second-order derivatives with opposite signs in the

horizontal and vertical directions. In this algorithm, Eq. (15) is

rewritten as

GEt
(

i, j
)

= SML
(

f ht
(

i, j
)

, υ
)

, (38)
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TABLE 1 Objective evaluation results for di�erent parameter values.

β QMI QNCIE QS QCB AG SSIM SF PSNR

2 0.9086 0.8076 0.8543 0.6576 9.2653 0.7375 39.1295 13.4223

3 0.9008 0.8075 0.8517 0.6560 9.5480 0.7329 40.0730 13.5000

4 0.8942 0.8075 0.8484 0.6542 9.7600 0.7289 40.8056 13.5621

5 0.8883 0.8074 0.8452 0.6524 9.9282 0.7255 41.4098 13.6115

6 0.8823 0.8074 0.8421 0.6510 10.0746 0.7226 41.9536 13.6528

7 0.8771 0.8073 0.8393 0.6495 10.1967 0.7200 42.4087 13.6865

8 0.8721 0.8073 0.8366 0.6480 10.3015 0.7177 42.8184 13.7161

FIGURE 5

Fusion results corresponding to di�erent values of parameter ψ .

TABLE 2 Objective evaluation results for di�erent parameter values.

ψ QMI QNCIE QS QCB AG SSIM SF PSNR

2 0.9008 0.8075 0.8517 0.6560 9.5480 0.7329 40.0730 13.5000

3 0.9071 0.8075 0.8565 0.6610 9.6219 0.7338 40.0225 13.4444

4 0.9074 0.8074 0.8570 0.6661 9.4311 0.7336 39.4157 13.3802

5 0.9078 0.8074 0.8567 0.6700 9.2148 0.7331 38.9033 13.3183

6 0.9044 0.8073 0.8541 0.6725 8.9324 0.7326 38.4063 13.2695

7 0.9016 0.8072 0.8520 0.6733 8.7478 0.7322 38.0730 13.2429

where SML (·) represents the SML measurement operator (Li et al.,

2022) and υ determines the window size, which is set to 5 in

this study.

4.3.3. C-ETEM
The gradient feature can be computed as the first-order

directional derivative, quantifying the variation between pixels. In
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TABLE 3 Quantitative comparison of ETEM with A-ETEM, B-ETEM, and C-ETEM on CT-MRI fusion task.

Methods QMI QNCIE QS QCB AG SSIM SF PSNR

A-ETEM 0.9472 0.8074 0.8652 0.6936 8.2248 0.7621 36.5920 13.9159

B-ETEM 0.9328 0.8073 0.8607 0.6929 7.6070 0.7602 34.8062 13.9095

C-ETEM 0.9393 0.8073 0.8575 0.6876 8.1501 0.7599 36.7950 13.9627

ETEM 0.9565 0.8074 0.8662 0.6945 8.1543 0.7622 36.6675 13.9414

C-ETEM, we use the structure tensor (STO) (Wang and Wang,

2020) as an algorithm for local feature detection to measure the

information of pixels with high activity levels in the high-frequency

components. That is, Eq. (15) is rewritten as

GEt
(

i, j
)

= STO
(

f ht
(

i, j
)

)

, (39)

where STO (·) represents the STO measurement operator (Wang

and Wang, 2020).

Table 3 presents the quantitative comparison results of the

three methods, where the maximum values of all metric scores

are highlighted in bold. The proposed algorithm outperforms

the other two methods by achieving the highest scores for five

metrics. In the proposed algorithm, we assign a higher weight

to clear details compared with structural information with lower

pixel values and consider the level of activity of each pixel based

on a combination of the gradient difference and entropy values,

resulting in the best scores in the information theory-basedmetrics.

Despite not obtaining the highest scores in the AG, SF, and PSNR

metrics, the proposed algorithm still achieved a relatively high

ranking, securing the second-highest score among all methods.

In summary, compared with the current popular image feature

detection algorithms, the proposed measurement method exhibits

superior performance, effectively improve the accuracy of pixel

activity detection, and retains clear high-frequency information.

4.4. Analysis of anatomical brain image
fusion results

Figure 6 shows examples of the fusion of five sets of CT

and MRI images, with two local areas enlarged to demonstrate

the extent to which the different methods retain texture detail

and energy information. Ideally, the fused CT and MRI images

should retain the skeletal portion of the CT image and the

texture information in the MRI image. As illustrated in Figure 6,

JFBM, TDSR, LRD, MLMG, MSRPAN, and SwinFusion methods

can extract the skeletal part of the source image effectively

and maintain good contrast and illumination. However, residual

artifacts at the boundary between the brain tissue and the skull

are evident in JBFM, leading to a loss of tissue information

in the fusion results. This is because the JBFM method fuses

the high and low frequencies of an image through a decision

map. Nonetheless, to achieve visually pleasing results for pixels

at the boundaries, it may be necessary to combine pixels from

different source images. By contrast, the TDSR method can obtain

better fusion at the boundary, but the sparse encoding generally

has high computational complexity, which makes the method

inefficient. Furthermore, the TDSR and MSRPAN methods have

a limited ability to identify certain bones with small areas, and

some brightness information can be lost. Although the LRD and

SwinFusion methods can effectively identify the bone information

in the CT images, they have insufficient ability to extract certain fine

brain tissue features and texture loss occurs. Although the MLMG

method can hardly identify the texture details of brain tissue from

the MRI images, it is superior to the aforementioned methods

in the extraction of bone luminance information. The EMFusion,

U2Fusion, and MATR methods have strong detail perception but

perform poorly in maintaining image contrast. For example, the

contours in the CT image in Figure 6 are visually white and show

the skull, yet all three methods lose plenty of energy information.

The ETEM method is salient among its counterparts as it excels

in retaining the skeletal luminance information and preserving

the intricate texture details of the brain tissue. This notable

performance can be attributed to the innovative error texture

removal strategy proposed in our approach, which effectively

mitigates the loss of intricate details in the fusion process and

ensures a balanced and visually appealing contrast in the resulting

fused images. In a comprehensive comparison with nine state-of-

the-art image fusion methods, the ETEM method emerges as the

top performer by effectively preserving and seamlessly integrating

the complementary information extracted from multiple source

images.

Moreover, to showcase the exceptional capability of the

proposed algorithm in preserving the complementary information

derived from diverse source images, a comprehensive quantitative

comparison is conducted with nine state-of-the-art image fusion

techniques, and the results are presented in Table 4. The table

features the average scores of all methods for eight evaluation

metrics in the CT-MRI fusion task, with the top-performing metric

for each method highlighted in bold and the second-best score

indicated in red. The proposed algorithm achieves the best scores

in three metrics, namely, QCB, AG, and SF, which demonstrate that

the proposed algorithm performs the best in retaining source image

information and extracting useful features. Moreover, the fused

images that are obtained contain more image details and image

contrast, as well as higher definition, than those obtained using

the comparison methods. Furthermore, the proposed algorithm

achieves high scores in the QMI, QNCIE, and QS metrics. As the

proposed algorithm adds an error texture elimination step at the

end, some pixel information that is identified as useless in the image

may have been lost, resulting in suboptimal performance in the

SSIM metric. In summary, the proposed algorithm can achieve
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FIGURE 6

Qualitative comparison of di�erent methods on five CT and MRI image pairs.

better fusion results than the nine state-of-the-art comparison

methods for CT-MRI fusion tasks and effectively avoid the loss of

details and reduction in sharpness.

4.5. Analysis of functional brain image
fusion results

Figure 7 illustrates six sets of classical multifunctional brain

images and their respective fusion results. We divide the fusion

task into the PET-MRI and SPECT-MRI image fusion tasks. As

illustrated in Figure 7, relatively satisfactory fusion performance

is obtained for all methods. The LRD method exhibits significant

color distortion in both fusion tasks owing to its limited ability to

capture metabolic information in PET and SPECT. However, it still

has a strong ability to extract significant features and retain detailed

brain tissue information in MRI maps. The MLMG and MSRPAN

methods tend to excessively retain functional information from

PET and SPECT images, resulting in the potential loss of textural

details in MRI images. This can lead to a reduction in spatial

resolution and the omission of crucial information regarding

internal brain tissues. Consequently, the accurate visualization of

structural information and the detection of soft tissue lesions may

be compromised, negatively impacting the physician’s ability to

make accurate diagnoses and informed decisions. Addressing this

limitation is crucial to ensuring the effectiveness of the fusion

method in facilitating comprehensive and precise assessments of

brain tissue characteristics. The JFBM, TDSR, EMFusion, and

MSRPAN methods exhibit superior performance in extracting

valuable information from diverse source images while preserving

a satisfactory level of contrast. However, despite their strengths,

these methods have certain limitations in capturing intricate

tissue details and may encounter challenges in preserving fine-

grained information, leading to some degree of detailed loss in

the fusion results. Although this phenomenon does not appear in

the U2Fusion method, the inability of the U2Fusion method to

maintain a similar contrast to that of the other algorithms and

to extract the skeletal part of the patient would make clinical

diagnosis more difficult for physicians. TheMATRmethod exhibits

constrained efficacy in extracting luminance information from CT

maps, resulting in the loss of certain luminance details. Similarly,

the SwinFusion method displays limited sensitivity toward color

information, leading to a diminished capacity to interpret the

structural characteristics of brain tissue within the fusion results.

In summary, the ETEM approach outperforms the state-of-the-

art image fusion algorithms in extracting metabolic information

from the functional images and tissue information from the MRI

images. This tight integration of medical imaging and advanced

fusion techniques has the potential to enhance clinical diagnosis,

treatment planning, and patient care in various medical disciplines.

Table 4 illustrates the outcomes of our proposed algorithm

when compared with nine state-of-the-art image fusion methods

on the PET-MRI and SPECT-MRI fusion tasks. These tables contain
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TABLE 4 Quantitative comparison of ETEM with nine state-of-the-art methods on three di�erent modal fusion tasks.

Fusion
task

Methods QMI QNCIE QS QCB AG SSIM SF PSNR

CT-MRI JFBM 0.9277 0.8071 0.8190 0.6773 6.9302 0.7510 31.6202 13.2905

TDSR 0.7995 0.8064 0.8433 0.6676 6.5686 0.7676 32.1818 13.5705

LRD 0.7376 0.8058 0.7888 0.6267 6.4320 0.7388 29.3443 13.0585

MLMG 0.8285 0.8064 0.7617 0.6645 5.5577 0.7521 31.0319 13.6790

EMFusion 0.7903 0.8063 0.8039 0.6726 4.8595 0.7737 19.0622 14.9099

U2Fusion 0.6663 0.8052 0.3471 0.2970 5.2793 0.2602 19.3021 15.2920

MATR 0.8795 0.8071 0.3099 0.3254 4.8469 0.2135 16.1553 13.0572

MSRPAN 1.1591 0.8095 0.7655 0.6482 5.3459 0.6793 26.8027 13.2653

SwinFusion 0.8469 0.8064 0.8517 0.6778 6.8141 0.7162 32.7595 13.2583

ETEM 0.9577 0.8073 0.8394 0.6800 7.4876 0.7646 35.8190 13.3587

PET-MRI JFBM 0.9987 0.8142 0.9057 0.6320 10.8727 0.7091 34.5970 12.4060

TDSR 0.9112 0.8122 0.9156 0.6186 10.5378 0.7137 34.2932 12.4426

LRD 0.2439 0.8031 0.2452 0.3930 9.0412 0.3180 27.6335 8.3179

MLMG 0.6687 0.8065 0.7972 0.5993 9.7174 0.6699 33.4689 13.3932

EMFusion 0.6788 0.8084 0.9044 0.6085 10.0048 0.7178 31.7794 13.4129

U2Fusion 0.5727 0.8054 0.3251 0.3554 3.7092 0.2200 11.0752 10.9790

MATR 07525 0.8116 0.5347 0.3509 9.1313 0.2964 28.0414 13.0674

MSRPAN 0.9407 0.8113 0.8271 0.5634 10.0005 0.6064 34.7505 12.5030

SwinFusion 0.6935 0.8099 0.5935 0.3810 11.4276 0.3314 35.0481 12.1724

ETEM 1.0052 0.8142 0.9073 0.6270 10.8472 0.7126 34.6997 12.4044

SPECT-

MRI

JFBM 1.0845 0.8138 0.9144 0.6734 6.5685 0.7317 20.5689 17.7976

TDSR 1.0050 0.8123 0.9192 0.6565 6.3923 0.7338 20.1062 17.8877

LRD 0.7380 0.8081 0.8859 0.5723 6.2103 0.7099 19.9200 17.2815

MLMG 0.6789 0.8060 0.8220 0.6109 4.9038 0.7255 15.8330 19.0321

EMFusion 0.7658 0.8080 0.9081 0.6243 5.5781 0.7500 17.7158 19.1996

U2Fusion 0.6648 0.8057 0.3626 0.3200 3.2091 0.2490 10.2598 15.0841

MATR 0.8156 0.8103 0.5059 0.3350 5.5925 0.2489 17.4157 17.8516

MSRPAN 1.0519 0.8115 0.8460 0.5739 5.3821 0.5679 18.7914 18.3071

SwinFusion 0.7904 0.8099 0.5543 0.3745 6.7181 0.2892 21.0548 17.3384

ETEM 1.0921 0.8136 0.9153 0.6691 6.4476 0.7354 20.3480 17.8147

the average scores of each method in different metrics, providing

a comprehensive analysis of their performances. Our algorithm

achieved high scores in the QMI, QNCIE, and SF metrics, signifying

its capability to extract valuable pixel information from the source

image while preserving a superior level of clarity. This indicates the

effectiveness of our proposed method in retaining critical details

from different modalities. Moreover, the proposed algorithm scores

among the highest in the QS, QCB, and AG, which demonstrate

that our method can generate visually superior fusion results that

identify the significant pixel information in the images. Notably,

the JFBM, TDSR, and SwinFusion methods also perform very

well in the PET-MRI fusion task. These methods obtain overall

high-quality fusion results even if they cannot effectively identify

small areas of detailed brain tissue. Table 4 indicates that the

proposed algorithm achieves better results for most metrics because

it can effectively identify the metabolic and blood flow information

in the functional images and effectively extract the brain tissue

information in the MRI images. In conclusion, the qualitative

analysis indicates that the proposed algorithm can effectively

prevent color distortion, residual artifacts, and detail loss while

attaining the highest fusion performance compared to the nine

state-of-the-art methods.
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FIGURE 7

Qualitative comparison of di�erent methods on six functionality image pairs.

5. Conclusion

This study proposed an MMIF method based on error texture

removal. We establish a significant feature extraction operator

based on the gradient difference and entropy that can effectively

detect the prominent detailed information in the high-frequency

subbands. Moreover, we introduce LPC and RW for the fusion

of the low-frequency components to detect the pixel information

with large energy while preserving the energy regions in the

source image. Considering some useful texture information may be

distributed in pixels with low energy values, we propose an error

texture removal scheme to fuse the texture information using the

developed RGF-ILS.

Experiments proved that the proposed method yields better

fusion performance than some state-of-the-art methods and

can offer comprehensive pathological information and precise

diagnosis. The fusion of different modalities of brain images

can extract complementary information and facilitate improved

visualization and interpretation of brain abnormalities, such as

tumors, lesions, and neurodegenerative diseases. Moreover, MBIF

technology improves the accuracy and reliability of diagnostic

procedures, helping clinicians make informed decisions for

treatment planning and monitoring disease progression. However,

the proposed method relies on registration and cleans datasets and

cannot fuse the unregistered and noise-source images. Therefore,

our future study will focus on improving our algorithm to address

the unregistered and noise fusion problems and expanding its

application to other convergence domains.
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