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To watch a person doing an activity has an impact on the viewer. In fact, the film 
industry hinges on viewers looking at characters doing all sorts of narrative activities. 
From previous works, we know that media and non-media professionals perceive 
differently audiovisuals with cuts. Media professionals present a lower eye-blink 
rate, a lower activity in frontal and central cortical areas, and a more organized 
functional brain connectivity when watching audiovisual cuts. Here, we  aimed 
to determine how audiovisuals with no formal interruptions such as cuts were 
perceived by media and non-media professionals. Moreover, we wondered how 
motor actions of characters in films would have an impact on the brain activities 
of the two groups of observers. We presented a narrative with 24 motor actions 
in a one-shot movie in wide shot with no cuts to 40 participants. We recorded the 
electroencephalographic (EEG) activity of the participants and analyzed it for the 
periods corresponding to the 24 motor actions (24 actions × 40 participants = 960 
potential trials). In accordance with collected results, we observed differences in 
the EEG activity of the left primary motor cortex. A spectral analysis of recorded 
EEG traces indicated the presence of significant differences in the beta band 
between the two groups after the onset of the motor activities, while no such 
differences were found in the alpha band. We concluded that media expertise is 
related with the beta band identified in the EEG activity of the left primary motor 
cortex and the observation of motor actions in videos.
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1. Introduction

1.1. Looking at motor actions

We perceive various narrative contents in plenty of motor actions through the day, and the 
observation of those actions has an impact on our brain activity (Muthukumaraswamy et al., 
2004). It was more than half a century ago that an “arch rhythm” (with spectral peaks at 10 and 
20 Hz) was found when looking at motor actions in movies (Gastaut et al., 1952; Cohen-Séat 
et  al., 1954; Gastaut and Bert, 1954). One of the motor actions most studied in recent 
neuroscience has been grasping (Castiello, 2005). In this regard, it has been reported that human 
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electroencephalographic mu rhythm (~8–13 Hz) changes while 
observing other people doing motor activities such as grasping, 
holding, and tearing (di Pellegrino et al., 1992; Gallese et al., 1996; 
Muthukumaraswamy et al., 2004). Moreover, previous experience in 
performing specific tasks seems to be more influential on this mu 
rhythm than observation of the task itself (Cannon et al., 2014). Other 
brain rhythms have also been studied in relation to grasping and 
action movements, such as alpha (~8–12 Hz; Perry and Bentin, 2010) 
or beta (~13–35 Hz) rhythms (Zaepffel et  al., 2013; Khanna and 
Carmena, 2015). Several studies have worked on revealing neural 
correlates of grasping and other hand movements when doing them 
(Chavarriaga et al., 2018), when imaging them (Neuper et al., 2005; 
Ying et al., 2017), or when looking at someone doing them (Perry and 
Bentin, 2009). There are also studies that have compared activity 
modulation of brain EEG recordings while producing or observing 
social actions (Liao et  al., 2015). Most of the studies about visual 
perception of motor activities paid attention to the primary motor 
cortex, suggesting a research interest in how a perceiver’s brain activity 
is modulated in this area by the motor activity developed by the actor 
of the content. In the present study, we recorded the EEG activity in 
the primary motor cortex of media and non-media professionals 
watching a one-shot video showing different motor actions of an actor 
participating in the movie.

1.2. Professional expertise

Professionalization has been shown to be a relevant element when 
motor brain activity is the subject of study. For instance, professional 
athletes learn complex dynamic visual scenes better than non-athletes 
do (Faubert, 2013), and professional racing-car drivers show an 
increased neural efficiency in brain circuits as compared with naïve 
drivers (Bernardi et al., 2013). Furthermore, evidence has been found 
regarding music expertise, including that brain structures differ 
between musicians and non-musicians (Gaser and Schlaug, 2003), 
piano players seem to need more-reduced neuronal networks than 
control subjects to activate the same movements (Krings et al., 2000), 
musical training has been associated with an altered processing of 
negative emotions (Park et al., 2014), and professional musicians show 
more-focused cerebral activations in the contralateral primary 
sensorimotor cortex (Lotze et  al., 2003). There are also studies 
regarding the impact, in terms of brain activity, of esthetics expertise 
(Kirk et al., 2008), baseball expertise (Muraskin et al., 2016), football 
professionalization (Brockhoff et  al., 2011), or dancing 
professionalization (Calvo-Merino et al., 2005), among others. These 
studies are focused on the neuroscience of expertise, in a context 
where the performance of an activity becomes more efficient and 
automatic, proving a perceptual expertise that relies on information 
from the senses (Bilalić, 2017), and showing how it is of interest to 
keep researching on cognitive and motor expertise in order to learn 
how we can improve motor actions.

We have previously studied the impact of media professionalization 
in visual perception of movies. First, we studied the spontaneous blink 
rate (SBR) in media professionals and non-media professionals while 
they were watching movies and looking at theatrical narrative 
performances, and we found a significant inhibition of SBR in the 
professional group (Andreu-Sánchez et al., 2017). We found that—
since SBR is inversely linked to attention (lower SBR correlates with 

higher attentional level)—media expertise evokes a higher attention 
to narratives in both on-screen and live performances. In addition, 
we  checked that media professionalization impacts cognitive 
neurodynamics during audiovisual cuts: while cuts in movies trigger 
similar activation of visual cortex, differences are found in central and 
frontal cortical areas, with a lower activity among media professionals 
(Andreu-Sánchez et  al., 2021). Moreover, after the new visual 
information that cuts bring to spectators, effective brain connectivity 
is more organized in media professionals than in non-media 
professionals (Andreu-Sánchez et al., 2021).

In the present study, we wondered how media professionals’ brain 
activity in primary motor cortex would differ from that of non-media 
professionals when they were watching motor actions on screens, in a 
video without cuts that could interfere in the perceptive process.

2. Materials and methods

2.1. Participants

Forty participants aged 28–56 (43.75 ± 7.837) took part in this 
study. The group of media professionals (N = 20) comprised 15 males 
and five females. Their mean age was 44.25 ± 7.196 years. The time 
spent in their media professions was 20.2 ± 8.637 years. The group of 
non-media professionals (N = 20) consisted of 16 males and four 
females. Their mean age was 43.25 ± 8.589 years. The time spent in 
their non-media professions was 18.85 ± 9.422 years. Inclusion in the 
media professional group required participants to use video edition 
and to take decisions related to media editing in their everyday work. 
Non-media professionals were chosen outside of this criterion. All had 
normal or corrected-to-normal visual acuity. Subjects did not receive 
any economic compensation for their participation in this study.

2.2. Ethics statement

The studies involving human participants were reviewed and 
approved by the Ethics Commission for Research with Animals and 
Humans (CEEAH) of the Universitat Autònoma de Barcelona 
(Barcelona, Spain). The participants provided their written informed 
consent to participate in this study.

2.3. Stimuli and procedure

We created four stimuli with the same narrative but different 
formats: (1) a one-shot movie in wide shot with no camera movements; 
(2) a movie edited according to classical rules of edition with smooth 
transitions; (3) a movie edited breaking classical rules of edition, 
having a chaotic style with sharp and illogical transitions between 
shots; and (4) a live performance. All four stimuli were randomly 
presented to all participants, but, for the purpose of this study, we only 
analyze the one-shot movie with no cuts. Thus, we isolate the effect of 
viewing video content without breaks due to editing cuts. The selected 
movie had a duration of 198 s. The narrative included 24 motor actions 
that were used as triggers to analyze participants’ brain activities. The 
selected motor actions included objects being grasped, caught, 
and gripped.
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Video stimuli were presented on a 42-in HD Led display 
(Panasonic TH-42PZ70EA) and participants were placed at 150 cm 
from the screen. Stimuli were presented with Paradigm Stimulus 
Presentation (Perception Research System Inc.). Participants were 
asked to attend to the stimuli, with no further information being given 
that a follow-up questionnaire would be presented. The questionary 
presented was actually a distractor without interest for the research.

2.4. Data acquisition

Continuous EEG data were acquired with the help of a wireless 
system (Enobio, Neuroelectrics), with 20 electrodes placed according 
to the International 10–20 system [O1, O2, P7, P3, Pz, P4, P8, T7, C3, 
Cz, C4, T8, F7, F3, Fz, F4, F8, Fp1, Fp2, and an external electrode used 
for electrooculogram (EOG) recording] referenced to electronically 
linked mastoid electrodes (see Martín-Pascual et al., 2018 for details). 
Data were sampled at 500 Hz. We  recorded facial expressions of 
participants with an HD video-camera for contrasting participants’ 
behavior during the sessions, and additionally to detect and to avoid 
artifacts and unwanted muscle movements.

2.5. Data analysis

Electroencephalographic data were processed using EEGLAB 
(Delorme and Makeig, 2004) software version 2022.1 running on 
MATLAB R2022b (The MathWorks Inc.) under a macOS Ventura 
13.2.1 (Apple Inc.). We band-passed filtered the data between 0.5 and 
40 Hz. We  removed the EOG electrode and bad channels when 
needed. A common average reference was applied. We decomposed 
data with an ICA analysis (infomax algorithm) and got rid of 
artifactual components, including eye and muscle activity (Delorme 
and Makeig, 2004). We made 3-s epochs of 1 s before and 2 s after the 
onset of the motor activity, marked with triggers at the onset of the 
motor actions in the video. In total, we  had 40 participants who 
attended 24 motor actions, making 40 × 24, i.e., 960 potential trials of 
3 s each. We rejected bad epochs through visual inspection.

We analyzed data recorded from the primary motor cortex of both 
hemispheres. The left hemisphere was studied with activity from the 
C3 electrode, and the right hemisphere was studied with activity from 
the C4 electrode. We computed spectral activity in alpha (8–12 Hz) 
and beta (13–30 Hz) bands. We also distinguished between activity 
before (−500–0 ms) and after (0–1,000 ms) the onset of the motor 
activity. Statistical analysis was performed offline using JASP software 
(Version 0.17.1, Apple Silicon). We  computed unpaired t-test or 
non-parametric Mann–Whitney Rank Sum Tests for each situation. 
Effect size was computed with rank-biserial correlation. For the 
normality test, we used the Shapiro–Wilk. We also computed event-
related spectral perturbation (ERSP) and power spectrum density 
(PSD) for those C3 and C4 electrodes and compared them among the 
groups. We also computed event-related spectral perturbation (ERSP) 
and power spectrum density (PSD) for those C3 and C4 electrodes 
and compared them among the groups. ERSP (Delorme and Makeig, 
2004) is used to visualize mean event-related changes in spectral 
power over time in a broad frequency range and generalize the 
narrow-band event-related desynchronization (ERD) and 
synchronization (ERS) measures introduced by Pfurtscheller and 

Aranibar (1979). And PSD helps to know how the strength of a signal 
is distributed in the frequency domain and its unit is energy per 
frequency, demonstrating the strength of the variations of a signal as 
a function of frequency (Valipour et al., 2014). We also plot the inter-
trial coherence (ITC). We  computed t-tests with a significance of 
p < 0.05 with EEGLAB statistics running on MATLAB.

3. Results

In the case of beta band (13–30 Hz) comparison between media 
and non-media professionals, although we did not find significant 
differences before the onset of the motor actions in the left hemisphere 
(C3 electrode; U = 264, p = 0.086, Mann–Whitney test, rank-biserial 
correlation: 0.320), we did find significant differences after the onset 
of the motor activities in C3: U = 273, p = 0.049, Mann–Whitney test, 
rank-biserial correlation: 0.365. In contrast, the right hemisphere (C4 
electrode), did not show significant differences before (U = 191, 
p = 0.820, Mann–Whitney test, rank-biserial correlation: −0.045) or 
after the onset of the motor activities (U = 191, p = 0.820, Mann–
Whitney test, rank-biserial correlation: −0.045; see Figure  1). In 
addition, we did not find significant differences in the alpha band 
(8–12 Hz) between groups in either the left hemisphere (C3 electrode) 
before (U = 214, p = 0.718, Mann–Whitney test, rank-biserial 
correlation: 0.070) and after (U = 219, p = 0.620, Mann–Whitney test, 
rank-biserial correlation: 0.095) the onset of the motor actions, or the 
right hemisphere (C4 electrode) before (U = 164, p = 0.341, Mann–
Whitney test, rank-biserial correlation: −0.180) and after (U = 171, 
p = 0.341, Mann–Whitney test, rank-biserial correlation: −0.145) the 
onset of the motor actions.

When analyzing and comparing the ERSPs in C3 and C4 between 
the two groups, we found significant differences in the left hemisphere. 
Note that all trials included not a change of visual content but the 
onset of a motor action of the hand(s) of the character in scene (such 
as grasping an object), meaning that the visual presentation was in an 
organic flow, without any formal visual interruption, such as cut or 
flash. Media professionals decreased their activity around C3 
significantly as compared with non-media professionals. Those 
differences were not found in the right hemisphere (see Figure 2). 
We  also computed ERSPs in media and non-media professional 
groups, with an average of all electrodes, in alpha (8–12 Hz) and beta 
(13–30 Hz) bands, and compared them using a t-test to look for 
differences. No significant differences (p < 0.05) between groups were 
found in the alpha band. In the beta band, we  found significant 
differences in motor cortex areas in the left hemisphere (around C3) 
but none in the right hemisphere (Figures 3, 4). When looking at 
differences in the PSD [Log Power 10*log10(μV2)] at C3 and C4, 
we also found statistically significant differences in the left hemisphere 
in the beta band—the group of non-media professionals showing a 
higher spectral power (Figure 5).

4. Discussion

Watching other people performing different motor actions 
modulates our brain processes. In part, films are based on the impact 
that artists’ and creators’ actions have on spectators. In recent years, 
neuroscientists have studied how looking at someone performing a 
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motor action, such as grasping an object, modifies the brain activity 
of the observer (Babiloni et al., 2002). In fact, these changes in EEG 
activities have been linked to the mirror neuron system on several 
occasions (Muthukumaraswamy et al., 2004; Rizzolatti and Craighero, 
2004; Perry and Bentin, 2009, 2010; Rizzolatti and Cattaneo, 2009; 
Marshall and Meltzoff, 2011; Ikeda et  al., 2019). Moreover, some 
studies have proven that the imagination of a motor action also 
activates specific, complex brain networks (Cebolla et al., 2015, 2017). 
So far, these studies have been carried out in research centers around 
the world without, to our knowledge, paying any further attention to 
the media expertise of the perceiver. Here we proposed to analyze 
differences in brain activity when seeing someone doing motor 
activities in movies, based on whether the viewer had or did not have 
media professional expertise. Overall, we found significant differences 
in the left primary motor cortex (C3) in beta rhythm between the two 
groups, with a lower activity present in media professionals. In 
previous studies, beta oscillations have been correlated with planning 
and execution of grasping movements (Jasper and Penfield, 1949; 
Zaepffel et al., 2013; Khanna and Carmena, 2015), with a decrease in 
the spectral power of the oscillations during the preparation and the 
execution of voluntary movements. Beta-band desynchronization 
during motor preparation has been connected with the degree of 
uncertainty about the task (Tzagarakis et al., 2010). Here, we found 
that professional expertise of viewers when looking at someone doing 
motor actions impacts on that viewing with a decrease in the spectral 

power of the beta band as compared with the case of non-media 
professionals. It is difficult to understand the neural processes 
underlying these functional differences, but we think that perhaps 
media professionals are more impacted by the grasping actions since 
they might be more attentive to the narrative content, as we previously 
found (Andreu-Sánchez et  al., 2017). It is true that the notable 
desynchronization in the motor area of the professionals (Figure 3) 
could be due to a more real sensation in this group in the narrative 
events of the movie. However, such desynchronization is also 
perceived prior to the onset of grasping actions. In fact, we  have 
previously found that cuts in movies also provoke differences therein 
among both groups, showing a higher desynchronization in motor 
cortex in media professionals between 7 and 11 Hz at 200–300 ms after 
the cut (Andreu-Sánchez et al., 2021). In this regard, the reported 
results here would point to some important functional differences in 
the viewing of screens by media professionals. Although we initially 
found significant differences between media and non-media 
professionals in eye-blink rate when watching audiovisuals (Andreu-
Sánchez et  al., 2017), while studying differences between the two 
groups when they were looking at new visual information presented 
after audiovisual cuts, we found significant differences in frontal and 
parietal brain areas, but not in the occipital one (Andreu-Sánchez 
et al., 2021), suggesting that differences between these two groups 
might be more linked to the processing of the narrative content than 
to the actual visual processing of the formal visual information. Since 

FIGURE 1

Mean spectral power in the beta band in media and non-media professionals, before the onset of the motor activities within the video (−500 to 0 ms) 
and after the onset of the motor activities (0–1,000 ms), in left (C3) and right (C4) hemispheres. *indicates p < 0.05, non-parametric Mann–Whitney test.
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FIGURE 3

Average ERSPs of all electrodes in media and non-media professionals, from the onset of the motor activity to 2,000 ms after, in alpha (upper) and beta 
(lower). Red dots indicate significant differences found between groups (p < 0.05, t-test).

FIGURE 2

Average ERSPs of C3 and C4 in media (green) and non-media (blue) professionals, while watching 24 motor actions in the video. Vertical black lines (at 
Time 0) indicate the onset of the motor action of the character in the video. The lower vertical black bars show significant differences between groups 
across time (t-test, p < 0.05).
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everything points to a professionalizing effect in media professionals, 
it would be interesting to replicate previous studies regarding motor 
imagery paying attention to media professionalization as a variable 
(Cebolla et al., 2015) as it could have a big impact in brain-computer 
interface (BCI) training contexts. We also found sharp asymmetry 
(Figure 3) in alpha and beta bands, regardless the group. It coincides 
with previous works that suggest contralateral activity in human 
motor cortex correlated with the hand dominance, specialization, and 
activation (Hund-Georgiadis and von Cramon, 1999; Bai et al., 2005). 

Unfortunately, we  did not ask participants regarding their hand 
dominance, which is a limitation of this work and something that 
could have improved the analysis of our results. Another limitation of 
our study is the unbalanced male–female sample which prevents us 
from analyzing sex as a solid variable here.

Our results could also be  seen from a perception-action 
perspective. Perception-action approaches suggest that one of the 
most important aspects of motor control is predictive control (von 
Hofsten and Rosander, 2012) and it is based on experience 

FIGURE 4

ERSPs (above) and ITC (below) in C3 and C4 in media and non-media professionals showing the temporal evolution. Vertical lines indicate the onset of 
the motor activity.

FIGURE 5

PSD of C3 and C4 activity in media (green) and non-media (blue) professionals in the whole 3-s epochs around the motor actions within the video 
stimulus. Significant differences (p < 0.05, t-test) between groups are shown in black on the x-axis.
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(Ridderinkhof, 2014). Somehow, our brains use stored memories to 
constantly make predictions about what we  see, feel, and hear 
(Hawkins and Blakeslee, 2004) and perception and actions would 
be unified through common principles (Ridderinkhof, 2014). In this 
context, the skill level has been previously correlated with perception 
processes linked with anticipatory tasks (Farrow and Abernethy, 
2003). Here, we found that the professional experience (or expertise) 
in audiovisuals affects the brain activity in motor cortex while looking 
at motor actions. This suggests that the predictive control while 
viewing actions within the narrative contents could be  trained by 
using audiovisuals as media professionals do on their daily basis.
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