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Artificial psychophysics questions
classical hue cancellation
experiments

Jorge Vila-Tomás*, Pablo Hernández-Cámara and Jesús Malo

Image Processing Lab, Parc Científic, Universitat de València, Valencia, Spain

We show that classical hue cancellation experiments lead to human-like opponent

curves even if the task is done by trivial (identity) artificial networks. Specifically,

human-like opponent spectral sensitivities always emerge in artificial networks

as long as (i) the retina converts the input radiation into any tristimulus-like

representation, and (ii) the post-retinal network solves the standard hue

cancellation task, e.g. the network looks for the weights of the cancelling lights

so that every monochromatic stimulus plus the weighted cancelling lights match

a grey reference in the (arbitrary) color representation used by the network. In

fact, the specific cancellation lights (and not the network architecture) are key to

obtain human-like curves: results show that the classical choice of the lights is the

one that leads to the best (more human-like) result, and any other choices lead to

progressively di�erent spectral sensitivities. We show this in two ways: through

artificial psychophysics using a range of networks with di�erent architectures

and a range of cancellation lights, and through a change-of-basis theoretical

analogy of the experiments. This suggests that the opponent curves of the classical

experiment are just a by-product of the front-end photoreceptors and of a very

specific experimental choice but they do not inform about the downstream

color representation. In fact, the architecture of the post-retinal network (signal

recombination or internal color space) seems irrelevant for the emergence of

the curves in the classical experiment. This result in artificial networks questions

the conventional interpretation of the classical result in humans by Jameson and

Hurvich.

KEYWORDS

artificial psychophysics, visual neuroscience, hue cancellation experiments, opponent

color coding, spectral sensitivity of artificial networks

1. Introduction

The classical hue cancellation experiments (Jameson and Hurvich, 1955; Hurvich and

Jameson, 1957) are usually considered as the first psychophysical quantification of Hering’s

intuition on opponent color coding in the human brain (Knoblauch and Shevell, 2004;

Stockman and Brainard, 2010; Fairchild, 2013). As an example, an influential textbook

on visual neuroscience (Wandell, 1995) introduces hue cancellation as follows: “Several

experimental observations, beginning in the mid-1950s, catapulted opponent-colors theory

from a special-purpose model, known only to color specialists, to a central idea in Vision

Science. The first was a behavioral experiment that defined a procedure for measuring

opponent-colors, the hue cancellation experiment. By providing a method of quantifying the

opponent-colors insight, Hurvich and Jameson made the idea accessible to other scientists,

opening a major line of inquiry”.
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The scientific question to be solved by the hue cancellation

experiment is about the post-retinal neural architecture, or

recombination of color signals after photodetection. This is

illustrated by Figure 1A, based on the original diagram in Hurvich

and Jameson (1957). The authors confront the Young-Helmholtz

trichromatic theories of color vision with the qualitative opponent

theory of Hering. They propose an architecture to get the

Achromatic, Tritanopic (red-green) and Deuteranopic (yellow-

blue) sensors (ATD) from the front-end photoreceptors tuned to

Long, Medium, and Short (LMS) wavelengths, and hue cancellation

would be the tool to quantify the spectral sensitivity of the ATD

mechanisms in the proposed architecture.

In this work we present a counter-example based on artificial

networks (on automatic differentiation) that suggests that the

results of conventional hue cancellation experiments do not

provide conclusive information on the inner color representation

of the system that mediates the task (the post-retinal network, black

box in Figure 1B). Therefore, strictly speaking, the curves from the

classical hue cancellation experiments would not be measuring the

sensitivity of those ATD mechanisms.

In particular, we show that identity networks develop opponent

red-green and yellow-blue color valence functions which are

quite similar to the human curves independently of the color

representation (LMS, RGB or ATD). What we refer to as

identity network is a trivial architecture whose (3-dimensional)

output is exactly the same as its (3-dimensional) input in each

spatial location. This trivial network, which already operates in

a tristimulus-related representation, [say certain standard LMS

cone space (Stockman and Sharpe, 2000), or even in an arbitrary,

device dependent, digital count RGB space (Brainard, 1997;

Malo and Luque, 2002)] may apply no opponent color coding

whatsoever and still gets the human-like curves (in contrast to

the specific architecture assumed in Figure 1A). Therefore, the

opponent curves that emerge do not strictly inform of the inner

(eventually opponent) color representation of the post-retinal

neural network. Instead, they are a by-product of the (retinal)

tristimulus representation of the input radiation and of the choices

in the conventional experimental setting (e.g., the wavelengths of

the spectral cancellation lights). To explore in more detail this

result, we perform multiple hue cancellation experiments with

cancellation lights different to the classical ones and we obtain a

clear dependence with the choice of the spectral cancellation lights,

achieving the best human-like behaviour only in the case of the

classical cancellation lights. This result is confirmed by an analysis

of the hue cancellation experiment using a change-of-basis analogy.

2. Methods: hue cancellation
experiments in artificial networks

2.1. General setting

In this work the artificial hue cancellation experiment is a

matching problem in the color representation used by the artificial

network. Take the setting represented in Figure 1B: for any arbitrary

spectral input of wavelength λ, Eλ, and a grey reference, W, the

network takes the input retinal representation of stimulus and

reference, R(Eλ) and R(W), and transforms them into the inner

representation R′(Eλ) and R′(W). We make no assumption of the

nature of this representation R′. In Figure 1B R′ is represented by

red, green and blue layers just for visualization, this does not mean

we assume them to be LMS-like. In the initial situation, when no

cancelling lights are added, the distance |R′(W)− R′(Eλ)| will have

a large value. The goal in this matching problem is looking for the

optimal weights w⋆
λc
(λ) of the cancelling lights that minimize the

distance between the reference and the monochromatic stimulus

plus the weighted cancelling lights:

w⋆
λc
(λ) = argmin

wλc(λ)

∣

∣

∣

∣

∣

∣

R′(W)− R′



Eλ ⊕
∑

λc

wλc(λ)Eλc





∣

∣

∣

∣

∣

∣

(1)

where the subtraction in the distance is regular subtraction between

vectors, but ⊕ stands for additive superposition of radiations.

Physical superposition is always positive so, in this case, as

conventionally done in color matching experiments (Wyszecki and

Stiles, 2000), we assume that negative weights in the superposition

to Eλ physically mean the corresponding amount of positive

superposition to W. In short, the cancellation experiment should

tell us about the change of color representations, from the input

space R to the output R′. In principle, the goal function in

Equation 1 can be applied to regular tristimulus vectors (where

vector summation has perceptual meaning) but also to arbitrary,

engineering-oriented device-dependent color representations such

as digital counts in RGB.

The matching problem described above is just a difference

minimization problem which is well suited for learning based on

automatic differentiation. In this artificial psychophysics setting, the

network architecture of the black-box in Figure 1B is fixed but the

energy of the cancelling lights (the weights wλc ) is modified in each

iteration to minimize the distance in Equation 1.

Appendix A elaborates on how to approximate monochromatic

stimuli for artificial networks intended to work with restricted

stimuli such as regular digital images. Appendix B elaborates on

how the four individual weighting functions we get from the

artificial nets, w⋆
λc
(λ), are combined into the final valence functions

(that happen to be red-green and yellow-blue in the case of the

conventional λc’s).

2.2. Hue cancellation with artificial
networks beyond the classical setting

This artificial simulation of the hue cancellation experiment can

be applied with any architecture in the fixed network (black box in

Figure 1B) and with any choice of λc’s for the cancelling lights.

If human-like opponent channels emerge from the simulations

even if the network does not have a biologically plausible

architecture and independently of the post retinal space, this means

that the result of the classical experiment cannot be interpreted

as an indication of the existence of post-retinal mechanisms

performing the computation suggested in Figure 1A.

Refutation of the conventional interpretation of the classical

experiment is stronger if the emergence of opponent curves mainly

happens with a particular choice of λc’s. This would mean that

instead of having the result because of interesting properties of the
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FIGURE 1

(A) Elements of the competing theories of Young-Helmholtz vs. Hering and (B) Learning process to get the weights that cancel the hue of certain

monochromatic stimulus of wavelength λ. Following the original diagram in Hurvich and Jameson (1957), (A) Displays the sensors of the

Young-Helmholtz theory, with all-positive sensitivities tuned to Long,Medium, and Short (LMS) wavelengths, and a possible architecture of a network

that would lead to the sensors of the Hering theory: two chromatic sensors with opponent sensitivities, the Tritanopic sensor (T) tuned to red-green

and the Deuteranopic sensor (D) tuned to yellow-blue, together with an Achromatic sensor (A) with a wide all-positive sensitivity. (B) Illustrates the

hue cancellation experiment: the (natural or artificial) observer looks for the weights of the spectral cancelling lights so that a mixture of these

cancellation stimuli with the original monochromatic input matches a grey reference (a stimulus with no hue). In this setting, hue cancellation

reduces to distance minimization between the responses R′ to the white and to the considered λ plus the weighted cancelling lights. The question is

whether this search of the weights reveals something about the computation or architecture of the brain-network module in (B) that transforms R

into R′, or about the nature of the inner color representation R′.

post-retinal mechanisms, it comes from a fortunate selection of the

experimental setting. For this reason it is interesting to simulate

hue cancellation for a range of alternative λc’s different from the

classical experiment.

2.3. Di�erences with the experimental
setting for humans

In the original experiments with humans, the cancelling lights

had the same energy and their wavelengths were slightly different

for the two observers J/H: 467/475 nm (blue), 490/500 nm (green),

588/580 (yellow), and 700/700 nm (red). In all our simulations

the cancelling lights always had the same initial energy and we

used an equienergetic stimulus as grey reference. In simulating

the classical setting, our wavelengths were the ones for observer

H (475, 500, 580 and 700 nm). In our experiments we use

(without loss of generality) quasi-monochromatic lights so that

they can be properly represented in digital values to be processed

by conventional artificial networks. These stimuli are defined by a

narrow Gaussian spectral radiance added on top of a low-radiance

equienergetic background. Appendix A shows examples of these

stimuli.

In solving the distance minimization problem, the iterative

variation of the weights was applied to the height of the narrow

Gaussian of the quasi-monochromatic cancelling lights. These

differences (cancelling wavelengths similar to the ones in the

classical experiment and narrow-spectrum quasi-monochromatic

stimuli) do not imply fundamental differences with the classical

setting.

Human observers in the classical experiment do not change

all four weights at the same time, but (just for the observers

convenience) they just move one at a time (judging how the

complementary hue disappears) and repeat the experiment four

times. This is not a fundamental difference because (at the expense

of longer time per wavelength) after the “first cancellation” the

observer could also cancel the remaining hue and then match

the response to a grey. Additionally, in any part of the spectrum,

is the experimenter in the classical experiment who lets the

observer to use “the appropriate” cancellation light. This is not

a fundamental difference either because if they could look for

the cancellation lights in pairs, simultaneous modification of the

opponent cancellation lights would null each other and the effect

would be as using a single one.

In the setting that we propose to simulate hue cancellation in

artificial systems, the only difference with regard to the experiments

in humans is that humans may not need an achromatic reference

since they already have the concept of what an achromatic stimulus

is, and hence they modify the weights of the cancellation lights

to match this mental concept. In the case of artificial systems,

obtaining the concept of achromatic reference for hue cancellation
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is not a problem either. It could be computed from natural images

using the classical grey world assumption (Finlayson et al., 1998), or

simply take a flat spectrum reference as we did here.

2.4. The trivial identity network

The counter-example presented in this note is based on a trivial

network architecture. Its output is the same as the input: for a color

C, represented at the input by the array R(C), the response R′(C) is

just:

R′(R(C)) = I · R(C) = R(C) (2)

This, clearly non-human, trivial architecture preserves whatever

previous color representation coming from the sensors. This trivial

network is a good counter-example for the eventual human-

like results because in the brain, the color representation in the

retina certainly changes downstream (Shapley and Hawken, 2011;

Shapley, 2019).

3. Experiments and results

As stated in the Methods section, the conventional

interpretation of the classical hue cancellation experiment

can be questioned if one finds a counter example showing that

human-like opponent valence curves may emerge for the classical

choice of λc’s regardless of the post-retinal network architecture

and color representation. Moreover, refutation would be stronger

if one finds that the human-like results are mainly obtained for

the classical choice of λc’s while other choices lead to progressively

different curves regardless of the input color representation space.

According to this, we perform two sets of experiments: (1)

we look for counter examples with the classical hue cancellation

lights using trivial identity networks working with different color

representations (LMS, ATD, and digital RGB). (2) we consider a

range of experiments with alternative cancellation lights different

from the classical choice using the same trivial identity networks

operating either in LMS, ATD, or digital RGB.

3.1. Counter examples in the classical
setting

In order to check the emergence of human-like curves in hue

cancellation even with the trivial identity network, we perform

three experiments assuming different input representations R:

• Experiment 1: Identity network working in an arbitrary non-

human color representation: a device-dependent digital RGB.

• Experiment 2: Identity network working in a standard LMS

cone space, as for instance (Stockman and Sharpe, 2000).

• Experiment 3: Identity network working in a standard

opponent space as for instance, the Jameson and Hurvich

model (Jameson and Hurvich, 1955; Capilla et al., 1998).

Note that the above three identity networks would correspond

to color representations with quite different qualitative features: (a)

if the input is digital RGB, the problem is solved by a system with

wide-band overlapping all-positive spectral sensitivities (different

from LMS) and compressive nonlinear response in the retina, (b) if

the input are standard LMS tristimulus one has a purely linear LMS

color code with all-positive sensitivities in the retina, and (c) if the

input representation R is an opponent system with an achromatic

channel and two chromatic channels, the network is fed with a

fundamentally different color coding.

Figure 2 shows the results of these three hue cancellation

experiments together with the experimental results for humans

reported in Jameson and Hurvich (1955).

Appendix C shows that (1) the final matches make sense (found

at the yellow-blue and red-green curves) and are close to perfect

(almost zero difference after the addition of w⋆
λc
(λ)Eλc ), and (2)

the difference minimization process with the different networks is

remarkably similar.

The results show that all identity networks, regardless of the

space where they operate, lead to similar hue cancellation curves,

and these are remarkably similar to the human curves.

3.2. Alternative λc’s: control experiments
and theoretical analysis

The previous artificial experiments question the traditional

interpretation of hue cancellation with the classical λc’s because not

only opponent systems but also trichromatic systems lead to similar

opponent results. As anticipated above, the fortunate selection of

the cancellation λc’s is somehow biasing the matching towards the

opponent curves.

In order to confirm that this is the case, we propose additional

control experiments with artificial networks (experiments 4, 5,

and 6), and we introduce a change-of-basis analogy of the hue

cancellation to understand the results. We show the predictions of

this change-of-basis analogy in the experiment 7:

• Experiment 4: Numerical results of hue cancellation for a

range of λc’s away from the classical choice using the identity

network working in a device-dependent digital RGB space.

• Experiment 5: Numerical results of hue cancellation for a

range of λc’s away from the classical choice using the identity

network working in a standard LMS space (Stockman and

Sharpe, 2000).

• Experiment 6: Numerical results of hue cancellation for a

range of λc’s away from the classical choice using the identity

network working in a standard ATD space (Jameson and

Hurvich, 1955; Capilla et al., 1998).

• Experiment 7: Exhaustive exploration of (analytical) changes

of basis that are similar to hue cancellation experiments for

λc’s very different from the classical choice.

First, lets introduce the idea of the change-of-basis analogy of

the hue cancellation experiments, and then we present the results

of experiments 4–6 together with the theory-based simulation

(experiment 7).

Consider the case in which the cancellation lights are

complementary in pairs. For instance, in Figure 3, see the pair [λ1,
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FIGURE 2

Main result: Opponent curves from hue cancellation for the trivial identity network operating in di�erent color representation spaces (top right and

bottom) compared to the result in humans (top left). The dots represent the result from the artificial matching for each wavelength, and the curves

are just smooth fits to the experimental dots.

λ3] and the pair formed by λ2 and the magenta referred to as λ4. In

that situation, the determination of w⋆
λc
is equivalent to a change to

a color basis where two of the primaries go in the directions of the

pair of complementary wavelengths (e.g., the red and green vectors

in Figure 3). By choosing a third linearly-independent vector (e.g.

in the direction of an achromatic color as the vector in blue

perpendicular to the triangle of the chromatic diagram) one has a

new basis of the color space perfectly defined by the new primaries,

P⋆
i , with i = 1, 2, 3. These new primaries are defined by their

tristimulus vectors, R(P⋆
i ), in the basis of old primaries, Pi, with

i = 1, 2, 3. They have chromatic coordinates r(P⋆
i ), and, as in every

array of chromatic coordinates and tristimulus vectors, they are

proportional: R(P⋆
i ) = γir(P

⋆
i ).

In this situation, taking Pi as the input color representation (as

in Figure 1B), hue cancellation with the four lights is analogous

to a change-of-basis from Pi to P⋆
i . Therefore, looking for w⋆

λ1
(λ)

and w⋆
λ2
(λ) is analogous to the computation of the tristimulus

values of the monochromatic components of the equienergetic

white R⋆
1(Eλ) and R⋆

2(Eλ). Under this change-of-basis analogy, the

valence functions can be computed analytically from the color

matching functions (the vectors R(Eλ), ∀ λ), and the matrix MPP⋆

that changes the vectors from the basis Pi to the basis P
⋆
i :

R⋆(Eλ) = MPP⋆ · R(Eλ) (3)

where, as in any standard change of basis (Wyszecki and Stiles,

2000), the matrix is:

MPP⋆ =







R1(P
⋆
1) R1(P

⋆
2) R1(P

⋆
3)

R2(P
⋆
1) R2(P

⋆
2) R2(P

⋆
3)

R3(P
⋆
1) R3(P

⋆
2) R3(P

⋆
3)







−1

= (4)







γ−1
1 0 0

0 γ−1
2 0

0 0 γ−1
3






·







r1(P
⋆
1) r1(P

⋆
2) r1(P

⋆
3)

r2(P
⋆
1) r2(P

⋆
2) r2(P

⋆
3)

r3(P
⋆
1) r3(P

⋆
2) r3(P

⋆
3)







−1

In this change-of-basis analogy the hue cancellation valence

functions are obtained from the color matching functions in the

input representation transformed by the matrix in Equation 3.

Note that the weights γi associated to the (arbitrary) length of the

vectors, R(P⋆
i ), will scale each output R⋆

i (Eλ). Therefore, despite the

shape of the curves is fixed by the matrix of chromatic coordinates

of the new basis, the global scale of the predicted functions can be

varied via the length of the primaries. As a result, in the simulations

using this analogy, given certain cancellation λc’s, the length of

the basis vectors will be adjusted to obtain the best possible match

between the predicted function and the classical curves of Jameson

and Hurvich.
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FIGURE 3

The change-of-basis analogy: Hue cancellation experiment as combination of vectors of a new basis. Note that the primaries P⋆
i (based on the

cancelling lights) are not related to the unknown primaries of the unknown representation R′. The primaries P⋆
i (either in option 1 or 2) are just an

artifice to compute analytically the weights w⋆
i (λ) from the tristimulus values R⋆

1(Eλ) and R⋆
2(Eλ). Given two arbitrary λ1 and 1λ, the di�erence between

option 1 and option 2 is that in the second the primaries P⋆
1 and P⋆

2 are taken to be orthogonal to the one that goes in the direction of the White,

P⋆
3 ∝ W, so that they convey less information about brightness.

As explained in Appendix B, in the settings where the

cancelling lights are not strictly complementary (as in the

classical setting by Jameson and Hurvich) the curves can

be obtained from alternative instrumental lights which are

complementary. Then, the contribution of these instrumental

lights always can be assigned back to the considered cancelling

lights. Therefore, (1) the classical setting can be understood

using this change-of-basis analogy, and (2) this analogy can

be used to explore multiple combinations of axes (λ1, λ3)

and (λ2 = λ1 + 1λ, λ4). These configurations can include

the original experiment and also other, progressively different,

alternatives.

In the experiments 4–6 we execute artificial hue cancellation

experiments with identity networks using complementary

cancelling lights selected according to the change-of-basis analogy

described above. We explore a range of λ1 over the visible

spectrum, and for each λ1, we select λ2 = λ1 + 1λ with a range

of 1λ so that λ2 is still visible. Then, the 3rd and 4th cancellation

lights are the complementary lights of λ1 and λ2. Sometimes the

complementary cancellation lights are purple-magenta, as in the

arbitrary example of Figure 3, but that is not a conceptual problem

to apply the change-of-basis analogy. We take the wavelengths in

these control experiments along a uniform grid over the spectral

space. The analytical solution of the change-of-basis analogy

(Figure 3 and Equation 3) can, of course, be used in this range of

λc’s. Moreover, its analytical nature implies that one can efficiently

sample the spectral space at higher rates. On top of the coarse

regular grid shown below, we also perform the artificial hue

cancellation at the configurations where the theory predicts better

agreement with the opponent curves, which incidentally coincide

with the wavelengths chosen in the classic experiment.

For every considered configuration of cancellation lights

we compute the cancellation (or valence) curves and we

compute the departure from this result and the human curves

of Jameson and Hurvich. Figure 4 shows the error of these

predicted valence curves obtained either through the identity

networks operating in different color spaces (experiments 4–6),

or through the analytical change-of-basis analogy (experiment

7).

The results of experiments 4–7 stress the role of the choice of

the cancellation lights in these experiments. Note that all the error

surfaces have the same specific structure:

• The theoretical surfaces of experiment 7 (which could be

densely sampled since they are faster to compute) show

two clear minima consistent with the setting selected in

the classical experiment. The diagram shows that these two

minima are actually equivalent. Moreover, they display a clear

pattern of secondary minima. The pattern is more distinct in

the setting where the chromatic primaries P⋆
1 and P

⋆
2 are chosen

to be orthogonal to the White.

• The errors checked at the grid in the artificial hue cancellation

experiments 4-6 are consistent with the theoretical surfaces

despite the sampling grid is coarser. The reason for a coarser
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FIGURE 4

Results of the control experiments (regular grid) together with the results in the original configuration (see the two dots o� the regular grid). Top row

shows the errors of the experiments 4-6 with a blue-yellow colorbar scale where blue means low error (good reproduction of the human opponent

curves) and yellow means high departure from the human result. The color code of the departure represents the Mean Squared Error between the

human and the artificial curves. Bottom row (right): these surfaces represent the same kind of errors, with the same color code for the two options

of the change-of-basis analogy. The circles in red and magenta indicate the minima of the theoretical surfaces. Bottom row (left): the chromatic

diagram shows that the two minima found by the theoretical simulations actually correspond to the same choice of cancellation lights, and coincide

with the classical setting (see Appendix B for more information on the auxiliary magenta).

grid is merely computational1. In some cases the deepest

minimum is not in the classical point, but the difference is

always very small, i.e. in the classical setting the artificial curves

are also very similar to the human curves.

• The artificial experiments lead to more marked differences

between the agreement in the singular locations of small error

(blueish points) and the rest. Note that the errors in the

artificial experiments seem to increase faster as one goes away

from the regions of small error.

These results (which are consistent regardless of the use of

trichomatic representations or opponent representations) suggest

that the emergence of the classical curves is more linked to

the selection of the cancellation lights than on the inner color

representation R′.

4. Discussion and final remarks

4.1. Summary of results

When using trivial (identity) artificial networks in the

classical hue cancellation setting, opponent red-green and yellow-

blue valence functions emerge regardless of the actual color

1 Each location involves the estimation of the two valence curves at 50 λ’s.

Therefore, it involves 50 hue cancellation experiments, i.e. 50 minimizations,

one per λ in the visible range.

representation used by the networks (as long as it is a tristimulus

representation or even tristimulus-like digital-RGB representations

that include mild nonlinearities).

This suggests that these opponent curves do not inform us

about the inner workings of the considered system, but about

the properties of color mixtures in the tristimulus representations.

Given the fact that the mixture of opponent spectral cancellation

lights is in the line between them in the chromatic diagram,

changing the energy of these cancellation stimuli will always lead

to displacements along these lines and hence, proper match with

the grey reference (or proper hue cancellation) using the correct

proportion of cancellation lights: humans and also trivial machines

forced to use spectral (or quasi-spectral) cancellation lights would

arrive to the same conclusion.

The reasoning is not as (analytically) obvious in nonlinear

representations (as the digital-RGB) but results show that it follows

the same trends, thus stressing the generality of the result.

The actual variation of the mixture whenmodifying the weights

in the hue cancellation process only depends on the properties

of the additive color mixture, and the path in the diagram is

determined by the (classical) choice of the spectral cancellation

lights, and not by the inner color representations. Results suggest

that a fortunate selection of the cancellation λc’s is somehow biasing

the matching towards the correct opponent curves. If a range

of alternative cancellation lights are considered, the results are

progressively different from the classical opponent functions.
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With the classical λc’s, the different color representations only

imply different metric spaces to compute the error in thematch, but

in absence of neural noise (or in moderate neural noise), this would

mean minor variations in the result of the minimization, and hence

one cannot rule out trichromatic LMS-like representations.

4.2. Previous criticisms to hue cancellation
experiments

Certainly there are have been a number of well founded

criticisms to the classical hue cancellation results. For instance,

Wandell (1995) makes this point: to what extent can we generalize

from the valence measurements using monochromatic lights to

other lights?. If the human behavior for polychromatic light does

not follow from the behavior for monochromatic lights, then

the data represents only an interesting (but non-generalizable)

collection of observations. In general, the linearity assumption

is only an approximation (Larimer, 1974; Larimer et al., 1975;

Burns et al., 1984; Ayama and Ikeda, 1989; Chichilnisky, 1995).

As a result, we need a more complete (nonlinear) model before

we can apply the hue cancellation data to predict the opponent-

colors appearance of polichromatic lights. Other criticisms refer

to overestimation of valence in certain spectral regions in hue

cancellation versus other psychophysical methods (Ingling, 1977;

Ingling et al., 1978; Ayama and Ikeda, 1989).

However, the problem implied by the systematic emergence of

the opponent curves from the identity networks is different. It is not

restricted to the linearity assumption. In fact, the systems with nets

operating in the LMS or ATD spaces are linear by definition. The

emergence of the same result in two different (linear) trivial cases

implies that the curves do not give a conclusive message about the

inner working of the system.

4.3. Consistency with previous results on
unique hues

Unique hues are related to the spectral sensitivity of the inner

mechanisms that mediate the perception of hue (Webster et al.,

2000a; Wuerger et al., 2005). Our results in this work are about

the inability to interpret the classical hue cancellation curves as

the sensitivity of the inner mechanisms, not about unique hues.

However, the invariance that we found in cancellation curves for

different internal architectures is consistent with facts observed in

previous literature on unique hues.

Studies on unique hues show that they do not depend on

the monochromatic or broadband nature of the stimuli used in

the measurements: results with monochromatic stimuli (Larimer,

1974; Larimer et al., 1975) coincide with results obtained with

display-generated stimuli (Webster et al., 2000a,b; Wuerger et al.,

2005) and color chips (Hinks et al., 2007; Shamey et al., 2015). Our

results are not in contradiction with that invariance. First, as stated

above, our networks used narrowband, but not monochromatic,

stimuli. More importantly, the change-of-basis analogy proposed

in Section 3.2 and Figure 3 shows that the opponent curves in

hue cancellation (minima in the error surfaces in Figure 4) are

obtained as long as the chromatic coordinates of the cancellation

lights are in the directions of the unique hues. It doesn’t matter

if they have maximum saturation (monochromatic, as in the

analytical computations) or not (broadband, as in the network

simulations). Note that the task of the (artificial or human) observer

in the experiment is changing the energy (luminance) of the

corresponding component and this does not modify the chromatic

coordinates of the light (regardless of the saturation or bandwidth

of the light).

Moreover, a number of studies (Webster et al., 2000a; Malkoc

et al., 2005; Wuerger and Self, 2022) coincide in that there is a

weak relation between the unique hues and (small) changes of

the sensitivities of the retinal or LGN mechanisms. This is usually

interpreted as if hue perception depends on later cortical stages

adapted to the environment statistics (Malkoc et al., 2005; Wuerger

and Self, 2022). In our case, hue cancellation (optimization of

Equation 1) is also independent of the post-retinal recombination.

Of course, strong variations on sensitivity (as the reduction of the

dimensionality of the color space, as in some dichromats) may have

an impact on the cancellation curves, but that is a matter for further

research.

We are not saying that the unique hues are a by-product

of the cancellation lights. What we say is that the opponent

curves from hue cancellation do not inform about the sensitivity

of the inner mechanisms, which is a different thing. And this

is because once one chooses the cancellation lights (eventually

using the information of the unique hues), the result of the

cancellation experiment is independent of the neural architecture.

Our experiments show that opponent cancellation curves emerge

regardless of the sensitivity of the neural mechanisms. Therefore,

the opponency in cancellation curves does not tell anything about

the actual sensitivity (opponency) of the inner sensors.

Our results are not in contradiction with the invariance of the

unique hues using broadband display primaries (Wuerger et al.,

2005; Wuerger and Self, 2022) nor broadband Munsell Chips

(Hinks et al., 2007; Shamey et al., 2015).

Actually, the change-of-basis analogy proposed in our work

(Section 3.2 and Figure 3) shows that the opponent curves in

hue cancellation (minima in the error surfaces in Figure 4) are

obtained as long as the chromatic coordinates of the cancellation

lights are in the directions of the unique hues. It doesn’t

matter if they have maximum saturation (monochromatic) or

not (broadband). Note that the task of the (artificial or human)

observer in the experiment is changing the energy (luminance)

of the corresponding component and this does not modify the

chromatic coordinates of the light (regardless of the saturation or

bandwidth of the light).

In fact, independence of our curves on the sensitivity of the

retinal and inner mechanisms is consistent with the comments in

Webster et al. (2000a), Malkoc et al. (2005), and Wuerger and Self

(2022) about the weak relation between unique hues and these

sensitivities.

4.4. Emergence of human-like opponent
curves in artificial systems

Emergence of human-like behavior in artificial systems has

been an inspiration for functional (or principled) explanations in
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theoretical neuroscience (Barlow, 1959, 2001; Dayan and Abbott,

2005). In particular, due in part to the current success of artificial

networks in vision tasks (Krizhevsky et al., 2012), there is a growing

interest to compare their behavior with humans (Geirhos et al.,

2019, 2020; Funke et al., 2021) or with human-like models of

traditional visual neuroscience (Martinez et al., 2019; Gomez-Villa

et al., 2020; Hepburn et al., 2022; Li et al., 2022; Akbarinia et al.,

2023).

In this context, we set a low-level conventional psychophysics

program to check the basic behavior of artificial networks in

light of known basic human behavior (Hernández-Cámara et al.,

2022; Vila-Tomás et al., 2022b). To our surprise, our first

experiments with artificial networks (with markedly non-human

color representation) actually displayed human-like behavior in

hue cancellation (Vila-Tomás et al., 2022a).

That was the origin of this research because the emergence

of human-like curves in hue cancellation in networks where

opponency had not been built in (nor assumed in the training tasks)

could have two implications:

• Hypothesis A: On the positive side, it could imply that

the considered tasks used to train the nets actually lead to

human behavior in scenarios different from the training.

These evidences are interesting in the debate about the kind of

tasks that may lead to human behavior. Note that certain tasks

(e.g., assessing image quality or enhancing the retinal image),

may lead to positive or negative results in reproducing human

behavior depending on the architecture of the net. Consider

examples in Malo and Laparra (2010) and Martinez et al.

(2019) for the emergence of contrast nonlinearities, examples

in Li et al. (2022) and Akbarinia et al. (2023) for the emergence

of the Contrast Sensitivity Functions, or examples in Kumar

et al. (2022); Hernández-Cámara et al. (2023) for the visibility

of distortions.

• Hypothesis B: On the negative side, it could also be that the

experimental setting somehow forces the result. In this case

the opponent curves would not tell much about the inner color

representation of the system, but about the selected opponent

spectral cancelling lights and about the properties of additive

mixtures in tristimulus spaces. These elements (alien to the

specific color coding in the network) could also explain the

human-like opponent curves.

According to the results reported here, the second hypothesis

seems the one that may be true.

4.5. Implications in visual neuroscience

Direct physiological recording of the opponent spectral

sensitivity of cells (DeValois et al., 1966; Derrington et al.,

1984) is (of course) the strongest indication of opponent color

coding in the brain. However, following our results with trivial

networks, the consistent emergence of the opponent curves in

hue cancellation experiments suggests that other psychophysical

techniques (Krauskopf et al., 1982) may be more appropriate than

hue cancellation to reveal the opponentmechanisms. Definitely, the

classical hue cancellation curves cannot be interpreted as a proof

of the existence of opponent mechanisms. Similarly, our results

suggest that indirect statistical arguments actually give stronger

evidences in favour of opponent color coding than hue cancellation.

This is consistent with the suggestions on the relevance of

adaptation to the statistics of the environment done by Malkoc

et al. (2005) and Wuerger and Self (2022) based on the properties

of unique hues. Statistical arguments are not limited to classical

linear decorrelation (Buchsbaum and Gottschalk, 1983; Ruderman

et al., 1998), but also include more recent, nonlinear measures of

dependence (MacLeod and von der Twer, 2003; Laparra et al., 2012;

Gutmann et al., 2014; Laparra and Malo, 2015).
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