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Dual consistent pseudo label
generation for multi-source
domain adaptation without
source data for medical image
segmentation

Binke Cai, Liyan Ma* and Yan Sun

School of Computer Engineering and Science, Shanghai University, Shanghai, China

Introduction: Unsupervised domain adaptation (UDA) aims to adapt a model

learned from the source domain to the target domain. Thus, the model can obtain

transferable knowledge even in target domain that does not have ground truth

in this way. In medical image segmentation scenarios, there exist diverse data

distributions caused by intensity in homogeneities and shape variabilities. Butmulti

source data may not be freely accessible, especially medical images with patient

identity information.

Methods: To tackle this issue, we propose a new multi-source and source-

free (MSSF) application scenario and a novel domain adaptation framework

where in the training stage, we only get access to the well-trained source

domain segmentation models without source data. First, we propose a new dual

consistency constraint which uses domain-intra and domain-inter consistency to

filter those predictions agreed by each individual domain expert and all domain

experts. It can serve as a high-quality pseudo label generation method and

produce correct supervised signals for target domain supervised learning. Next,

we design a progressive entropy loss minimization method to minimize the

class-inter distance of features, which is beneficial to enhance domain-intra and

domain-inter consistency in turn.

Results: Extensive experiments are performed for retinal vessel segmentation

under MSSF condition and our approach produces impressive performance. The

sensitivity metric of our approach is highest and it surpasses other methods with

a large margin.

Discussion: It is the first attempt to conduct researches on the retinal vessel

segmentation task under multi-source and source-free scenarios. In medical

applications, such adaptation method can avoid the privacy issue. Furthermore,

how to balance the high sensitivity and high accuracy need to be further

considered.

KEYWORDS

unsupervised domain adaptation, retinal vessel segmentation, semantic segmentation,

multi-source, source-free

1. Introduction

Retinal diseases such as glaucoma and diabetic retinopathy often lead to blindness (Wu

et al., 2021). It has been estimated that the risk of retinal-related diseases has increased greatly

due to increasing pressure, lifestyle changes, and other potential factors. Such a trend pushes

more andmore researchers dedicated in exploring computer-aided diagnosis (CAD) systems

for automatic and accurate diagnosis of retinal pathologies. It is of great significance for CAD

systems to segment retinal vessels accurately because the segmentation result can provide the

dependable diagnosis basis for examination of retinal diseases. Although there are a great
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FIGURE 1

Example of fundus images and ground truths from the DRIVE,

CHASEDB1, and IOSTAR datasets, respectively. (A) Fundus image 1

from DRIVE, (B) Fundus image 2 from CHASEDB1, (C) Fundus image

3 from IOSTAR, (D) ground truth of Fundus image 1, (E) ground truth

of Fundus image 2, (F) ground truth of Fundus image 3.

quantity of classical model based methods about retinal vessel

segmentation such as hand-crafted filters and fully connected

conditional random fields (CRFs) (Orlando et al., 2016), it still

remains challenging due to the large variation of the size of vessels,

inhomogeneous lighting conditions, and other interference factors.

Semantic segmentation is one of the hot and widespread

concerned topics in computer vision field, which aims to classify

each pixel correctly in the whole image. Unprecedented advances

in the semantic segmentation technique have been possible owning

to the rapid development of convolutional neural networks (CNNs)

and the availability of large-scale datasets. CNNs have outstanding

ability to provide powerful and meaningful feature representations

for medical image segmentation. Guo et al. (2023) proposed a new

transformer framework based on CNN with parallax fusion paths

for stereo image super-resolution. But there exists an obvious defect

in the training process of supervised models that they entail a

large training dataset equipped with labor-intensive annotations.

The supervised models inevitably face challenges when they deal

with new samples that correspond to different distributions with

training samples. In medical image segmentation, the differences

about the camera type and personal bioinformation lead to a

distribution shift which hurts the performance of model in the

target domain. Hence, how to transfer the knowledge of source

model to the target domain is a significant problem for medical

image analysis.

Recently, there has been extensive research about unsupervised

domain adaptation (UDA) in themedical image segmentation field.

On the one hand, some studies consider making maximum use of

multiple source datasets to adapt a model from the source domain

to the target domain (Kang et al., 2020; Li et al., 2021). Training

with multiple source datasets can ease the condition of scarce

expert knowledge ground truth. Furthermore, the adapted model is

capable of exploringmore essential knowledge withmultiple source

datasets involved. On the other hand, some studies propose to use

the model’s knowledge contained in the source model to transfer

domain knowledge so as to preserve personal bioinformation in

a medical image (Prabhu et al., 2021a; Yang et al., 2022). Medical

data often cause problems about privacy as they contain sensitive

information. Thus, source-free unsupervised domain adaptation

(SFUDA) is a hot pot for medical applications where only the

source trained model and target data are available.

Although those existing works have extremely promoted the

possibility of real application for medical image segmentation,

all of them only focus on one condition either non-source or

multiple sources. Ahmed et al. (2021) explored such setting but

they were devoted to the classification task. Therefore, we provide

a more practical clinical setting where we have access to only

the multiple source trained models in the adapting process for

a segmentation task. In this multi-source and source-free setting

(MSSF), it can not only protect patient’s privacy but also make full

use of multiple source datasets to learn more effective knowledge

to eliminate distribution shift better. We measure the performance

of our proposed method under multiple settings on three fundus

image datasets. As far as we know, it is the first attempt to conduct

researches on the retinal vessel segmentation task under multi-

source and source-free scenarios.

2. Related work

Broadly, there are three different categories for unsupervised

domain adaptations (UDAs) that include original unsupervised

domain adaptation, source-free unsupervised domain adaptation

(SFUDA), and multi-source unsupervised domain adaptation

(MSUDA). Under the unsupervised domain adaptation scene, the

goal of the model is to learn how to obtain more transferable

features for the source domain and the target domain. It can

be achieved by emphasizing the features of specific channels

with less discrepancy between the first-order and second-order

statistics of the source domain and target domain (Feng et al.,

2021). Prabhu et al. (2021b) evaluated the reliability of a target

instance based on its predictive consistency under a committee

of random image transformations. Hoyer et al. (2022) proposed

masked image consistency (MIC) that forces network to learn to

infer the predictions of the masked regions from their context.

Medical data are sensitive, and they contain private

bioinformation and identity information. It inevitably leads

to privacy concerns during the process of adaptation with source

data. Driven by this fact, some pseudo label generation methods

use the knowledge of source model to denoise the pseudo label

of target samples under source-free conditions (Chen et al., 2021;

VS et al., 2022a). Bateson et al. (2022) introduced a label-free

entropy loss and a domain-invariant prior that integrated in the

form of a Kullback-Leibler divergence in loss function to guide

the adaptation process. Yang et al. (2022) designed a Fourier Style

Mining generator to inverse source-like images through statistic

information. These generated images can simulate source data

distribution and benefit the domain alignment. They designed

a domain distillation loss to achieve feature-level adaptation and a

domain contrastive loss to narrow down the domain shift using

a self-supervised mechanism.

As depending on the characters of medical imaging instruments

and patient’ organs, medical image datasets from different

sources follow different distributions. To make full use of the

underlying values of multiple source datasets, adversarial learning
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is introduced to minimize the distribution shift between multiple

source domains and target domains (Chen et al., 2021; VS et al.,

2022a). He et al. (2021) proposed a simple image translation to align

the pixel value distribution to reduce the domain shift. To make full

use of unlabeled data, the pseudo labels generated by an ensembled

model constrained the outputs of multiple source models. For the

classification task, Ahmed et al. (2021) proposed a new domain

adaptation strategy that the source models combine with suitable

weights to predict a integrated classification result with the best

quality than each source model.

3. Methods

3.1. Dataset description

In our experiments, we choose three public fundus image

databases for evaluation including the DRIVE, CHASEDB1, and

IOSTAR dataset (Figure 1). Each group of experiments chooses

two databases as source domain data and the remaining one

as target domain data. The DRIVE dataset contains 20 training

images and 20 testing images. This dataset provides two labeled

ground truths for each image, and we use the first labeled mask

for training and testing. The CHASEDB1 (Child Heart and Health

Study in England) dataset contains 28 color vascular images

with a resolution of 990 × 960. There are two segmentation

annotations available, and we adopt the first manual annotation

in our study. We follow the setting in Li et al. (2015) and use

the first 20 images for training and the remaining eight images

for testing. The IOSTAR dataset includes 30 images taken with an

EasyScan camera1 based on SLO technology. These high contrast

images have a resolution of 1,024 × 1,024 with 45◦ FOV. The

corresponding ground truths of these vessel images are annotated

by experts having a good knowledge of retinal image analysis

(Abbasi-Sureshjani et al., 2015; Zhang et al., 2016).

3.2. Measurement of performance

The retinal segmentation task is to classify each pixel in the

fundus image into vessel pixel or background pixel. Obviously, it

is a binary classification task. In order to analyze the performance

of our proposed method quantitatively, we use several common

metrics, including accuracy (Acc), sensitivity (Sen), specificity

(Spe), which are defined as below:

Acc =
TP + TN

TP + FN + TN + FP
, (1)

Sen =
TP

TP + FN
, Spe =

TN

TN + FP
, (2)

where TP and FP denote the number of foreground vessel pixels

that are correctly segmented and the number of background pixels

that are wrongly classified, respectively. TN represents the number

of background pixels that are correctly segmented, and FN denotes

the number of foreground vessel pixels that are wrongly classified

as background class. Moreover, we also calculate the AUC metric

(the area under the ROC curve) that is depended on the recall and

precision and is more appropriate to measure performance under

an unbalanced circumstance.

3.3. Approach

Figure 2 illustrates the whole structure of our multi-source and

source-free UDA framework. In this section, we first present the

dual consistency mechanism including intra-domain consistency

constraint and inter-domain consistency constraint. Next, we

propose a progressive entropy loss that can optimize the features

in a progressive way. The training procedures are finally presented.

3.3.1. Inter-domain consistency constraint
Because of the presence of distribution shift, the model trained

on the source domain tends to be frustrated when facing target

sample. In order to deal with such problem, we introduce the

inter-domain consistency constraint, which can select those reliable

samples to improve the adaptation process.

For each target image, there are two different augmented

images as the input of the source model, that is, a weak-augmented

image and a strong-augmented image. The weak augmentation

operations include intensity normalization, random rotation,

and random flip. The strong augmentation operations include

random gray scale adjustment and random color jitter besides the

operations in weak augmentation. Therefore, we get two different

prediction results for each pixel i in the two augmented images,

pksi = Sk(x
s
i ), (3)

pkwi = Sk(x
w
i ), (4)

where Sk denotes the source model trained on the kth source

domain. The superscript s denotes the strong augmentation and

w denotes the weak augmentation. Due to the existence of

domain shift between the source domain and the target domain

in the early stage of model training, the two prediction results

often have certain differences while the differences represent

unreliable samples that do harm to the adaptation. Therefore,

we introduce the inter-domain consistency constraint to discover

credible samples. If the two prediction results at the same pixel

position share the same category, this pixel sample is credible,

and it can participate in the domain adaptation. On the contrary,

this pixel sample is unreliable and should be discarded. Thus,

we can obtain a consistency mask indicating the dependability of

each pixel,

mk
i =

{

1, lksi == lkwi ,

0, otherwise,
(5)

where lksi and lkwi denote the pseudo label of the ith pixel in strong-

augmented image and weak-augmented image, and mk
i indicates

whether the ith pixel is selected to adapt the kth source model.

For the approach of pseudo label generation, we proposed a

dynamic threshold mechanism with weak-augmented image for

each source model given by

Tdyn = max
γ%

(sort(pkwi )). (6)

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1209132
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cai et al. 10.3389/fnins.2023.1209132

FIGURE 2

Overview of our proposed MSSF framework. Pseudo labels are generated under the guidance of the dual consistency constraint. Inter-domain

consistency constraint aims to optimize the intra-class distance of each source model and also ease the distribution shift between the source domain

and the target domain with two partially di�erent predictions in a sense. Intra-domain consistency constraint can utilize the knowledge of multiple

source models and thus can teach multiple models more essential and transferable knowledge regarding di�erent data domains. Progressive entropy

loss is complementary to our proposed dynamic pseudo label generation method, which can optimize the e�ectiveness of feature step by step.

After ranking the predicted score results in ascending order, the

top γ percentage probability value is taken as the dynamic factor.

Dynamic factor fits in with the adaptation process that can adjust

according to the training epoch,

γ = min(a−
b− a

total_epoch
∗ epoch, b), (7)

where a and b are the upper and lower bounds of the interval.

With the increase of training rounds, the number of credible vessels

samples in prediction also increases gradually, and the probability

distribution of the prediction results gradually inclines to the high

probability area. Thereafter, the dynamic threshold is supposed

to be reduced. After the dynamic threshold is obtained, the final

pseudo label can be obtained by

lkwi =

{

1, pkwi >= Tdyn,

0, otherwise.
(8)

It should be noted that the generation method of pseudo

label can be both applied to the prediction of weak-augmentation

image and strong-augmentation image. The pseudo label of strong-

augmentation image lkwi only relates to the consistency maskmk
i .

3.3.2. Intra-domain consistency constraint
Considering that the inter-domain consistency constraint only

focuses on a single source domain, it can only improve the feature

compactness of the model in a single source domain. In order to

make full use of the information in multiple source domains, we

propose that the intra-domain consistency constraint learns the

crucial knowledge and gets rid of the domain shift. Given two

source domains and corresponding source models S1 and S2 as

special cases, we can get the pseudo label imposing intra-domain

consistency constraint for target sample,

ti =

{

l1wi , l1wi == l2wi ,

2, otherwise.
(9)

The valid pseudo label ti will be given to the pixel i only when

the pseudo labels of S1 and S2 are consistent; otherwise, it will

be assigned invalid category 2. The final output pseudo label only

depends on the pseudo label of a weak-augmentation image instead

of a strong-augmentation image.

Those highly reliable pixels obtained via inter-domain

consistency constraint can maintain prediction-invariance on

different source domain models for each target domain image.

This prediction-invariance character can alleviate the domain

shift between multiple source domains and target domains to a

certain extent and improve generalization between multiple source

domains and target domains. Therefore, for the dual consistency

constraints, the intra-domain consistency constraint of a single

source domain can reduce the intra-class distance and the feature

space, while the intra-domain consistency constraint of multiple

source domains can utilize multiple source domain models to ease

the domain shift problem.

Thereafter, we introduce a consistency loss to utilize the

advantages of both the inter-domain consistency constraint and

intra-domain consistency constraint via filtering out samples that

do not meet both consistency constraints. For all source domain

models, consistency loss Losscon is defined as

Losscon = −
1

KN

K
∑

k=1

N
∑

i=1

CE(pkwi , ti), (10)
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where CE denotes cross entropy loss,

CE(pkwi , ti) =











−[pkwi logti + (1− pkwi )log(1− ti)],

ti 6= 2&mk
i == 1,

0, otherwise.

(11)

3.3.3. Progressive entropy loss
Dual consistency constraints can identify valuable pixels

for model training from both intra-domain and inter-domain

perspectives to deal with the unlabeled data. However, this strategy

is not completely satisfied. The pseudo label generated by dynamic

threshold mechanism cannot entirely substitute for the real ground

truth, which causes the intra-class feature to be not discriminative

enough. Therefore, in order to further reduce the distance of the

intra-class features, we propose progressive entropy loss.

Entropy minimization is familiar in semi-supervised learning

and unsupervised domain adaptation, which essentially supervises

model with the help of high probability regions during the training

phase. On the other hand, entropy minimization can also be seen

as a clustering method to compress the distance within each class,

making the features extracted from themodel more compact (Chen

et al., 2019; Zou et al., 2019). However, there will be some problems

occurring when applying this method directly. Due to the lack of

ground truths, the model is usually unstable in the early training

stage and the prediction is inaccurate. Then, the training model

tends to collapse and fall into the local optimal solution. Therefore,

we have come up with a progressive entropy loss strategy, which

gradually increases the weight of the unsupervised entropy loss

during the training phase to avoid the problem of insufficient

optimization of the model.

First, the unsupervised entropy loss is calculated based on the

prediction results of the weak augmented samples for multi-source

models:

Lossent = −
1

KN

K
∑

k=1

N
∑

i=1

pkwi log(pkwi ), (12)

where K denotes the number of source models and N denotes the

whole pixel set of target dataset. The dynamic factor β will be

adjusted according to the training epoch:

β = max(a+
b− a

total_epoch
∗ epoch, b). (13)

When the model gradually becomes stable with the increase of

training epochs, it gradually strengthens the constraint of entropy

minimization in a reasonable manner:

Losspro_ent = β × [−
1

KN

K
∑

k=1

N
∑

i=1

pkwi log(pkwi )]. (14)

Therefore, the final loss of our proposed method defined as

follows:

Loss = Losscon + Losspro_ent . (15)

4. Experiments

4.1. Experiments setting

The implementation of our approach is based on the publicly

Pytorch framework. We train our models on a NVIDIA GeForce

RTX 3090 graphics card with a memory of 24 GB. We adopt the

Adam algorithm as our network optimizationmethod, of which the

hyperparameters usually do not need to be adjusted.

Under the multi-source scenario, the number of source domain

datasets in our experiments is 2, the batchsize is set to be 2

for both source domains, the training epoch is set to be 10,

and the initial learning rate is set to be 0.00002. Because our

experiments are conducted on the DRIVE, CHASEDB1, and

IOSTAR datasets, in a multi-source scenario, three groups of

experiments can be formed: (1) The source domains are the

DRIVE and CHASEDB1 datasets, and the target domain is the

IOSTAR dataset. (2) The source domains are the DRIVE and

IOSTAR datasets, and the target domain is CHASEDB1. (3) The

source domains are the CHASEDB1 and IOSTAR datasets, and

the target domain is DRIVE. We evaluate all methods via four

common metrics for segmentation task including AUC, accuracy

(Acc), specificity (Spe), and sensitivity (Sen). The AUC represents

the overall performance which is more appropriate to judge

whether an algorithm is robust or not under an unbalanced

circumstance. The higher the value of Acc, the higher the correct

recognition rate of the algorithm. The Spe and Sen metrics

indicate the recognition capacity of background class and vessel

class, respectively.

4.2. Ablation experiments

We perform the ablation experiments to validate our proposed

modules are effective or not on the DRIVE dataset. Comprehensive

results are summarized in Table 1. The baseline method does

not use any modules. It uses multiple source models to predict

separately and then obtain pseudo labels for the prediction results

of each source model directly through a hard thresholdmechanism.

The pseudo labels will be used to monitor the prediction results

of target domain sample after the integration of the predicted

results of multiple source domain models. This approach also

utilizes knowledge from multiple source domains, similar to the

idea of integrated learning. This method is also used as a strong

baseline under multi-source scenarios in our comparison study.

The method-a adds inter-domain consistency constraint module

(inter-domain CC) based on the baseline. The method-b adds the

intra-domain CC constraint module (Intra-domain CC) based on

method-a. Themethod-c adds progressive entropy loss (PEL) based

on method-b.

4.2.1. The impact of inter-domain consistency
constraint

Inter-domain consistency constraint can filter out pixels

with inconsistent categories in the predicted results under

different augmentation operations, improving the stability and

consistency of the model. Such constraint can explore more
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TABLE 1 Ablation study on DRIVE dataset.

Method Inter-domain CC Intra-domain CC PEL AUC Acc Spe Sen

Baseline – – – 0.9737 0.9660 0.9830 0.7793

Method-a X – – 0.9755 0.9652 0.9819 0.7916

Method-b X X – 0.9762 0.9623 0.9741 0.8384

Method-c X X X 0.9764 0.9611 0.9718 0.8493

The bold values indicate the highest performance metrics in each column.

FIGURE 3

Retinal vessel segmentation results for our proposed method on the DRIVE dataset. From the column in left to right (A–X), the retinal original images,

the ground truths, the segmentation results of the baseline, the segmentation results of method-a, and the segmentation results of method-b, the

segmentation results of method-c.

valuable vessel samples than background samples. Therefore, it

has a strengthening effect on the learning of vessel regions,

and the sensitivity of the method-a is improved compared to

the baseline.

4.2.2. The impact of intra-domain consistency
constraint

When there is only the inter-domain consistency constraint

module, the knowledge of each source domain model is mixed,

which is not beneficial to the learning of knowledge in the

target domain. Accordingly, when introducing the intra-domain

consistency constraint module, more effective vessel pixels are

identified during the model training for supervised learning,

making full use of the inherent knowledge of multiple source

domains. Therefore, the AUC and sensitivity metrics of method-

b are increased compared with method-a, especially the increase

in sensitivity. However, the specificity decreases from 0.9819

to 0.9741 due to such constraint, because it filters some

samples of background class when the model is able to identify

more vessels.

4.2.3. The impact of progressive entropy loss
On the one hand, unsupervised progressive entropy

loss enhances the compactness of intra-class features.

The high probability regions obtained through supervised

learning with pseudo labels guide the model to extract more

discriminative features for background and vessel classes.

On the other hand, because the generation of pseudo label

is based on the dynamic threshold mechanism, it gradually

strengthens the recognition capability of vessels during the

adaptation process. Therefore, compared with the other

experiment group, method-c has a significant improvement

in sensitivity, with the highest AUC and sensitivity. Although

the accuracy and specificity of the final model have slightly

decreased, it has brought about significant improvements

in sensitivity, which is more practical for medical image

segmentation and can detect more foreground objects to

assist in medical diagnosis.

We also provide the visualization result of our proposed

method in different ablation experiment groups in Figure 3. It

can be seen that for method-a group with only the inter-domain

consistency constraint module, it is easy to predict the outer
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TABLE 2 Comparison experiments on three target domains.

Method AUC Acc Spe Sen

Source domains: drive and CHASEDB1, target Domain:IOSTAR

Oracle 0.9850 0.9658 0.9831 0.8426

AdaptSegNet (DRIVE/CHASEDB1) 0.9361/0.9680 0.9534/0.9569 0.9802/0.9812 0.6943/0.6703

DPL (DRIVE/CHASEDB1) 0.9569/0.9631 0.9458/0.9499 0.9771/0.9783 0.7027/0.7124

TT_SFUDA (DRIVE/CHASEDB1) 0.9104/0.9344 0.9390/0.9358 0.9799/0.9774 0.6218/0.6496

Multi-Source 0.9834 0.9651 0.9789 0.8180

Ours 0.9824 0.9625 0.9743 0.8357

Source domains: drive and IOSTAR, target Domain:CHASEDB1

Oracle 0.9883 0.9711 0.9776 0.8769

AdaptSegNet (DRIVE/IOSTAR) 0.9659/0.9388 0.9561/0.9533 0.9853/0.9839 0.7824/0.6930

DPL (DRIVE/IOSTAR) 0.9513/0.9652 0.9511/0.9630 0.9842/0.9861 0.6397/0.7442

TT_SFUDA (DRIVE/IOSTAR) 0.9517/0.9556 0.9396/0.9393 0.9714/0.9710 0.7793/0.7871

Multi-Source 0.9819 0.9616 0.9688 0.8546

Ours 0.9816 0.9606 0.9674 0.8601

Source domain: CHASEDB1 and IOSTAR, target Domain:DRIVE

Oracle 0.9833 0.9631 0.9738 0.8516

AdaptSegNet (CHASEDB1/IOSTAR) 0.9638/0.9470 0.9591/0.9512 0.9877/0.9843 0.6634/0.6789

DPL (CHASEDB1/IOSTAR) 0.9511/0.9553 0.9501/0.9528 0.9816/0.9845 0.6332/0.6351

TT_SFUDA (CHASEDB1/IOSTAR) 0.9314/0.9407 0.9336/0.9389 0.9759/0.9801 0.7768/0.7598

Multi-Source 0.9737 0.9660 0.9830 0.7793

Ours 0.9764 0.9611 0.9718 0.8493

The bold values indicate the highest performance metrics in each column.

circle of the eyeball as a blood vessel, indicating that the pseudo

labels for blood vessels are not accurate enough, and the features

extracted from the model are not clean. The introducing of

the intra-domain consistency constraint module greatly improves

this problem because it can filter out pixels that are prone to

false segmentation by using the knowledge of multiple source

models. Since progressive entropy loss can be beneficial to obtain

more discriminative features, it can be found that the method-c

recognizes more difficult samples correctly.

4.3. Comparison experiments

We perform experiments on DRIVE, CHASEDB1 and IOSTAR

three datasets, where we choose two datasets as the source domain

and the remaining one as the target domain. We compare our

proposed method with three methods with three different multi-

source and source-free single condition settings in Table 2.

Compared to the original unsupervised domain adaptation

method such as AdaptSegNet (Tsai et al., 2018), adversarial learning

at the output result level is clearly desirable due to the similar

spatial location and target sizes in cityscape dataset. However, there

are significant differences and complex distribution in different

vessels, and it failed to capture the effective knowledge of vessel

distribution. On the other hand, our proposed method achieves

better performance than two source-free domain adaptation

methods including DPL and TT_SFUDA (Chen et al., 2019; VS

et al., 2022b). These two methods do not essentially solve the

domain shift problem because of the significant differences in

experimental results across the different target domains. Due to

the existence of multiple source models, our proposed method

can alleviate the domain shift on the target domain through

dual consistency constraints and sufficiently explore the essential

knowledge of multiple source domains. Therefore, it is minimally

affected by the magnitude of the domain shift, and has gained

relatively ideal performance in different target domains. The

performance of the multi-source algorithm is familiar with our

method, but when the target domain is DRIVE with a large

number of thin vessels, its performance drops a lot. Such a

defect can be attributed to the lack of effective treatment of the

pseudo label.

Our proposed method achieves better performance than

unsupervised domain adaptation methods including source-

free and multi-source single scene settings on different target

domains. It can sufficiently explore the knowledge fusion

in multiple source models while retaining the advantage of

source pretrained model of high AUC and sensitivity metrics.
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FIGURE 4

Visualization for di�erent methods on DRIVE target domain. From the left to right columns, they are original image, ground truth, and the

segmentation results of AdaptSegNet, DPL, TT_SFUDA, multi-source, and our proposed MSSF algorithm, respectively.

Such advantage makes our approach more meaningful and

practical that more vessels can be identified as correctly

as possible especially under the unsupervised domain

adaptation scenario.

We also present a visual comparison of the segmentation results

of several methods as shown in Figure 4. Compared with other

methods, our approach has fewer false segmentation cases, which

effectively avoids the occurrence of mistakenly identifying the outer

circle of the eye as vessel class. It also has the best recognition

performance for a large number of capillaries in the middle area

of a fundus image, preventing the fracture of vessel occurring.

5. Conclusion

This study designs a brand-new unsupervised domain

adaptation framework, which expands the single unsupervised

domain adaptation scene including source-free and multi-source

settings. Our proposed dual consistency constraint can filter out

noisy pseudo labels based on the knowledge in each source models

and the fusion between them. To effectively promote the feature

clustering, progressive entropy loss can not only compress the

distance within each class but also can benefit the generation of

pseudo label in turn. The proposed MSSF framework combines

the advantages of source-free and multi-source adaptation. We

hope this paradigm can inspire future studies about unsupervised

domain adaptation.
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