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Introduction: The human brain processes shape and texture information

separately through di�erent neurons in the visual system. In intelligent computer-

aided imaging diagnosis, pre-trained feature extractors are commonly used

in various medical image recognition methods, common pre-training datasets

such as ImageNet tend to improve the texture representation of the model

but make it ignore many shape features. Weak shape feature representation is

disadvantageous for some tasks that focus on shape features in medical image

analysis.

Methods: Inspired by the function of neurons in the human brain, in this paper,

we proposed a shape-and-texture-biased two-stream network to enhance the

shape feature representation in knowledge-guided medical image analysis. First,

the two-stream network shape-biased stream and a texture-biased stream are

constructed through classification and segmentation multi-task joint learning.

Second, we propose pyramid-grouped convolution to enhance the texture feature

representation and introduce deformable convolution to enhance the shape

feature extraction. Third, we used a channel-attention-based feature selection

module in shape and texture feature fusion to focus on the key features and

eliminate information redundancy caused by feature fusion. Finally, aiming at the

problem of model optimization di�culty caused by the imbalance in the number

of benign and malignant samples in medical images, an asymmetric loss function

was introduced to improve the robustness of the model.

Results and conclusion: We applied our method to the melanoma recognition

task on ISIC-2019 and XJTU-MM datasets, which focus on both the texture

and shape of the lesions. The experimental results on dermoscopic image

recognition and pathological image recognition datasets show the proposed

method outperforms the compared algorithms and prove the e�ectiveness of

our method.

KEYWORDS

computer-aided diagnosis, image recognition, feature fusion, joint learning, two-stream

network, brain-like information processing

1. Introduction

Computer-aided diagnosis (CAD) has been a research hotspot for the past few decades.

CAD automatically analyzes the patient data through machine learning methods to make

an assessment of the patient’s condition (Yanase and Triantaphyllou, 2019; Chan et al.,

2020). Medical image analysis is one of the most important fields in CAD technologies, it
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helps read imaging data to improve the diagnosis efficiency.

An intelligent medical image analysis model can share the

workload of radiologists and pathologists, and enables areas with

underdeveloped medical resources to achieve high-level imaging

analysis at low cost (Shen et al., 2017; Kurc et al., 2020).

In the past decade, medical image analysis methods have grown

by leaps and bounds due to the development of deep learning

and computer vision algorithms. Powerful feature representation

ability enables deep neural networks to learn complex hidden

features from a large amount of training data, which overcomes

the difficulty of manual feature design in traditional medical

image analysis methods. However, there are still challenges to be

addressed in current deep learning-based algorithms for medical

image analysis, with weak shape representation being one of the

most critical issues. On the one hand, in the commonly used

convolutional neural network (CNN), the limited receptive field of

kernels tends to fit local features during kernel parameter learning.

Although the range of the receptive field of deep convolutional

kernels on original images gradually increases as layers deepen,

deeper layers weaken their connection with original images,

which limits networks in modeling shape features at larger scales

(Luo et al., 2016; Araujo et al., 2019). On the other hand, pre-

trained parameters are frequently employed in medical image

recognition techniques to expedite convergence during training

and potentially enhance model performance. Given the paucity

of annotated data in medical images, large-scale natural image

datasets such as ImageNet (Deng et al., 2009; Russakovsky et al.,

2015) are commonly utilized as pre-training datasets. However,

the research of Geirhos et al. (2018) indicates that the deep neural

network pre-trained on ImageNet is biased to focus on the texture

features and has relatively weak shape feature representation

ability.

The weak representation of shapes, caused by the limitations

of the model and pre-training datasets, significantly impacts the

performance of the model on certain shape-dependent medical

image tasks. As, Figure 1 shows, cascade segmentation and

classification model (Chang, 2017) can solve the problem in some

scenarios, it uses a segmentation network to obtain the mask

of a lesion, and then use the segmented lesion image as the

input of the classification network, providing shape information

for classification, eliminating the background noise. However, the

lack of sufficient training data is a prevalent issue in various

medical image analysis tasks, resulting in inadequate precision

of the trained segmentation task. Inaccurate segmentation can

provide erroneous shape information for classification. In addition,

the cascade segmentation and classification model contains two

encoders and one decoder, and they are cascaded, the research

of He et al. (2017) indicates that repetitive encoding and

decoding operations yield minimal improvements to the quality of

extracted features.

In order to solve the above problems, we proposed a shape-and-

texture-biased two-stream network to enhance the shape feature

representation in knowledge-guided medical image analysis. The

human brain processes shape and texture information separately

through different neurons in the visual system, inspired by

that, first, the two-stream network shape-biased stream and

a texture-biased stream are constructed through classification

and segmentation multi-task joint learning. Second, we propose

pyramid-grouped convolution (PGC) to enhance the texture

feature representation, and introduce deformable convolution

(DC) to enhance the shape feature extraction. Third, we used

a channel-attention-based feature selection module in shape

and texture feature fusion to focus on the key features and

eliminate information redundancy caused by feature fusion.

Finally, aiming at the problem of model optimization difficulty

caused by the imbalance in the number of benign and malignant

samples in medical images, an asymmetric loss function was

introduced to improve the robustness of the model. We applied

our method to the melanoma recognition task on ISIC-2019

(Rotemberg et al., 2021) and XJTU-MM datasets, which focuses

on both the texture and shape of the lesions. The experimental

results on dermatoscopic image recognition and pathological

image recognition show that the proposed method outperforms

the compared algorithms and prove the effectiveness of our

method.

The main contributions of this work are enumerated as

follows:

• We propose the shape and texture joint learning

two-stream network for knowledge-guided medical

image recognition, taking into account the learning

of shape features and texture features by the network,

addressing the weak shape representation problem of

existed methods.

• We propose pyramid-grouped convolution to enhance

the texture feature representation, and introduce

deformable convolution to address the limitation

of fixed respective fields, enhancing the shape

feature extraction.

• We construct the shape and texture fusion module

based on channel attention mechanism to focus

on the essential features and eliminate the noise,

reducing the information redundancy caused by

feature fusion.

• We introduce the asymmetric loss function for

optimization, reducing the impact of commonly

existed sample imbalance problem in medical

image datasets.

2. Related work

2.1. Knowledge-guided medical image
analysis

Most of the key technologies in medical image analysis

come from general computer vision algorithms, however, the

image characteristics and the data distribution are different

between natural images and medical images. Constructing

appropriate deep neural network model with the guidance

of the prior knowledge from pathology and radiology is

important for improving model performance in specific medical

analysis tasks.

Fan et al. (2017) proposed a novel automatic segmentation

algorithm using saliency combined with Otsu threshold for

dermoscopy images, which extracted prior information on healthy

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1212049
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1212049

skin to construct the color saliency map and brightness saliency

map respectively. Ahn et al. (2017) proposed a saliency-based

lesion segmentation method in dermoscopic images, using

the reconstruction errors derived from a sparse representation

model coupled with a novel background detection. Yang et al.

(2023) proposed a Multi-scale Fully-shared Fusion Network

(MFF-Net) that gathers features of dermoscopic images and

clinical images for skin lesion classification. Zhang et al.

(2018a) used deep learning algorithms to help diagnose four

common cutaneous diseases based on dermoscopic images and

summarized classification/diagnosis scenarios based on domain

expert knowledge and semantically represented them in a

hierarchical structure to improve the accuracy of the algorithm.

Clinical prior knowledge is also widely applied to the analysis of

ultrasound images and other medical images. Liu et al. (2019b)

proposed a novel deep-learning-based CAD system, guided by

task-specific prior knowledge, for automated nodule detection and

classification in ultrasound images. Chen et al. (2021) proposed a

knowledge-guided data augmentation framework for breast lesion

classification, which consists of a modal translater and a semantic

inverter, achieving cross-modal and semantic data augmentation

simultaneously. Shi et al. (2020) proposed a knowledge-guided

synthetic medical image adversarial augmentation method for

ultrasonography thyroid nodule classification, extracting domain

knowledge from standardized terminology to improve the

classification performance. Yang et al. (2021) proposed a multi-

task cascade deep learning model (MCDLM), which integrates

radiologists’ various domain knowledge (DK) and usedmultimodal

ultrasound images for automatic diagnosis of thyroid nodules.

Han et al. (2020) proposed an ensemble learning method for

panoramic radiographs recognition based on the characteristics

of each stage of tooth growth. Ni et al. (2013) proposed a novel

learning-based automatic method to detect the fetal head for the

measurement of head circumference from ultrasound images and

used prior knowledge and online imaging parameters to guide the

sliding window-based head detection. Pan et al. (2022) proposed

a two-stage network with prior knowledge guidance for medullary

thyroid carcinoma recognition in ultrasound images. Meanwhile,

extracting and fusing semantic features of solid tissues and

calcification for better recognizing the segmented nodules. Zhou

et al. (2022) proposed a rheumatoid arthritis knowledge-guided

(RATING) system for scoring rheumatoid arthritis activity from

multimodal ultrasound images, leveraging diagnostic paradigm

and experience to enhance the robustness. Lu et al. (2023)

proposed a Prior Knowledge-based Relation Transformer Network

(PKRT-Net), which employed the clinical prior knowledge to

assist OC segmentation. Gao et al. (2021) proposed a medical-

knowledge-guided one-class classification approach that leverages

domain-specific knowledge of classification tasks to boost the

model’s performance and showed superior model performance

on three different clinical image classification tasks. Zhang et al.

(2023) proposed coarse-to-fine method for melanoma and nevi

recognition according to distribution of inter-class and intra-class

differences as summarized by dermatologists.

Prior knowledge provides inspiration for medical image

analysis design, in this paper, we innovate a novel method for

shape-relied medical image recognition.

2.2. Shape and texture feature fusion

Aiming at the problem of weak shape representation of existing

CNN-based medical image recognition models, we investigate

FIGURE 1

Weak feature representation problem of many existing methods for image recognition in computer-aided diagnosis. (A) Common image recognition

model. (B) Cascade segmentation and classification model.
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FIGURE 2

Framework of the proposed shape and texture joint learning two-stream network. (A) Texture-biased stream. (B) Shape-biased stream. (C) Feature

fusion module. (D) Classifier. (E) Asymmetric loss.

the texture and shape feature fusion algorithms designed for

various tasks.

Al-Osaimi et al. (2011) proposed spatially optimized data/pixel-

level fusion of 3-D shape and texture for face recognition. Lu et al.

(2017) proposed a face image retrieval method based on shape

and texture feature fusion, which used accurate facial landmark

locations as shape features and utilized shape priors to provide

discriminative texture features. Kotsia et al. (2008) proposed a novel

method based on the fusion of texture and shape information for

facial expression and Facial Action Unit (FAU) recognition from

video sequences and used various approaches to perform texture

and shape feature fusion, among which were SVMs and Median

Radial Basis Functions (MRBFs). Anantharatnasamy et al. (2013)

proposed a content-based image retrieval system based on three

major types of visual information including color, texture, shape,

and their distances to the origin in a three dimensional space

for the retrieval. Sumathi and Kumar (2012) extracted edge and

texture features using Gabor filter and fused them for plant leaf

classification. Xiong et al. (2007) proposed a Statistical Shape and

Radio texture fusionmodel for facial expression sequence synthesis,

processing facial shape and texture separately and fusing them

together to synthesize the final result. Jo et al. (2014) proposed a

new method for eye state classification to detect diver drowsiness,

which extracted and fused features from both eyes. Zhang et al.

(2020) proposed two-stream networks to enhance the extraction

of shape and texture respectively for clothing classification and

attribute recognition.

These researches use various of methods to enhance the texture

and shape feature learning on specific data. For shape-relied

medical image recognition tasks, we design the model to realize

that with the guidance of the prior knowledge, such as visual

characteristics and category distribution.

3. Methodology

3.1. Framework

In contrast to the cascade segmentation and classification

model, our proposed model employs a two-stream network for

joint learning of shape and texture, mitigating the impact of

imprecise segmentation on shape information in the former. The

overall framework of the proposed method is shown as Figure 2,

the input image is fed into the parallel texture-biased stream and

shape-biased stream. First, the texture-biased stream consists of

a feature encoder, which is pre-trained on texture-biased large-

scale dataset, such as ImageNet. To further enhance the texture

feature representation ability of the texture feature encoder, we

reconstruct the convolutional block using the proposed channel

connection pyramid mechanism. Second, the shape-biased stream
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FIGURE 3

Pyramid-grouped convolution. In each pyramid, the density of

channel connection changes layer by layer, and from dense

to sparse.

contains an encoder-decoder based network, the encoder extracts

the shape features and the decoder generates the lesion mask, the

quality of the extracted shape features is supervised by L2 loss

function between the predicted mask and the ground truth mask.

Third, the texture feature and the shape feature are concatenated

and input to the feature fusion module, to address the information

redundancy problem in feature fusion, we construct the feature

fusion module based on channel attention mechanism to focus

on the essential features and eliminate the effects of noise. In

addition, to balance the texture-biased learning and shape-biased

learning, the gradient scaling layer is added between the shape

feature map and the concatenation operation to weight the gradient

in the back propagation. Then, the fully connected layer classifier

is used to output the classification results. Finally, to overcome

the optimization difficulty caused by the problem of imbalanced

samples in medical image datasets, we introduce the asymmetric

loss to enhance the attention of the model to the categories with

smaller numbers of samples.

3.2. Texture-biased stream

The texture-biased stream is constructed by the texture

feature encoder pre-trained on texture-biased dataset ImageNet.

To enhance the texture feature representation, we improve the

channel connections in convolutional blocks. In the standard

convolution operation, each kernel is connected to every channel

of the input feature map. However, while the large number

of learnable parameters provides a powerful fitting ability for

the network, overly dense connections can lead to significant

information redundancy and unnecessary computational burden

(Huang et al., 2017; Ma et al., 2018; Zhang et al., 2018b). Grouped

convolution mechanism (Xie et al., 2017; Zhang H. et al., 2022)

provides an efficient way to solve the problem, it divides the input

feature map into several groups in the channel dimension, each

kernel has connections to the specific group only rather than all

channels of the input feature map.With the same number of output

feature map channels, channel-wise connections become sparser,

FIGURE 4

Deformable convolution. (A) Deformable kernel. (B) Deformable

convolutional layer. An o�set layer is inserted to learn the o�set to

transform the rectangular kernel to a kernel with an irregular shape

that better match the extracted features. The feature map in the

deformable receptive field is resampled through bilinear

interpolation according to the parameters of the learned o�set.

thereby enhancing diagonal correlations between channels. Depth-

wise convolution (Chollet, 2017) even makes the connections more

sparse, which regards each channel of the input feature map as

one group to perform grouped convolution. With fewer learnable

kernel parameters, depth-wise convolution even shows stronger

low-level texture feature representation ability (Guo et al., 2019;

Tan and Le, 2019). However, grouped convolution and depth-

wise convolution still have problems in balancing the learning of

low-level and high-level texture features.

To further improve the feature extraction quality and efficiency,

we propose the pyramid-grouped convolution(PGC)mechanism to

enhance the feature representation of the texture-biased stream. As

Figure 3 shows, In each pyramid-convolutional block, the density

of channel connections varies layer by layer, transitioning from

dense to sparse. This results in a transition of the channel-wise

receptive field of each kernel from large to small, leading to sparser

feature encoding compared to conventional grouped convolution

and more appropriate channel-wise receptive fields than depth-

wise convolution. The PGC blocks are embedded in the backbone

network to construct feature encoder of texture-biased stream,

enhancing the texture feature representation.

3.3. Shape-biased stream

Pixel-wise semantic segmentationmodel is a learning paradigm

conducive to modeling shape features (Long et al., 2015; Guo

et al., 2018). In the proposed method, the shape-biased stream

is constructed using an encoder-decoder based segmentation

network, the decoder generates the lesion mask based on the

features extracted from the input image. With the supervision of

the L2 loss between the predicted mask and the ground truth

mask, the encoder is encouraged to learn the shape-biased features.

Many encoder-decoder based semantic segmentation models add
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shortcut connections between encoders and decoders to enhance

the contributions of low-level features extracted by shallow layers

in encoders to mask generation, which are usually called U-shape

networks (Ronneberger et al., 2015; Oktay et al., 2018; Zhou et al.,

2018; Zhang et al., 2021). But in the shape-biased stream of our

method, all we need is to improve the shape feature representation

of the feature map extracted by feature encoder, all the information

flow is expected to pass through the deepest feature map, so we

did not add any shortcut connection between the encoder and

the decoder.

In the design of the shape encoder network, we introduce

the deformable kernel to address the limitation of the rectangular

receptive field of the convolution kernel. Irregular-shaped visual

features are common in lesion images, for example, the irregular-

shape boundary of the lesion in dermoscopic images (Celebi et al.,

2019), the irregular-shaped cells in pathological images (Zhang D.

et al., 2022). Rectangular convolutional kernels have limitation in

extracting these features, especially in extracting low-level shape

features. As Figure 4 shows, the discrete featuremap is regarded as a

continuous two-dimensional distribution, we insert an offset layer

to learn a offset to transform the rectangular kernel to an kernel

with irregular shape that better match the extracted features. The

feature map in the deformable receptive field is resampled through

bilinear interpolation according to the parameters of the learned

offset. deformable convolution is calculated by

y(p) =
∑

pk∈R

w
(

pk
)

· x
(

p+ pk + 1pk
)

, (1)

where y(p) indicates the feature obtained by the convolution

on one sampling point p of the feature map. R is the receptive

field size of the regular kernel. pk donates the difference between

the sampling points and y(p), k = 1, 2, 3...N,N = |R|, 1pk is

the learned offset, and w is the kernel parameter. We reconstruct

the backbone network of feature encoder using deformable

convolution layers, enhancing the representation of irregular-

shaped features.

3.4. Channel-attention-based texture and
shape feature fusion

The feature maps extracted from the texture-biased and shape-

biased streams are concatenated to fuse texture and shape features,

which expands the scope of the extracted features. However, this

also results in a certain degree of information redundancy. Some

irrelevant features not only fail to contribute to improving model

performance but also increase the risk of overfitting and negatively

impact model robustness. To select essential features for lesion

recognition and eliminate irrelevant features and noise, we design

the texture and shape feature fusion module based on channel

attention mechanism.

Each kernel represents a specific hidden feature, having a

specific correlation with lesion recognition, feature selection is

equivalent to kernel selection, which can also be regarded as the

selection of channels of feature map. We introduce the channel

attention mechanism to highlight the essential channels and

FIGURE 5

Channel attention mechanism. The attention weight vector watt is

calculated through global pooling and 1× 1 convolutional layers,

then the input feature map Z is weighted to obtain the output

feature map Z′.

suppress noise through learning the channel weights based on the

global representation of each channel. As Figure 5 shows, for the

w × h × c input feature map Z, it is first transformed into a

1× 1× c feature vector g through global pooling, which combines

average pooling and max pooling to balance average and peak

characterization, calculating by

gk =
1

2





1

wh

h
∑

i=1

w
∑

j=1

zi,j,k +max
i,j

(zi,j,k)



 , (2)

where gk is the element in feature vector g, zi,j,k is the element in

k-th channel of feature map Z. Then we use two 1×1 convolutional

layers to obtain the attention weight of each channel, calculating

through

watt = δ

(

wT
Conv2 · δ

(

wT
Conv1 · g

))

, (3)

wherewConv1 andwConv2 are the weight parameters of two 1×1

convolutional layers, δ(·) is the sigmoid activation function. Finally,

the original input feature map is weighted by the weight vector,

Z′ = watt ⊗ Z, (4)

where⊗means to multiply watt and Z channel by channel.

In optimization, the channels that are highly relevant to lesion

recognition are highlighted, which eliminates the information

redundancy caused by the feature fusion of texture-biased stream

and shape-biased stream, and selects the features conductive to

lesion recognition, improving the robustness of the model.

3.5. Joint learning loss function and
optimization

Due to the characteristics of the disease, training data often

contains more benign lesions than malignant ones, resulting in

insufficient attention given to malignant samples during network

training and negatively impacting model optimization (Liu et al.,

2019a) and (Xu et al., 2020). If the number of benign samples is

forcibly reduced to balance the number of benign and malignant

samples, it will lead to insufficient training data.

To address the problem of sample imbalance, we design the

asymmetric loss function formedical image recognition with a large
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amount of negative samples and few positive samples. Different

from the commonly used cross-entropy loss shown in Equation (5),

LCE = −y log(p)− (1− y) log(1− p), (5)

where y∈{0, 1} means the ground truth label of the sample,

p ∈ (0, 1) is the predicted score, when p > 0.5, the sample is

predicted as the positive category, the asymmetric loss decouples

the loss of positive and negative categories, reducing the impact of

sample imbalance through asymmetric focusing and asymmetric

probability transfer, for each sample, the new loss function for

classification LCLS is calculated through

LCLS = −y(1− p)γ+ log(p)− (1− y)pγ− log(1− p), (6)

where γ+ and γ− are the exponential decay factors, the larger

the value of the decay factor, the greater the attenuation effect. The

adaptive weight factors (1 − p)γ+ and pγ− are added to original

cross-entropy loss function to asymmetrically scale the loss of

positive samples and negative samples, which is better for the

optimization in the case of unbalanced samples. We set γ+ < γ−

to reduce the gradient of the negative samples, strengthening the

attention of the model optimization to the positive samples.

In addition, with typical characteristics, some negative samples

are easy to identify, to constrain the model to focus on hard

samples, we add the probability transfer to the loss function,

directly discarding samples which have a low predicted p value. The

weight factor ofL− is reconstructed with the transfer probability pt ,

which is calculated by

pt = max(p− ϕ, 0), (7)

where ϕ is the probability cutoff threshold, when the predicted

p is lower than µ, pt is set to 0. The final asymmetric classification

loss function is

LCLS = −y(1− p)γ+ log(p)− (1− y)p
γ−
t log(1− p), (8)

which enables the model to overcome the imbalance of

samples in training, and focus on the difficult samples near the

discrimination interface, enhancing the robustness of the trained

model.

In the optimization of the shape-biased stream, we use L2 loss,

which is the pixel-wise mean square error between the predicted

mask M̂ and the ground truth maskM, the shape loss LSHP is

LSHP = ‖M̂−M‖2, (9)

In joint learning, texture feature encoder parameter θ
∗

TE is

supervised by LCLS, shape feature decoder parameter θ
∗

SD is

supervised by LSHP, shape feature encoder parameter θ
∗

SE is

supervised by LCLS and LSHP to encourage learning shape features

that are conductive to lesion classification. In summary, they are

optimized by

θ
∗

TE = argmin
θTE

LCLS (10)

θ
∗

SE = argmin
θSE

(αLCLS + βLSHP) (11)

TABLE 1 Number of samples in each dataset.

Dataset Malignant Benign Total Mask label∗

ISIC-2019 4,522 12,875 17,397 2,671

XJTU-MM 2,170 6,928 9,098 726

∗Due to not all samples having corresponding mask label, the shape-biased learning is only

optimized when the input images have corresponding mask labels.

θ
∗

SD = argmin
θSD

LSHP (12)

where α and β is the scaling coefficient to balance LCLS and

LSHP, which is realized through the gradient scaling layer. Through

the cooperative optimization of each module, the proposed

method realizes texture and shape joint learning, improving the

performance on shape-relied medical image recognition tasks.

4. Experiments

4.1. Experimental setup

4.1.1. Data preparation
We use two medical image datasets to verify the effectiveness of

the proposed method.

• ISIC-2019: A public and commonly used dermoscopic image

dataset for dermatological diagnose. According to the advice

from dermatologists, the malignant melanoma is one of the

most dangerous skin cancer, and the melanoma lesions have

similar visual characteristics to nevus. Therefore, we focus

on the melanoma and nevi recognition task on this dataset.

We use 12,875 nevi images and 4,522 malignant melanoma

images, of which 2,671 images have corresponding lesionmask

labels.

• XJTU-MM: A skin pathological image dataset collected

from the Second Affiliated Hospital of Xi’an Jiaotong

University(Xibei Hospital). It contains 9,098 images of RoI

regions cropped from the whole slide histopathological

images by pathologists, of which 2,170 images are malignant

melanoma lesions and 6,928 images are benign nevus. And 726

of them have cell-wise masks labeled by pathologists.

The sample number of three datasets are shown in Table 1.

Each dataset is divided into training set, validation set, and test

set according to the ratio of 6:2:2, the images of malignant lesions

are positive samples and the images of benign lesions are negative

samples. Due to not all samples having the corresponding mask

label, the shape-biased learning is only optimized when the input

images have the corresponding mask labels.

4.1.2. Evaluation metrics
To quantitatively evaluate the performance of the model, we

use accuracy(Acc.), precision(Pre.), recall(Rec.), and F1 score(F1)
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as evaluation metrics. They are calculated by

Acc. =
TP + TN

TP + FP + TN + FN
,

Pre. =
TP

TP + FP
,

Rec. =
TP

TP + FN
,

F1 =
2× Pre.× Rec.

Pre.+ Rec.
,

(13)

where TP (true positive) means the number of samples

categorized to positive correctly, TN (true negative) means the

number of samples categorized to negative correctly, FP (false

positive) means the number of samples misclassified to malignant,

FN (false negative) means the number of samples misclassified to

negative. Higher accuracy reflects better overall performance of

the model on all samples, higher precision means fewer malignant

lesions are miss detected, and higher recall means higher sensitivity

of the model to malignant lesions, F1 score is the combination of

precision and recall. The four metrics provide a comprehensive

evaluation of the medical image recognition models.

4.1.3. Implementation
In the proposed STNet-50, ResNet-50 is used as the baseline

backbone of texture encoder and shape encoder, the shape

feature decoder in the shape-biased stream is constructed using

deconvolution operations and referring to the structure of ResNet-

18. The texture encoder is pre-trained on ImageNet-1K. We

implement the network using pytorch, opencv, scikit-learn and the

libraries they depend on based on Python, and train the model on 2

RTX3090-24GB GPUs. All images are resized to 224×224, random

rotation and random cropping are used for data augmentation.

Batch size is set to 64, initial learning rate is set to 5e − 4, weight

decay is set to 1e − 5, RMSprop (Hinton et al., 2012) is used as

the optimization algorithm and the momentum is set to 0.9. The

exponential decay factors in asymmetric loss is set to λ+ = 1,

λ− = 3.

4.2. Comparison results

We compared the proposed method with some popular general

vision models, including the ResNeSt (Zhang H. et al., 2022),

which is the latest iteration of ResNet, and ConvNeXt (Liu et al.,

2022), which is regarded as CNN for 2020s. We also added some

models designed for specific medical image recognition tasks to

the comparative experiment, including DeMAL-CNN (He et al.,

2022) for skin lesion classification in dermoscopy images, and

MPMR (Zhang D. et al., 2022), which is a multi-scale-feature-based

melanoma recognition method in pathological images.

The results are shown in Table 2, which indicate that the

proposed STNet outperforms compared algorithms on two datasets

and on all evaluation metrics. ConvNeXt series models show

generally better performance than ResNeSt-50 on two datasets,

which confirms the progress from split-attention block to ConvNet

block. DeMAL-CNN shows a similar ability to ConvNeXt on

ISIC-2019 dataset, considering that it uses standard ResNet

as the backbone, the framework design of DeMAL-CNN has

considerable contributions to enhance the dermoscopic image

feature representation. MPMR shows better performance than

ConvNeXt, which indicates that enhancing multi-scale features

is effective in skin pathology image recognition. In addition, in

each series of models, the increase in network layers does not

bring about significant performance improvements, it is difficult to

significantly improve the recognition accuracy of the model simply

by increasing the number of layers. Furthermore, in four evaluation

metrics, precision and recall are obviously lower than accuracy,

which is caused by the sample imbalance of malignant and benign

samples. In this case, accuracy cannot comprehensively reflect the

performance of themodel, it is necessary to add other threemetrics.

Some difficult samples in the test set of XJTU-MM dataset are

visualized and shown in Figure 6, where difficult samples mean the

samples near the discriminant hyperplane. According to the results,

The proposed STNet-50 correctly recognizes all of these samples.

ResNeSt-50, ConvNeXt-S, and MPMR-50 all fail to recognition the

first sample and the second sample, which contains rich irregular-

shaped features. The fourth sample and the sixth sample have

relatively distinct texture features distinct from melanoma, which

is relatively easy to identify. The texture and feature joint learning

enhances the shape feature representation, and the proposed

asymmetric loss guides model to focus on difficult samples, so

STNet has advantages on recognizing these difficult samples.

In summary, the results of comparative experiments on

ISIC-2019 and XJTU-MM datasets proves the effectiveness of

our method.

4.3. Ablation analysis

To further study the contribution of each module in

our method, we design ablation experiments to analyze the

effect of pyramid-grouped convolution(PGC), deformable

convolution(DC) and channel-attention-based feature

fusion(CAFF) on model performance. we remove all of these

modules from the proposed STNet-50 and use it as the baseline

model (first row in Table 3). And then PGC, DC and CAFF are

rejoined to baseline model one by one (row 2–4 in Table 3).

According to the results shown in Table 3, all the three modules

bring performance improvement to model, especially in the

increase of precision and recall. It indicates that PGC in the

texture-biased stream and DC in shape-biased stream can both

enhance the feature representation, and CAFF can select features

that are more conducive to lesion identification. Additionally, these

three modules are portable and can be plugged to other methods.

To further study the feature selection effect of CAFF in texture

and shape feature fusion, we construct STNet-50 with CAFF and

without CAFF respectively, and feed 500 malignant samples and

500 benign sample to them, for each sample, the feature vector

in front of the classifier is input to t-SNE (Van der Maaten and

Hinton, 2008) manifold learning model to study the separability

of the extracted features. Through t-SNE, the input feature vectors

are transformed into two dimensions and visualized in Figure 7.

The comparison of Figures 7A, B show that the feature vector of

the model with CAFF is more separable, which is conductive to
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TABLE 2 Quantitative results of the proposed method and the comparison method on ISIC-2019 and XJTU-MM datasets.

Dataset Model Acc. ↑ Pre. ↑ Rec. ↑ F1 ↑

ISIC-2019 ResNeSt-50 0.925 0.813 0.923 0.865

ResNeSt-101 0.927 0.816 0.929 0.869

ConvNeXt-S 0.949 0.858 0.964 0.908

ConvNeXt-B 0.957 0.881 0.965 0.921

DeMAL-50 0.952 0.864 0.967 0.913

DeMAL-101 0.954 0.878 0.955 0.915

STNet-50 (ours) 0.967 0.904 0.977 0.939

STNet-101 (ours) 0.971 0.916 0.978 0.946

XJTU-MM ResNeSt-50 0.929 0.828 0.885 0.855

ResNeSt-101 0.933 0.846 0.880 0.863

ConvNeXt-S 0.945 0.868 0.908 0.887

ConvNeXt-B 0.946 0.875 0.901 0.888

MPMR-50 0.958 0.894 0.935 0.914

MPMR-101 0.961 0.910 0.929 0.919

STNet-50 (ours) 0.979 0.954 0.959 0.956

STNet-101 (ours) 0.985 0.963 0.972 0.968

FIGURE 6

Visualized results of comparative experiment on XJTU-MM dataset. The green boxes mean correctly classified samples, the red boxes mean

misclassified samples.

TABLE 3 Results of ablation analysis of pyramid-grouped convolution(PGC), deformable convolution(DC) and channel-attention-based feature

fusion(CAFF) on ISIC-2019 dataset.

Module Acc. ↑ Pre. ↑ Rec. ↑ F1 ↑

PGC DC CAFF

- - - 0.944 0.874 0.915 0.894

X - - 0.951 0.884 0.933 0.908

X X - 0.959 0.895 0.955 0.924

X X X 0.967 0.904 0.977 0.939
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FIGURE 7

Visualized feature separability analysis through t-SNE. (A) Visualized

result of STNet-50 without CAFF. (B) Visualized result of STNet-50

with CAFF. The feature vectors of STNet-50 with CAFF and STNet-50

without CAFF are transformed to two dimensions, respectively.

classification. The results indicate that the introduction of CAFF

module is effective to select features relevant to lesion recognition.

Due to the available data is limited, to verify performance of

the proposed model more rigorously, we conducted five-fold cross-

validation on both ISIC-2019 and XJTU-MMdatasets. Each dataset

was divided into five mutually exclusive parts, with four used for

training the STNet-50 model and one remaining part used for

testing. Because of the sample imbalance problem, we use F1 score

as the evaluation metric. The cross-validation results are shown

in Table 4, STNet-50 shows consistent performance in each fold

of the cross-validation, which proves the stability and reliability of

the results.

4.4. Discussion on shape and texture joint
learning framework

We propose the two-stream network for texture and shape

joint learning, compared to single-stream network, an extra shape

FIGURE 8

Variation of evaluation metrics with γ− when γ+ = 1. Acc., accuracy;

Pre., precision; Rec., recall; F1, F1 score.

feature encoder is introduced. To analyze the contributions to

performance improvements are provided by texture and shape

joint learning or just the extra feature encoder, three control

group models are designed for the comparative experiment. The

first model uses the texture encoder only for feature extraction.

The second model cascades the segmentation network and the

classification network in the proposed method, the segmented

lesion is used as the input of the classification network. The

third model is constructed by removing the feature decoder of

the shape-biased stream in our method, which is a two-stream

network but without shape and texture joint learning. ISIC-2019

dataset is used for this experiment, the results are shown in Table 5,

compared to the single-stream model, the cascade classification

and segmentation model does not show obvious performance

improvement and even have a performance drop on recall. It

means that when the lesion mask labels are not sufficient, cascading

the segmentation network and the classification network has

limitation in solving weak shape representation problems. Two-

stream network with joint learning shows better performance

than that without joint learning, it indicates that the performance

improvement of the proposed method is not simply brought by the

extra shape feature encoder but by shape and texture joint learning,

which proves the effectiveness of our method.

4.5. Discussion on parameters of
asymmetric loss

The asymmetric loss function in the proposed method is

designed to address the sample imbalance problem, we use

exponential decay factors γ+ and γ− to adjust the attention of

the model to positive and negative classes. Due to in medical

image datasets, malignant samples are usually much fewer than

benign samples, γ− should achieve a stronger decay effect, so

γ+ < γ−. To further study the effects of γ+ and γ− to model

performance, we set γ+ = 1, and use different γ− to train

the STNet-50 on ISIC-2019 dataset, the test results are shown
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TABLE 4 Five-fold cross-validation results of the proposed STNet-50 model on ISIC-2019 and XJTU-MM datasets.

Datasets F1 score ↑

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

ISIC-2019 0.939 0.930 0.932 0.939 0.935

XJTU-MM 0.956 0.953 0.955 0.953 0.952

TABLE 5 Experiments of discussion on shape and texture joint learning.

Backbone layers Structure Acc. ↑ Pre. ↑ Rec. ↑ F1 ↑

50 Single-streama 0.950 0.872 0.945 0.907

Cascade Cls. and Seg.b 0.950 0.886 0.928 0.907

Two-stream without joint learningc 0.960 0.909 0.939 0.924

Two-stream with joint learningd 0.967 0.904 0.977 0.939

101 Single-streama 0.952 0.877 0.950 0.912

Cascade Cls. and Seg.b 0.955 0.888 0.945 0.916

Two-stream without joint learningc 0.961 0.911 0.944 0.927

Two-stream with joint learningd 0.971 0.916 0.978 0.946

aSingle-stream: only use the texture encoder in the proposed method for feature extraction.
bCascade Cls. and Seg.: cascading segmentation network in front of classification network.
cTwo-stream without joint learning: removing the feature decoder in the shape-biased stream of our method.
dTwo-stream with joint learning: the proposed framework.

in Figure 8. Despite the model achieving the highest Pre. value

When γ− = 2, taking into account the four metrics, the model

has the best performance when γ− = 3. When γ− is too small,

exponential decay is not enough to eliminate the impacts of

sample imbalance. When γ− is too large, the effect of exponential

decay is so strong that the model tends to ignore negative

samples, and the performance of the model drops significantly.

According to the results in Figure 8, choosing an appropriate value

of the exponential decay factor is important to train a good-

performance model.

5. Conclusion

In this paper, we propose the two-stream shape and texture

joint learning network to address the weak shape feature

representation problem of existing medical image recognition

methods. According to the experiments on ISIC-2019 and XJTU-

MM datasets, the proposed two-stream network is an effective

method to combine texture and shape features. In addition,

the proposed pyramid-grouped convolution enhances the texture

feature representation, and deformable convolution enhances the

shape feature representation. Furthermore, the channel-attention-

based feature fusion module effectively eliminates redundant

information and selects essential features. The asymmetric loss

function addresses the problem of sample imbalance. The

proposed method improves the model performance on shape-

relied medical image recognition tasks, and provides support for

computer-aided imaging diagnosis. Additionally, in our method,

to enhance shape feature representation, an extra feature encoder

is introduced, which increase the computation requirements,

although the computation. Although inference speed is not the

most critical concern in medical image analysis, we aim to

enhance shape and texture feature representation by avoiding

the use of additional encoders in future work, enhancing shape

feature representation and texture feature representation within a

single encoder.
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