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Identifying biomarkers for Alzheimer’s disease with a goal of early detection is

a fundamental problem in clinical research. Both medical imaging and genetics

have contributed informative biomarkers in literature. To further improve the

performance, recently, there is an increasing interest in developing analytic

approaches that combine data across modalities such as imaging and genetics.

However, there are limited methods in literature that are able to systematically

combine high-dimensional voxel-level imaging and genetic data for accurate

prediction of clinical outcomes of interest. Existing prediction models that

integrate imaging and genetic features often use region level imaging summaries,

and they typically do not consider the spatial configurations of the voxels in

the image or incorporate the dependence between genes that may compromise

prediction ability. We propose a novel integrative Bayesian scalar-on-image

regression model for predicting cognitive outcomes based on high-dimensional

spatially distributed voxel-level imaging data, along with correlated transcriptomic

features. We account for the spatial dependencies in the imaging voxels

via a tensor approach that also enables massive dimension reduction to

address the curse of dimensionality, and models the dependencies between the

transcriptomic features via a Graph-Laplacian prior. We implement this approach

via an e�cient Markov chain Monte Carlo (MCMC) computation strategy. We

apply the proposed method to the analysis of longitudinal ADNI data for

predicting cognitive scores at di�erent visits by integrating voxel-level cortical

thickness measurements derived from T1w-MRI scans and transcriptomics data.

We illustrate that the proposed imaging transcriptomics approach has significant

improvements in prediction compared to prediction using a subset of features

from only one modality (imaging or genetics), as well as when using imaging

and transcriptomics features but ignoring the inherent dependencies between

the features. Our analysis is one of the first to conclusively demonstrate the

advantages of prediction based on combining voxel-level cortical thickness

measurements along with transcriptomics features, while accounting for inherent

structural information.

KEYWORDS

Alzheimer’s disease, Bayesian tensor regression models, collinearity, imaging genetics

analysis, transcriptomics
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1. Introduction

Alzheimer’s disease (AD) is a significant public health concern,

affecting millions of people worldwide (Association et al., 2014).

The disease’s prevalence is expected to rise in the coming decades

due to the aging of the population (Brookmeyer et al., 2007). There

is currently no gold standard cure for Alzheimer’s Disease, but the

use of biomarkers such as neuroimaging and -omics variables have

been shown to improve the accuracy of diagnosing Alzheimer’s

disease, particularly in its early stages. This is important because

early detection can lead to earlier treatment and better outcomes for

patients. Statistical and machine learning methods for discovering

biomarkers have relied on validating their success in terms of

either classifying the disease status (AD vs non-AD and so on) or

predicting cognitive outcomes that are known to deteriorate with

the progression of AD.

Imaging biomarkers play an increasingly important role in the

diagnosis of AD and mild cognitive impairment (MCI). Magnetic

resonance imaging (MRI) examination is a standard clinical

assessment of patients with dementia. It has been shown that there

is high correlation between brain atrophy deduced from structural

MRI and AD progression (Frisoni et al., 2010). A highly sensitive

imaging biomarker for AD representing structural atrophy is the

cortical thickness (CT) (Du et al., 2007; Weston et al., 2016). In this

context, MRI measurements of cortical thinning may prove to be

better distinguishing markers than volumetric measurements (Du

et al., 2007). Genetic heterogeneity between cortical measures and

brain regions have been established in cognitive normal individuals

(Sabuncu et al., 2012; Hofer et al., 2020), and it has been found

that pathways involved in the cellular processes and neuronal

differentiation may lead to neuronal loss, cortical thinning and AD

(Kim et al., 2020). Aging related cortical thinning may be linked

to genetic effects on regional variations in cortical thickness in

middle age (Fjell et al., 2015), and longitudinal CT changes in the

hippocampus region may be due to the combined effect of multiple

genetic risk factors (Harrison et al., 2016). High resolution brain

images that capture the cortical thickness across different voxels or

regions can therefore serve as crucial variables of interest in the

study of the progression of neurodegenerative diseases and their

association with genetics and transcriptomics.

In addition to imaging biomarkers, there has been a parallel

interest in discovering genetic signatures driving AD progression.

Most genetic association studies are based on case-control designs,

and as such they rely on a crude indicator of disease status.

Unfortunately, this approach has not been overly successful in

terms of identifying reproducible genetic signals, despite many

studies suggesting potential susceptible loci. Existing genome-

wide association studies that are primarily based on sporadic

AD have identified over 50 loci associated with AD, but many

potentially important genetic factors driving AD remains to be

discovered (Bellenguez et al., 2020; Sims et al., 2020). Another

branch of literature has examined the association between cognitive

abilities and genetic factors (McGue et al., 1993; Plomin and

Spinath, 2002). The overwhelming majority of existing genetic

studies on AD have focused on single nucleotide polymorphisms

(SNPs). However, emerging studies revealed that alternative gene

expression regulation mechanisms, such as mRNA-transcription

factor interactions, or copy number variants, could also impact

neurodegeneration (Annese et al., 2018). Readers can refer to

Bagyinszky et al. (2020) for a review.

Given that AD is a complex disease whose progression is

affected by biological changes at multiple levels, there has been an

increasing (and relatively recent) focus on integrative approaches

that combine multiple types of features at different scales. Along

these lines, several studies have adopted a multimodal approach

to AD classification and cognitive prediction, which have included

multiple types of imaging data such as structural (MRI) and

functional (PET) imaging (Hao et al., 2020; Dartora et al., 2022)

along with CSF biomarkers (Tong et al., 2017). Furthermore,

brain imaging genomics, which is a term for integrated analysis

of brain imaging and genomics data, along with other clinical

and environmental data is gaining rapid popularity in different

mental disorders (Shen and Thompson, 2019), and particularly in

AD studies (Nathoo et al., 2019). Most brain imaging genomics

approaches for predicting AD have relied on structural imaging

and SNP data (Zhang et al., 2011; Kong et al., 2015; Dukart

et al., 2016; Li et al., 2022). Often low rank models are used

for integrating imaging and SNP data for prediction as in Kong

et al. (2020), or two-step approaches are used to tackle the high-

dimensional features as in Yu et al. (2022) who proposed a causal

analysis method to map the Genetic-Imaging-Clinical pathway

for Alzheimer’s Disease. Other approaches for fusing functional

imaging (resting state fMRI) and genetic features for classifying AD

disease classes have also been proposed (Bi et al., 2021).

Although the above multimodal approaches and related

methods that combine imaging and genetics features for modeling

AD outcomes are useful, they are unfortunately beset with one

or more pitfalls. First, existing imaging genetics methods may not

account for the spatial configurations of imaging voxels as well as

the inherent dependencies of the genetic features, which may lead

to potential collinearity issues and loss of power and prediction

accuracy. Somemethods use dimension reduction such as principal

component analysis or canonical correlation analysis to reduce the

dimension of the gene features and reduce collinearity. However,

these and related data fusion methods for data integration to create

lower dimensional features may lead to a loss of interpretability and

possible information loss. Second, most methods use region-level

brain imaging features that smooth over voxel-level information

acquired from the image, which is possibly done to reduce the

curse of dimensionality. However, region-level analysis potentially

results in less granular interpretations and loss of information that

in turn can affect prediction/classification performance. Further,

such aggregation under a region-level analysis may not be suitable

for sparse cortical thickness measurements as elaborated in the

sequel. Thirdly, the overwhelming majority of the limited literature

on prediction/classificationmethods based on imaging and genetics

features rely on frequentist approaches that report point estimates

and do not capture uncertainty that is highly desirable for high-

dimensional imaging applications involving noisy images. Last

but not the least, most integrative imaging genetics approaches

use SNPs data, but there are limited approaches that are

specifically designed to combine imaging and transcriptomics data

to our knowledge. There are several reasons that we believe

the transcriptomics data offer advantages over genetics features
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(variants). First, the transcriptomics data combines both genetics

information along with environmental influences. Second, the

number of genes is much smaller than the number of mutations

(mostly single nucleotide polymorphisms), by several orders of

magnitude, which is expected to ease potential difficulties with

curse of dimensionality associated with SNP based analysis. As a

result, the burden on multiple comparison adjustment is greatly

alleviated. Third, it is cheaper and easier to obtain transcriptomics

data than genotyping data in a clinical setting.

In this article, we propose a novel approach to predict cognitive

outcomes in AD by integrating voxel-level cortical thickness

measurements derived from T1w-MRI along with transcriptomics

(gene expression) features. We propose a novel Bayesian structured

regression approach that accounts for the spatial orientation of the

voxels in the brain image via a tensor representation for the imaging

coefficients, and simultaneously accounts for dependency between

genetic features via a graph Laplacian structure. We illustrate

that the use of a tensor-based approach can provide valuable

insights into the structure and organization of complex data such

as brain images. By taking into account the spatial relationships

between voxels, it is possible to uncover patterns and relationships

that may be missed by routinely used voxel-wise analysis. From

a methodological standpoint, the proposed approach can be

considered as an extension of the scalar-on-tensor regression

approach in Guhaniyogi et al. (2017) to the case of sparse images

(representing cortical thickness measurements in our context) and

to include high-dimensional and collinear genetic features. The

latter is made possible based on the adoption of the approach

proposed in Liu et al. (2014). Although there are alternative

methods to incorporate dependency between genes, such as via

gene networks (Chang et al., 2018), the graph Laplacian structure

provides a more flexible strategy to incorporate dependence that

is broadly applicable to different types of -omics features such as

SNPs or discrete copy number variations, and does not run the

risk of producing inaccurate results when the graph knowledge

is misspecified. We implement an efficient Markov chain Monte

Carlo (MCMC) strategy that draws samples from the posterior

distribution, and estimated parameters via the posterior mean.

From the application perspective, we use the proposed

approach to predict cognitive scores in Alzheimer’s Disease

Neuroimaging Initiative (ADNI) data. Our analysis has several

novelties and is distinct from existing methods for whole brain

genomics prediction analysis in literature. First, unlike existing

methods that typically use SNP features, we use transcriptomics

features and account for the unknown dependencies between

these features. Second, we use high-dimensional voxel-level

cortical thickness features instead of routinely used region-level

measurements. This is indeed critical for our analysis since

cortical thickness is only measured on a sparse set of voxels in

the brain depending on the configuration of the brain cortex,

and a region level analysis that averages over all voxels within

pre-defined region of interest (ROI) may not provide sensible

results. This is due to the fact that each ROI is expected to

average over a non-ignorable proportion of voxels with zero

cortical thickness that will potentially render the ROI level cortical

thickness measurements as unreliable. Instead, our analysis at

the voxel-level explicitly accounts for voxels with zero cortical

thickness without any information loss resulting from ROI level

averaging. Third, another innovation is that we analyse longitudinal

cognitive scores using imaging data from baseline, and months

6 and 12 follow-up along with cross-sectional transcriptomic

data. Performing the analysis at three longitudinal time points

enables us to validate a set of robust transcriptomics features

that show consistent signals across multiple visits, and therefore

are potentially more reliable and reproducible. In addition, we

perform another set of novel analysis that involves the prediction

of the change in cognitive scores between visits based on the

change in the voxel-wise cortical thickness maps across visits, along

with transcriptomics and demographic features. The goal of this

second analysis is to investigate the ability of the longitudinally

varying imaging features and the transcriptome measurements

to predict cognitive changes over time. Rigorous comparisons

illustrate considerable improvements in prediction performance of

the proposed integrative brain imaging transcriptomics approach

compared to a similar analysis that just uses either the genetic or the

image information (but not both), which highlights the importance

of an integrative analysis. The benefits of incorporating structural

information in the proposed approach are further highlighted when

compared with an alternate imaging genetics based analysis that

uses elastic net for model fitting, ignoring the spatial configuration

of the voxels.

The rest of the article is structured as follows. Section 2 develops

the methodology, details the prior specifications and potential

hyperparameter choices and outlines the posterior computation

steps. Section 3 provides the results from our analysis of ADNI

dataset, while Section 4 provides additional discussions.

2. Materials and methods

2.1. Data sources and preprocessing steps

Data sources: This study utilizes data obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), a project

funded by the National Institutes of Health (NIH) and launched

in 2004. ADNI’s mission is to collect and share longitudinal

data, including serial magnetic resonance imaging (MRI), positron

emission tomography (PET), Mini-Mental State Examination

(MMSE) scores, genetics information, other clinical or biological

markers, and demographic data, to predict and prevent mild

cognitive impairment (MCI) and early AD.

For this study, we utilized data from the ADNI 1 program

collected at baseline, 6-month follow-up (M06), and 12-month

follow-up (M12) intervals. The dataset consisted of MRI data, gene

expression data obtained from blood samples, basic demographic

data including gender, age, and APOE, as well as MMSE

scores. With this comprehensive dataset, our objective was to

predict the MMSE score based on voxel-level cortical thickness

measurements derived from T1w-MRI imaging data and mRNA

gene expression data. Our analysis accounts for the spatial

configurations of the voxels as well as dependency between genes,

in the regression model.

Demographic and cognitive data description: In this study,

we analyzed a dataset consisting of 119 subjects with MCI from
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TABLE 1 Summary of demographic variables and cognitive

measurements under study.

Overall

(N = 118)

Age

Mean (SD) 74.00 (6.61)

Median [Min, Max] 73.75 [57.80, 86.70]

Gender

Female 32 (27.1%)

Male 86 (72.9%)

APOE4

0 58 (49.1%)

1 46 (39.0%)

2 14 (11.9%)

Baseline MMSE Score

Mean (SD) 27.44 (1.70)

Median [Min, Max] 27.00 [24.00, 30.00]

Month 6 MMSE Score

Mean (SD) 27.03 (2.26)

Median [Min, Max] 28.00 [21.00, 30.00]

Month 12 MMSE Score

Mean (SD) 27.02 (2.54)

Median [Min, Max] 28.0 [17.00, 30.00]

ADNI-1, for whom both imaging and transcriptomics data were

available. The subjects’ APOE status, gender, and age remained

consistent across the three time points of the study: baseline, month

6 (M06), and month 12 (M12). Of the 119 subjects, 33 (27.7%) were

female and 86 (72.3%) were male, with a mean age of 74.0 years

and a standard deviation of 6.59. The majority of subjects had an

APOE value of 0 (48.7%), followed by 1 (39.5%) and 2 (11.8%).

The cognitive measurements for subjects were recorded in terms of

Mini-Mental State Examination (MMSE) scores at baseline, M06,

and M12. At baseline, the MMSE scores had a mean of 27.4 and a

standard deviation of 1.72. AtM06, theMMSE scores had amean of

27.0 and a standard deviation of 2.25, and atM12, theMMSE scores

had a mean of 27.0 and a standard deviation of 2.53. A summary is

provided in Table 1.

Imaging data pre-processing: The T1-weighted MRI images

were processed with the Advanced Normalization Tools (ANTs)

registration pipeline (Tustison et al., 2014). All images were

registered to a population-based template image to ensure that the

brain locations from different participants were normalized to the

same template space. The population-based template image was

created based on 52 normal control participants from ADNI 1 and

shared to us from the ANTs group (Tustison et al., 2019). Among

other things, the ANTs pipeline (i) uses the N4 bias correction

step to correct for intensity nonuniformity (Tustison et al., 2010),

which inherently normalizes the intensity across samples; and

(ii) implements a symmetric diffeomorphic image registration

algorithm that performs spatial normalization (Avants et al., 2008),

which aligns each participant’s T1 images to a template brain image

so that the images across different participants can be spatially

comparable. Additionally, the processed brain images, estimated

brain masks, and template tissue labels were used to run 6-tissue

Atropos segmentation and generate tissue masks for cerebrospinal

fluid (CSF), gray matter (GM), white matter (WM), deep gray

matter (DGM), brain stem, and cerebellum. In this step, the tissue

masks from the template image act as priors which inform the

segmentation for each observation scan. Lastly, cortical thickness

measurements were obtained using the DiReCT algorithm. The

3-D image was downsampled to dimension 48 × 48 × 48, and

subsequently divided into 48 different 2-D sagittal slices to be used

for analysis where each slice had dimension 48× 48.

Transcriptomics data: We performed a screening step to select

a subset of the most promising genes for our analysis, from an

overall 49,386 gene expression profiles in the ADNI data. We

computed the correlations between the transcriptomics expressions

for each gene and the cognitive scores at baseline, month 6, and

month 12. Subsequently, we narrowed down the list of genes to

those that exhibited significant correlations (at level 0.05) with

the cognitive scores at all three visits. This screening strategy

left us with a subset of 139 genes to be used for subsequent

analysis. We also computed the correlations between this subset

of transcriptomics features (Figure 1), which illustrates non-trivial

correlations between several pairs of genes that need to be

accounted for in our modeling framework.

2.2. Modeling framework

Let y ∈ Y denote a response variable that is regressed on scalar

predictors z ∈ X ⊂ Rp and z1 ∈ X1 ⊂ Rq and a tensor

predictor X ∈ ⊗D
j=1R

pj . In terms of the motivating example, z may

denote a set of demographic variables, z1 may denote a set of genetic

predictors and X may represent an image. We consider a scalar-

on-image regression model that also incorporates the genetic and

demographic predictors as given below:

yi = α + zi
′γ + (z1)

′
iη + 〈Xi,B〉 + εi, i = 1, · · · , n (1)

where α is the intercept term, γ is a p × 1 coefficient vector

corresponding to the scalar predictors z, η is a q × 1 coefficient

vector corresponding to the scalar predictors z1, B ∈ ⊗D
j=1R

pj

denotes the tensor parameter corresponding to the tensor predictor

X and n denotes the total number of subjects in the study. We

assume that the random error term εi, i = 1, · · · , n, is normally

distributed with mean 0 and variance σ 2. Note that the coefficient

tensor B has
∏D

j=1 pj elements which leads to severe parameter

proliferation. To address this issue, we use a rank-R PARAFAC

decomposition for B following the approach in Guhaniyogi et al.

(2017), which leads to a significant parameter reduction. Thus

we have,

B =
R

∑

r=1

β
(r)
1 ◦ · · · ◦ β

(r)
D
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FIGURE 1

Heatmap for correlations between the 139 genes used for analysis.

where β
(r)
j , 1 ≤ j ≤ D and 1 ≤ r ≤ R, are

the pj × 1 dimensional tensor margins. Then the tensor

inner product in (1) becomes 〈Xi,
∑R

r=1 β
(r)
1 ◦ · · · ◦ β

(r)
D 〉 =

∑

(i1 ,··· ,iD)
(Xi)i1 ,··· ,iD (B)i1 ,··· ,iD corresponding to the ith subject, where

the parameter corresponding to voxel (i1, · · · , iD) of the image is

given by:

(B)i1 ,··· ,iD =
R

∑

r=1

D
∏

j=1

β
(r)
j,ij
, (i1, · · · , iD) ∈ VB = ⊗D

j=1{1, · · · , pj}.(2)

It can be easily seen that rank-R PARAFAC decomposition for

Bmassively reduces the number of model parameters from p+ q+
2+

∏D
j=1 pj to p+ q+ 2+R

∑D
j=1 pj, which is critical for a scalable

analysis involving high-dimensional features. The construction

of the tensor coefficients via a PARAFAC representation also

naturally accounts for spatial dependence between coefficients

that is expected to address the issue of collinearity between the

imaging features. Further, we will impose appropriate shrinkage

priors on the tensor margins, that can adequately downweight

the tensor coefficients corresponding to unimportant brain regions

and allocate non-trivial tensor coefficient values corresponding

to important signals. The ultimate goal is to perform accurate

prediction under these models for a suitably chosen prior

distribution on the tensor coefficient. We denote the proposed

method as integrative Bayesian tensor regression or iBTR.

Additional details about tensor structure: We note that the

tensor margins β
(r)
j,ij

are only identifiable upto a permutation and

multiplicative constant, unless some additional constraints are

imposed. However, the lack of identifiability of tensor margins

does not pose any issues for our setting, since the tensor product

B is fully identifiable that is sufficient for our primary goal of

coefficient estimation. Hence we do not impose any additional

identifiability conditions on the tensor margins, which is consistent

with Bayesian tensor modeling literature (Guhaniyogi et al., 2017).

The tensor decomposition is visually illustrated in Figure 2 for the

three-dimensional case.

In addition to the tensor margins, there are other lower-

dimensional objects that are naturally embedded within a tensor

structure. These include tensor fibers that can be visualized as
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FIGURE 2

Tensor visualization for 3-dimensional image. Top left panel provides a graphic of a rank-R tensor decomposition for a 3-dimensional tensor X,

represented as the sum of tensor products of vectors ar , br , and cr , 1 ≤ r ≤ R. The remaining panels illustrate tensor slices (red) and fibers (blue)

corresponding to each of the 3 dimensions of a 3-way tensor cube.

a thin thread of points generated when varying only one of the

tensor modes, while keeping the other modes fixed. For example

for a three-way tensor (D = 3), mode-1 fibers correspond to the

collection of d1-dimensional vectors that are obtained by fixing

the tensor modes (axes) for modes 2 and 3, while varying the

coordinates of the mode 1. Mode-2 and Mode-3 fibers can be

defined similarly. On the other hand, tensor slices are defined as

lower dimensional sub-spaces of a tensor that are generated by

varying two tensor modes simultaneously, while keeping the third

tensor mode fixed (for the D = 3 case). The tensor fibers and slices

are illustrated in Figure 2 (all panels except the top left one), and

these structures will be useful for understanding different aspects of

the model in the sequel. For example, tensor fibers and slices will be

directly instrumental for estimating the tensor margins in a robust

manner, even in the presence of sparsity in the images as outlined

in the sequel.

Preserving spatial configurations: Before fitting the tensor

model, the voxels in the image are mapped to a regularly

spaced grid that is more amenable to a tensor-based treatment.

Such a mapping preserves the spatial configurations of the

voxels that provides significant benefits over a univariate voxel-

wise analysis or a multivariable analysis that vectorizes the

voxels without regard for spatial configurations. While the

grid mapping may not preserve the exact spatial distances

between voxels, this is not a major concern in practice. This

is because the tensor model can capture correlations between

neighboring elements in the tensor margins, which allows for

effective analysis of the spatial relationships between voxels. To

better understand how spatial smoothing is induced between

the regression coefficients for neighboring voxels in the 3-D

case, note that the tensor coefficients for Ŵ corresponding to

the neighboring voxels (k1, k2, k3) and (k∗1 , k2, k3) for k1 6= k∗1
are given as B(k1 ,k2 ,k3) =

∑R
r=1 β

(r)
1k1

β
(r)
2k2

β
(r)
3k3

, and B(k∗1 ,k2 ,k3) =
∑R

r=1 β
(r)
1k∗1

β
(r)
2k2

β
(r)
3k3

, respectively. These coefficients share many

common elements from the tensor margins β
(r)
2 ,β

(r)
3 that induces

spatial smoothing and therefore preserves spatial configuration.

Pooling information across voxels: A desirable feature of

the tensor construction is that it is able to estimate voxel-

specific coefficients using the information from neighboring voxels

by estimating the tensor margins under the inherent low-rank

structure. This feature yields more accurate results that are more

robust to missing voxels and noise in the images and provides

immediate advantages over univariate or multivariate voxel-wise

methods that are not equipped to pool information across voxels.

Consider the following 3-D toy illustration involving the estimation

of the element B(1,3,1) that is expressed as
∑R

r=1 β
(r)
11 β

(r)
23 β

(r)
31 . The

estimation of coefficients proceeds through the estimation of the

tensor margins {(β(r)
1 ,β

(r)
2 ,β

(r)
3 ) : r = 1, . . . ,R}. We note that

the elements {β(r)
11 , r = 1, . . . ,R} are inherently contained in

the tensor coefficients corresponding to all voxels in the tensor

slice given by {(1, k2, k3), k2 = 1, . . . , p2, k3 = 1, . . . , p3} (refer

to Figure 1). Similarly, the tensor margin elements {β(r)
23 , r =

1, . . . ,R} are contained in the tensor coefficients corresponding to

the tensor slice {(k1, 3, k3), k1 = 1, . . . , p1, k3 = 1, . . . , p3}, a similar

interpretation holds for the remaining tensor margin elements.
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Hence by pooling information across voxels contained in suitable

tensor slices, the tensor margin parameters {β(r)
11 ,β

(r)
23 ,β

(r)
31 , r =

1, . . . ,R} can be learnt in a robust and effective manner. Similarly

for the 2-D case, the tensor margin parameters are learnt by pooling

information across tensor fibers.

Accommodating sparsity in images: Our analysis involves cortical

thickness brain images that are inherently sparse due to the

presence of many voxels in the brain that belong to other tissue

types outside of the cortex. Further, due to brain atrophy in

AD, one expects the presence of some voxels that have non-

zero cortical thickness for only a subset of the samples. A

desirable feature of the proposed model is that it is able to

handle a small to moderate proportion of sparsity in the image.

The proposed model uses tensor regression coefficients that are

expressed as a low rank decomposition involving outer products

of tensor margins. This allows for the estimation of voxel-specific

coefficients corresponding to missing voxels in the image by

pooling information across corresponding subsets of tensor slices

(for 3-D image) and tensor fibers (for 2-D image) that comprise

non-zero voxels. However, there is some loss of information due

to missingness, but this loss is manageable when the proportion of

zero voxels is not overly large. Furthermore, the model excludes

voxels that have zero values across all samples, which may

correspond to brain areas that do not belong to the brain cortex.

Such voxels are screened out from analysis in our implementation.

Overall, the proposed model seems to be designed to handle the

sparsity and missingness of cortical thickness measurements in a

reasonable manner, while still producing accurate results.

Dependency between transcriptomics features: The success of

such a prediction model will also hinge heavily on the ability to

account for collinearity between the transcriptomics predictors that

is often exacerbated in high-dimensional settings and is expected

to result in loss of prediction accuracy when not accounted for.

Collinearity is not unexpected between transcriptomic features

lying across multiple genes that often share some dependency since

they lie on an underlying gene network or share common pathways.

In our application, Figure 1 illustrates the correlations between

transcriptomics factors that validate the need to address collinearity

in the modeling framework. This will be addressed via a graph

Laplacian prior on the genetic coefficients following the approach

in Liu et al. (2014), which not only accounts for the unknown

dependence structure across genes, but is also able to perform

suitable regularization resulting in appropriate shrinkage.

2.3. Prior specifications

In this section, we first discuss the priors imposed on the key

model parameters B and η in order to achieve parameter reduction.

Following the approach in Guhaniyogi et al. (2017), we use the

multiway Dirichlet generalized double Pareto (M-DGDP) prior for

the tensor coefficient B and the hierarchical margin-level prior is

given by

β
(r)
j ∼ N

(

0, (φrτ )Wjr

)

, wjr,k ∼ Exp(s2jr/2), sjr ∼ Ga(aλ, bλ) (3)

As discussed in Guhaniyogi et al. (2017), this prior induces

shrinkage across components in an exchangeable way. The global

scale τ ∼ Ga(aτ , bτ ) has components τr = φrτ , r = 1, · · · ,Rwhere

8 = (φ1, · · · ,φR) ∼ Dirichlet(α1, · · · ,αR) incorporates shrinkage

toward lower ranks in the assumed PARAFAC decomposition.

Also, Wjr = Diag(wjr,1, · · · ,wjr,pj ), j = 1, · · · ,D, r = 1, · · · ,R
represents margin-specific scale parameters for each component.

Note that, β
(r)
j,k

| sjr ,φr , τ
iid∼ DE(sjr/

√
φrτ ), 1 ≤ k ≤ pj , where

DE refers to the Double Exponential distribution with the location

parameter 0 and scale parameter sjr/
√

φrτ . Thus the prior structure

in (3) induces a GDP prior on the individual margin coefficients

that has the form of an adaptive Lasso penalty (see Armagan

et al., 2013). The use of element-specific scaling wjr,k for modeling

within-margin heterogeneity provides flexibility in estimation of

Br = {β(r)
j ; 1 ≤ j ≤ D}. Common rate parameter sjr incorporates

shrinkage at the local scale by sharing information between margin

elements. This prior also incorporates dimension reduction by

favoring low-rank factorizations as discussed in Guhaniyogi et al.

(2017).

Next, we use the Graph Laplacian prior (GL-prior) as outlined

in Liu et al. (2014) for the coefficient vector η in order to

incorporate the dependence structure through its precision matrix.

Conditioning on σ 2, the prior distribution for η takes the following

form,

η|σ 2 ∼ N(0,
σ 2

m
3−1) (4)

where the precision matrix 3 has the following structure

3 =












1+ λ11 +
∑

j6=1 |λ1j| λ12 . . . λ1q

λ21 1+ λ22 +
∑

j6=2 |λ2j| . . . λ2q

.

.

.
.
.
.

.

.

.
.
.
.

λq1 . . . . . . 1+ λqq +
∑

j6=q |λqj|













(5)

Where λij = λji, λii > 0 and the hyperparameter m ≥ 0. Let

λ denote the collection of all elements in 3. Then we propose the

following prior distribution for λ

π(λ) ∝ Ca,b|3|−1/2

q
∏

i=1

λ
−3/2
ii exp

(

− a2

2λii

)

1(λii > 0)

∏

j<i

|λij|−3/2exp

(

− b2

2|λij|

)

(6)

where Ca,b denotes the normalizing constant and a, b are the

hyperparameters. Further we impose a conjugate inverse-gamma

prior on the noise variance, σ 2 ∼ IG
(

ν/2, νs20/2
)

with ν = 2

and s20 is chosen by default so that P(σ 2 ≤ 1) = 0.95 assuming

a centered and scaled response. We specify a conjugate normal

prior for the regression coefficients corresponding to demographic

variables, γ ∼ N(0, σ 260γ ).

2.4. Selection of hyperparameters

Choice of hyperparameters of the Dirichlet component in

multiway prior (3) plays an important role in controlling
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dimensionality of the model. Smaller values of hyperparameters

leads to more component-specific scales τr ≈ 0, thus effectively

collapsing on a low-rank tensor factorization (see Guhaniyogi et al.,

2017 for more details). A discrete uniform prior is imposed on α

over the default grid of 10 equally spaced values in
[

R−D,R−0.10
]

.

The parameter α is then automatically tuned according to the

degree of sparsity present.We impose discrete uniform prior on the

hyperparameter aλ over a default grid of 10 equally spaced values in

[2,D+ 1] and then use bλ = 2D
√
aλ following the proposed choice

in Guhaniyogi et al. (2017). For hyperparametersm, a, and b related

to the GL-prior for η, we consider the following prior:

π(m, a, b) ∝ C−1
a,b

mhm−1exp(−hmm)exp(−gaa)exp(−gbb) (7)

Small values of ga, hm, gb are recommended to allow for a

relatively flat prior. We set these values to 0.1 in our numerical

experiments. Also, the results in the sequel show that (Tables 4–

6) the prediction performance of our model is robust to choice of

hyperparameters ga, hm and gb.

Choice of tensor rank: To determine the optimal rank, we

conducted a series of model runs with ranks ranging from 1 to

15, and chose the optimal tensor rank as that which minimizes a

goodness of fit criteria called the Deviance Information Criterion

(DIC) score. The DIC provides a measure of the quality of the fit

of the model while accounting for its complexity by penalizing the

incorporation of additional variables into themodel (Li et al., 2017).

Such an approach is consistent with other Bayesian tensor models

routinely used in literature (Guhaniyogi et al., 2017). Although the

rank selected using the DIC criteria may not always correspond to

the rank that produces the lowest prediction error, but usually it is

quite close to the best prediction across all the ranks considered in

our experience.

2.5. Posterior computation

Having specified the priors for the model parameters, the next

step is to obtain the joint posterior distribution of the model

parameters which turns out to be intractable for closed-form

computations. However, the full conditional posterior distributions

of the model parameters are easy to sample from. We develop

an efficient Gibbs sampling algorithm to sample from the

full conditionals of the parameters which iterates through the

following steps:

• Sample [α,8, τ |B,W] compositionally as

[α|B,W][8, τ |α,B,W], following the steps as outlined

in Guhaniyogi et al. (2017).

• Sample from
{ (

β
(r)
j ,wjr , sjr , 1 ≤ j ≤ D, 1 ≤ r ≤ R

) }

|8, τ , γ , η, σ , y using a back-fitting procedure to

obtain a sequence of draws from the margin-level

conditional distributions across components. Also, draw

[wjr , sjr|β(r)
j ,φr , τ ] = [wjr|sjr ,β(r)

j ,φr , τ ][sjr|β(r)
j ,φr , τ ].

- Draw sjr ∼ Ga(aλ + pj, bλ +
∥

∥

∥
β
(r)
j

∥

∥

∥

1
/
√

φrτ ).

- Draw wjr,k ∼ giG( 12 , s
2
jr ,β

2(r)
j,k

/(φrτ )) independently for

1 ≤ k ≤ pj, where ‘giG’ refers to generalized inverse

Gaussian distribution, i.e. X ∼ fX(x) = giG(p, a, b) ∝
xp−1exp

(

−(ax+ b/x)/2
)

.

- Draw β
(r)
j ∼ N(µjr ,6jr) where µjr = 6jrH

(r)
j ỹ/σ 2,

6jr =
(

H
(r)
j

′
H

(r)
j /σ 2 +Wjr

−1/(φrτ )
)−1

and,

ỹi = yi − zi
′γ − (z1)i

′η − 〈Xi,B〉

H
(r)
i,j =

(

h
(r)
i,j,1, · · · , h

(r)
i,j,pj

)′
and,

h
(r)
i,j,k

=
p1 ,··· ,pD
∑

d1=1,··· ,dD=1

I(dj = k)xd1 ,··· ,dD





∏

l 6=j

β
(r)
l,il





• Sample γ , σ |B, η, y as follows:

- Draw γ ∼ N(µγ , σ
26γ ) where 6γ =

(

Z′Z+ 6−1
0,γ

)−1
,

µγ = 6γZ
′y∗ and y∗i = yi − (z1)

′
iη − 〈Xi,B〉, Z =

(z1, · · · , zn)′.
- Draw σ 2 ∼ IG(aσ , bσ ) where aσ = (n + ν)/2, bσ =

(

νs20 +
∥

∥y∗
∥

∥

2

2
− y∗

′
Zµγ

)

/2.

• Draw η from its full conditional: η|σ 2,λ,B,X, y ∼ Nq(µη ,6η)

where,

µη =
(

Z′
1Z1 +m3

)−1
Z′
1y

∗∗, 6η = σ 2
(

Z′
1Z1 +m3

)−1
and,

y∗∗i = yi − zi
′γ − 〈Xi,B〉,Z1 =

(

(z1)1, · · · , (z1)n
)′
.

• As the full conditional of λ does not have a closed form, we

follow the same procedure outlined in Liu et al. (2014) for

sampling of λ.

2.6. Analysis plan

Our primary goal is to design an integrated strategy that

combined spatially distributed voxel-level imaging features

(downsampled), along with gene expression features and

demographics data for predicting cognitive ability in MCI. We

are particularly interested in concretely illustrating the benefits

of embracing structural information in our integrative analysis,

which include incorporating a tensor structure for the imaging

voxel coefficients that preserve the spatial orientation of voxels,

and simultaneously accounting for dependence between the

transcriptomics features. Moreover, we perform the analysis

at baseline and follow-up visits to illustrate the benefits of

incorporating a structured brain imaging genetics analysis across

time. As an additional but important analysis, we also analyse

the ability of the proposed approach to predict the change in the

cognitive scores across visits based on the change in the voxel-level

cortical thickness differences between corresponding visits and

transcriptomics factors as well as demographic features. Such an

analysis will directly inform us about the ability of brain atrophy

(structural changes) to predict the change in cognitive ability across

time, which is of considerable clinical interest in AD research.

To demonstrate the performance of our novel approach,

we tested several different alternative methods and compared

their performance with the proposed method. At each visit,

we implemented two tensor-based models that included (i) the
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proposed Bayesian tensor method with cortical thickness images

and 139 gene expressions that is denoted as integrative Bayesian

tensor regression or iBTR; and (ii) an imaging-only analysis that

uses cortical thickness images for prediction using a Bayesian

scalar-on-tensor regression that is denoted as Bayesian tensor

regression or BTR. Additionally, we also compare the performance

with (iii) an approach that vectorizes the imaging voxels and

transcriptomics features and subsequently uses the elastic net

for model fitting (denoted as Elastic Net); and (iv) a gene-only

analysis that uses the transcriptomic measurements from 139 genes

for prediction. We note that the elastic net is a combination of

L1 and L2 penalties (Zou and Hastie, 2005), which results in

sparse estimates and accounts for dependence within features.

We note that demographic features such as age and gender

were also included as additional covariates in each of the above

predictive analysis.

The comparisons between (i) and (iv), and between (i) and (ii),

highlight the necessity of incorporating imaging information along

with transcriptomics features for obtaining superior prediction

performance over an alternate analysis based on either an image-

only or transcriptome-only analysis. In addition, the comparison

with the Elastic Net approach (iii) that vectorizes the imaging

voxels allows one to compare the benefits of preserving the

spatial orientation of the voxels in predictive modeling under

the proposed approach. In other words, this comparison allows

us to investigate the loss in prediction accuracy when structural

information in the images and the genes is not accounted for.

We split the overall sample into 10 distinct training and test sets

(80:20 ratio) and examined the out-of-sample prediction accuracy

in terms of relative root mean squared error that is given as

RRMSE =
∑

(θ̂i−θi)
2

1
n

∑

(θi−θ̄)2
. Here θ , θ̂ , correspond to the observed and

estimated values, and θ̄ corresponds to the mean observed values.

Clearly, a smaller relative RMSE value indicates superior prediction

performance, while a higher value indicates poor performance and

a value higher than one indicates that a performance that is even

worse than a null model. In addition, we also examine convergence

of the MCMC chains under the proposed method.

3. Results

MCMC Convergence: We ran the MCMC chain for 10,000

iterations and tested for convergence for all covariates. Using the

augmented Dickey-Fuller test, at 10,000 iterations and with a

burn-in of 3,000 iterations, the MCMC chains for the coefficients

corresponding to all of the voxels, transcriptomics factors, and

demographic factors were stationary. To some degree, this

indicates the suitability of the MCMC chain implemented in our

approach. SomeMCMC trace plots corresponding to the regression

coefficients for a subset of genes in provided in Figure 3.

3.1. Choice of rank in tensor regression
models

One of the key parameters of this model is the tensor rank,

which plays a crucial role in determining the efficacy of the model

when applied to different imaging and gene expression data as

covariates. Moreover, the tensor ranksmay potentially vary for each

slice across the three longitudinal visits. Hence, it is imperative to

choose the tensor ranks optimally.

The tensor ranks chosen in our models and the corresponding

DIC were listed in Table 2, and the trends of DIC by rank of our

purposed models are shown in Figure 4.

3.2. Prediction performance

Out of the 48 2-D slices considered (each of dimension 48×48),

only a small number of slices contained non-zero cortical thickness

measures for the majority of voxels in the slice (i.e. > 50% of the

voxels). We selected slices 19–28 for our analysis, each of which had

at least 50 % voxels with non-zero cortical thickness. The remaining

slices were excluded due to limited cortical thickness information

and predominantly sparse patterns within each slice.

Cross-sectional results: Table 3 shows that our proposed

Bayesian tensor method, which modeled the effects of 2-D

cortical thickness image slices via a tensor decomposition coupled

with transcriptomics factors, produced significantly lower relative

RMSEs compared to the imaging-only analysis using a Bayesian

scalar-on-tensor regression. Moreover, the proposed approach

demonstrated significant improvements for all slices considered,

when compared to prediction based on vectorized imaging and

gene expressions under an elastic net that ignores the spatial

configurations between the imaging voxel predictors. In addition,

the prediction based on only the 139 gene expressions under

an elastic net model produced inferior results, with relative

RMSE of 0.874, 0.854, and 0.884 for baseline, M06, and M12

respectively. Finally, while the predictive performance varies

slightly across the different 2-D slices, the proposed integrative

Bayesian tensor regression consistently has a superior predictive

performance compared to the competing methods across all the

10 slices considered. These results illustrate the substantial benefits

of combining imaging and transcriptomics information when

predicting cognitive scores across multiple longitudinal visits, while

also simultaneously accounting for the underlying spatial structure

of the image and inherent dependencies between genes. We also

examined the sensitivity of the iBTR model to the choice of

hyperparameters ga, hm and gb. To that end, we used data from

slice 20 of the brain image corresponding to month 6, along with

139 genes, and other clinical covariates and obtained the prediction

performance of the iBTRmodel. From Tables 4–6, it is evident that

the prediction performance remains largely unaffected (in fact there

are negligible changes) when we vary these hyperparameters and

it still remains superior to the competing approaches considered

in Section 2.6. This illustrates the robustness of the proposed iBTR

method in terms of the hyperparameters.

Longitudinal cognitive change score analysis: For this analysis,

the goal is to predict the change in the cognitive scores

between month 12 and baseline, based on the differences in the

cortical thickness between visits, coupled with transcriptomics

factors. The prediction results reported in Table 7 show that our

proposed integrative Bayesian tensor method results in significant

improvements in prediction performance across several slices,
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FIGURE 3

MCMC trace plots of some informative genes: ARL5B (A), ZNF74 (B), B4GALT6 (C), GADL1 (D), REXO2 (E), GAD1 (F), SUSD5 (G), C4BPB (H).

TABLE 2 Reporting the optimal choice of rank for each slice.

Baseline Month 06 Month 12

iBTR BTR iBTR BTR iBTR BTR

Slice Rank DIC Rank DIC Rank DIC Rank DIC Rank DIC Rank DIC

19 9 95 3 127 2 103 4 133 1 105 1 147

20 2 96 2 129 4 106 6 146 4 101 2 143

21 3 98 3 129 5 99 2 141 3 102 3 146

22 1 96 3 131 3 102 3 138 3 107 1 148

23 1 95 3 132 2 100 1 135 5 100 5 138

24 2 92 2 131 2 106 1 150 2 103 3 136

25 3 95 3 131 2 101 3 138 5 100 1 135

26 4 93 2 128 3 102 3 141 3 102 2 139

27 2 95 6 151 1 103 1 141 4 102 4 138

28 2 103 1 148 2 102 2 142 1 104 1 147

We include only a subset of slices each having less than 50% non-zero voxels.

compared to the other competing approaches. In particular, the

predictive accuracy under the proposed approach is significantly

improved corresponding to slices 19, 20, 23, 25, 26, 27, and 28.

The prediction accuracy is also higher (but not significantly better)

for the remaining slices when compared to the other competing

methods. In particular, all the competing methods reported relative

RMSE above 1 in Table 7 for almost all cases, which is indicative of

poor performance. Additionally, the predictive performance based

on only the 139 transcriptomics features was also not desirable

(relative RMSE of 1.009). These results indicate that superior ability

of the proposed integrative Bayesian tensor method to predict

cognitive changes across longitudinal visits. We note that the

predictive performance varies with the different 2-D slices in the

brain that is expected given that one expects certain changes in

the cortical thickness corresponding to certain brain regions to be

predictive of change in cognition, and based on the fact that not

all brain regions will undergo cortical changes within a follow-

up period of one year. To this end, we also performed a separate

analysis to predict the changes in cognitive scores between month

6 follow-up and baseline. For this case, none of the proposed

approaches performed well, which is potentially due to the fact that

the structural changes in the brain in a short follow-up period of

6 months is expected to be limited and may not be immediately

predictive of cognitive changes during this period. Our findings
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FIGURE 4

DIC values corresponding to di�erent tensor ranks for the tensor model using both 139 genes and a subset of slices with less than 50% sparsity levels

at baseline (A), Month 6 (B), and Month 12 (C).

TABLE 3 Prediction performance (relative RMSE) values for modeling cognitive scores (MMSE) for baseline and two longitudinal visits.

Baseline Month 6 Month 12

Slice # Sparsity iBTR EN BTR Sparsity iBTR EN BTR Sparsity iBTR EN BTR

19 0.47 0.793* 0.891 1.005 0.50 0.755* 0.926 1.035 0.49 0.788* 0.891 1.000

20 0.44 0.798* 0.947 1.002 0.46 0.746* 0.948 1.019 0.46 0.794* 0.962 1.001

21 0.43 0.789* 0.944 1.004 0.44 0.750* 0.961 1.029 0.43 0.797* 0.974 0.999

22 0.42 0.791* 0.963 1.000 0.43 0.751* 0.900 1.023 0.43 0.796* 0.959 1.001

23 0.43 0.795* 0.928 1.000 0.43 0.755* 1.003 1.035 0.43 0.802* 1.017 1.018

24 0.45 0.793* 0.990 1.000 0.45 0.750* 0.969 1.008 0.46 0.796* 0.913 1.005

25 0.46 0.796* 0.982 0.998 0.47 0.752* 0.936 1.026 0.47 0.801* 1.012 1.007

26 0.45 0.793* 0.980 1.003 0.45 0.748* 0.918 1.014 0.46 0.795* 0.983 0.996

27 0.45 0.790* 0.959 0.979 0.46 0.750* 0.899 1.007 0.47 0.795* 0.918 0.997

28 0.47 0.787* 0.944 0.976 0.46 0.753* 0.856 1.019 0.48 0.790* 0.905 0.977

Only a subset of slices having less than 50% non-zero voxels were included for analysis. EN refers to the elastic net model that used vectorized imaging and transcriptome features as predictors.

An asterix (*) indicates significantly improved predictive performance compared to the other methods under a one-tailed t-test.

TABLE 4 Prediction performance (relative RMSE) values of iBTR model for

varying choices of hyperparameters ga and hm, keeping gb fixed at 0.1.

ga\hm 0.5 1 3 5

0.5 0.745 0.757 0.757 0.758

1 0.758 0.757 0.757 0.751

3 0.759 0.756 0.757 0.757

5 0.745 0.756 0.757 0.744

suggest that incorporating certain brain slices and gene expressions

can significantly enhance the accuracy of predicting longitudinal

cognitive changes, and therefore provide valuable insights for

developing effective prediction models for cognitive impairment.

3.3. Informative genes

From our integrated analysis of imaging and transcriptomics

data on 10 2-D image slices (slices with zero’s less than 50% which

are slice 19 to slice 28) and three time points, the expression

TABLE 5 Prediction performance (relative RMSE) values of iBTR model for

varying choices of hyperparameters gb and hm, keeping ga fixed at 0.1.

gb\hm 0.5 1 3 5

0.5 0.745 0.757 0.744 0.756

2 0.744 0.757 0.757 0.744

3 0.756 0.744 0.743 0.757

4 0.757 0.756 0.757 0.744

levels of 8 genes were found to be significantly associated with the

MMSE cognitive outcome across multiple slices and more than

one longitudinal visit. Utilizing our proposed model that employs

selected 10 slices with gene expression and demographic data from

three distinct time points, we identified several significant genes by

combining our findings across the three visits and based on credible

intervals derived from the posterior distribution. For each gene,

we computed the proportion of times (out of total of 30 models

developed) where it was inferred as significant. The frequency and

proportion of cases where these genes were identified as important
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was documented in Table 8. Literature search reveals that almost

all the top genes are indeed functionally related to either brain

function or some types of neurological or psychiatric disorders.

For example, the ARL5B gene that is the top-ranked gene in

terms of importance in our analysis, found to be significant in

about two thirds of all models, has been reported to be connected

to suicide attempts in major depressive disorder (Mullins et al.,

2019). ZNF74 gene, found to be significant in 64% of all models, has

been implicated as a neurological blood protein biomarker (Hillary

et al., 2019), and related to AD (Wang et al., 2020). B4GALT6 gene,

found to be significant in half of the models, has been reported

to be related to depression severity (Ye et al., 2022). GAD1 gene,

found to be significant in 41% of all models, interestingly, has been

found to be highly and exclusively expressed in brain according

to Human Protein Atlas (HPA) (Lee et al., 2018). Additionally,

the GAD1 gene has been reported in the literature to be related

to multiple neurological traits and disorders including Cognitive

performance, Cognitive performance (MTAG) and attention deficit

hyperactivity disorder, autism spectrum disorder and intelligence

(Rao et al., 2022).

These findings convincingly demonstrated that our model is

capable of identifying biologically-relevant genes, that together

with MR imaging features, that can robustly predict the human

cognitive abilities measured using the MMSE scores. Furthermore,

TABLE 6 Prediction performance (relative RMSE) values of iBTR model for

varying choices of hyperparameters ga and gb, keeping hm fixed at 0.1.

ga\gb 0.5 1 3 5

0.5 0.745 0.748 0.746 0.745

1 0.746 0.749 0.746 0.743

3 0.746 0.745 0.748 0.745

5 0.747 0.744 0.743 0.749

the fact that these subset of genes in Table 8 were identified as

important across multiple visits, illustrates the reproducibility of

these findings that is crucial in AD studies.

3.4. Computational time of the iBTR model

In high dimensional settings scalability or computational time

taken by an algorithm is also very crucial. To that end, we

examine the computational time of the iBTR model and run it

with rank from 1 to 15 using data from slice 20 of the brain image

corresponding to month 6, along with 139 genes, and other clinical

covariates. The computational time taken by the iBTRmodel varies

from 4 to 26 minutes for every 2,000 iterations, depending on

the rank. The computational time is expected to increase as the

tensor rank increases and/or the image size as well as the number

TABLE 8 Informative genes with frequencies that each gene was

significantly associated with the MMSE scores among the subset of slices

included in Table 3 with < 50% sparsity levels at three time points and the

corresponding percentage.

Gene Frequency Percentage (%)

ARL5B 20 66.67

ZNF74 19 63.33

B4GALT6 14 46.67

GADL1 12 40.00

REXO2 10 33.33

GAD1 8 26.67

SUSD5 8 26.67

C4BPB 7 23.33

TABLE 7 Prediction performance for modeling longitudinal changes in cognitive scores based on di�erences in cortical thickness maps across visits and

transcriptomics features.

Month 06-baseline Month 12-baseline

Slice # Sparsity % iBTR Elastic net BTR Sparsity % iBTR Elastic net BTR

19 0.45 1.005 1.010 1.032 0.45 0.981* 1.036 1.009

20 0.43 1.003 1.022 1.027 0.42 0.978* 1.024 1.002

21 0.41 0.999 1.001 1.033 0.41 0.978 1.588 1.007

22 0.40 1.007 1.010 1.034 0.40 0.979 0.998 1.009

23 0.41 0.996* 1.050 1.023 0.41 0.973* 1.011 1.013

24 0.43 1.002 1.053 1.068 0.43 0.978 3.110 1.002

25 0.44 1.003 1.160 1.027 0.44 0.980* 1.012 1.007

26 0.43 1.008 1.036 1.029 0.43 0.879* 1.153 1.008

27 0.43 1.000 1.032 1.026 0.44 0.973* 1.017 1.007

28 0.44 0.999 1.052 1.026 0.46 0.975* 1.025 1.005

Only a subset of slices having <50% non-zero voxels were included for analysis. The prediction for changes between baseline and month 6 follow-up is poor for all approaches due to the limited

structural brain changes and cognitive decline in a short period of 6 months and is provided as a comparison to the month12-baseline analysis. This latter analysis shows meaningful predictive

gains under the proposed iBTR approach. The symbol * is used to mark the slices for which the predictive accuracy under the proposed approach is significantly improved compared to the

other competing methods under a single-tailed t-test.
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FIGURE 5

Computational time of the iBTR model with di�erent ranks.

of genetic covariates increase. Figure 5 illustrates the relationship

between rank and computational time.

4. Discussion

AD is a chronic neurodegenerative disease that causes a slow

but relentlessly progressive erosion of memory and cognition. It is

the 6th leading cause of death and 2nd leading contributing cause

of death (Heron et al., 2009). Unlike every other major cause of

death, AD prevalence is rising (Heron et al., 2009), contributed by

the rapid aging of the population and the lack of effective treatment

options after disease onset. Therefore, identifying biomarkers that

are predictive of AD progression, especially non-invasive ones well

ahead of disease onset, is crucial in our effort of battling the scourge

of AD.

Over the past decade, attempts have been made to identify

imaging-based as well as genetics-based markers. Despite much

progress, there is still much room for improvement in terms

of finding the optimal types and combinations of imaging

features and -omics modalities that are most predictive of

cognitive decline or disease progression. Our study involving a

novel integrative Bayesian model-based scalar-on-image regression

approach that combines sparse cortical thickness imaging features

with transcriptomics features to predict cognitive ability is expected

to make a significant contribution in this regard. Our secondary

analysis focused on modeling the change in cognitive outcomes

illustrated the ability of cortical thickness changes in the brain

to predict cognitive decline after accounting for transcriptomics

factors. Although othermethods have been developed that integrate

imaging and genetics features, to the best of our knowledge,

our method is the first that merge imaging and transcriptomics

features under a tensor based model that accounts for the spatial

configurations of the imaging voxels and underlying dependencies

between genes. Compared to prediction using only imaging or

only transcriptomics data, the results under our integrative model

suggest that incorporating certain brain slices and gene expressions

can significantly enhance the accuracy of predicting changes

in MMSE scores. Moreover, incorporating the complex spatial

organization in the image via a tensor-based approach as well as the

dependence across transcriptomics features via structured priors

provides conclusive prediction improvements over a naive analysis

that vectorizes all imaging and -omics features to be used in the

regression model.

Additionally, on top of the improved prediction model,

the feature selection based on credible intervals under the

Bayesian method can potentially provide a list of informed

features, including genes, whose expression levels are shown to be

informative of the cognitive ability of the patients. In particular,

our cognitive prediction analysis for three longitudinal visits is

able to detect important transcriptomics factors that are relevant

across multiple visits and hence reproducible. Therefore, the

corresponding genes can potentially provide promising therapeutic

targets for downstream analysis. In-depth investigation of these

informed genes indeed reveals that many of them have been

reported to be related to neurological or psychiatric traits, hence

it is made sense that their expression levels can contribute as

potential biomarkers for the cognitive ability. Our work illustrates
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that it may be of interest to further explore transcriptomics features

as potential biomarkers for AD, in combination with cortical

thickness measurements.

There are multiple aspects where our model-based method can

be further improved. For example, it may be helpful to incorporate

informative priors for genes such as gene networks or underlying

pathways based on annotations or historical data in the context of

AD (Li et al., 2015). Other possible directions include incorporating

multi-omics information, and using 3-D images instead of multiple

2-D slices. One can further investigate a battery of cognitive tests

that go beyond the MMSE score investigated in our analysis.

All of these issues can be potentially resolved under suitable

generalizations of the proposed method, and will be explored in

future work.
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