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Due to the demand for sample observation, optical microscopy has become an 
essential tool in the fields of biology and medicine. In addition, it is impossible 
to maintain the living sample in focus over long-time observation. Rapid focus 
prediction which involves moving a microscope stage along a vertical axis to 
find an optimal focus position, is a critical step for high-quality microscopic 
imaging of specimens. Current focus prediction algorithms, which are time-
consuming, cannot support high frame rate imaging of dynamic living samples, 
and may introduce phototoxicity and photobleaching on the samples. In this 
paper, we propose Lightweight Densely Connected with Squeeze-and-Excitation 
Network (LDSE-NET). The results of the focusing algorithm are demonstrated 
on a public dataset and a self-built dataset. A complete evaluation system was 
constructed to compare and analyze the effectiveness of LDSE-NET, BotNet, and 
ResNet50 models in multi-region and multi-multiplier prediction. Experimental 
results show that LDSE-NET is reduced to 1E-05 of the root mean square error. 
The accuracy of the predicted focal length of the image is increased by 1 ~ 2 
times. Training time is reduced by 33.3%. Moreover, the volume of the model only 
reaches the KB level, which has the characteristics of being lightweight.
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1. Introduction

Nowadays, microscopy is still the most frequently used microscopic detection technology 
for examining thin sections and stained tissue sections on slides, playing an irreplaceable role 
in biomedicine, materials chemistry, industrial inspection, and other aspects (Ikeda et al., 2009; 
Zhang et al., 2014; Carrera et al., 2017). When the microscope is used for imaging living cells, 
defocus blur may occur due to thermal fluctuation of the microscope body and the movement 
of the microscope sample (Kreft et al., 2005). In addition, motion blur will also occur due to the 
uneven morphology of samples (Xu and Jia, 2010). Defocus blur and motion blur, as two of the 
most common microscopic imaging artifacts, can seriously degrade the imaging quality of 
digital pathology instruments (Redondo et al., 2012). Thus, maintaining the internal focal 
position of the microscope is a challenge. And when faced with a large number of samples, a 
large sample area, and a long observation time, manual focusing is impractical (Wang et al., 
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2018; Pinkard et al., 2019a). Therefore, autofocusing is crucial for 
high-precision microscope imaging.

The earliest research on autofocusing technique can be traced 
back to 1898 (Haosheng and Yu, 2021), but it was not until the 1960s 
that autofocusing technique was first used in the photographic system 
(Qiumei, 2006). Traditional autofocusing techniques almost use active 
focusing methods based on range finding, through the sensor to 
measure the distance to achieve (Lichang, 2015; Chen et al., 2020). 
With the gradual development of precision instruments toward 
intelligence and automation, higher requirements have been put 
forward for microscopes (Meng et  al., 2022). Hence, a micro 
autofocusing technique based on digital image processing has 
gradually gained the attention of researchers (Kui, 2018). Image 
processing-based autofocusing methods are mainly divided into depth 
from defocus and depth from focus (Yunhao, 2019).

Depth from defocus was first proposed by Pentland in 1987, to 
obtain depth information from the defocused images and use optical 
principles to calculate the focal distance, to achieve the purpose of 
autofocusing (Pentland, 1987). Although depth from defocus 
processes fewer images and has a faster-focusing speed (Gao and Ge, 
2014), the focusing accuracy depends on the establishment of a 
correct focusing mathematical model (Rui, 2021), which can only 
be estimated theoretically at present, it is not completely accurate and 
just approach to idealization infinitely, which result in larger error 
effect (Meng, 2005). Depth from focus does not need to establish the 
mathematical model of the imaging system in advance, it is a method 
of focusing search process (Shiyun, 2022), whose core is focusing 
search algorithm and definition evaluation function (Yuhu et  al., 
2013). However, it still does not equip with good adaptability, and 
cannot get accurate definition evaluation on some collected images 
with multi-noise (Yu and Lu, 2022). Meanwhile, depth from focus 
algorithm needs to acquire and process a series of data that image 
from clear to fuzzy, which takes much time (Yipeng et al., 2005) and 
cannot satisfy both focusing accuracy and real-time at the same time, 
unable to coordinate the two to a favorable standard (Fan, 2021).

In recent years, with the rapid development of computer 
technology, deep learning has also ushered in explosive growth (Wang 
et al., 2016; Cao et al., 2021; Hu et al., 2022), and has achieved a good 
application prospect in computer vision tasks (Cao et al., 2022a) such 
as image classification (Cao et al., 2020; Cheng et al., 2021; Hussain 
et al., 2021; Safari et al., 2021; Hang et al., 2022), and object detection 
(Ranjan et al., 2018; Hassaballah et al., 2021; Cao et al., 2022b). By 
extracting the image deep feature information, and predicting 
information within a very short period, can greatly improve the 
validity and accuracy of the detection results. Therefore, the use of 
deep learning techniques for microscopic imaging autofocusing has 
become a focused research of biomedical microscopic images in 
recent years.

In 2018, Jiang et  al. (2018) explored the application of deep 
convolution neural networks (CNNs) for microscope autofocusing. 
They used the trained model to predict the focal position of the acquired 
image without axial scanning, which significantly improved the 
autofocusing speed of the microscope and avoided the defects associated 
with autofocusing algorithm. In the following year, Pinkard et  al. 
(2019b) designed a fully connected Fourier neural network based on 
coherent illumination, which uses an additional non-axial illumination 
source to predict the single image focus and emphasizes the 
generalization Capability between sample types. Dastidar (2019) First 

improved on input dataset by no longer acquiring multiple images in 
the vertical direction and maximizing the image sharpness to achieve 
autofocusing, instead, the difference image of two defocus images with 
a fixed spacing of 2 μm as inputs for deep convolution networks (CNN) 
to predict the optimal distance to be moved, to achieve the best focus 
relative for current position. In 2021, Luo proposed an autofocusing 
method (deep-R) based on deep learning. The network blindly and 
automatically outputs the focused image by training the sample 
microscopic image obtained at any defocus plane (Luo et al., 2020).

In the same year, Li et al. (2021) proposed a deep learning-based 
autofocusing framework that estimates the position of the focal plane 
of the objective lens relative to the plate by receiving two defocus 
images acquired by the fluorescence microscope of the plate, providing 
a deterministic measure in the prediction. Therefore, image blocks 
that may contain background or low-contrast objects can be excluded, 
improving accuracy. However, organisms have unique forms and 
characteristics, which may make microscopic images too different. 
The method proposed by Li needs to rely on a relatively large dataset 
to fit the ideal model, otherwise, the predictive performance of unseen 
samples will be reduced, the network generalization capability is weak, 
and the efficient prediction of multi-domain, multi-rate microscopic 
defocus images cannot be realized.

To accurately predict the focal length of defocus images, this paper 
proposes a deep learning network architecture with lightweight, faster 
computing speed, wider prediction area, and stronger generalization 
ability, while considering both efficiency and accuracy. The 
implementation of the method is described in detail from the 
construction of the dataset, model construction, and training method. 
A complete evaluation system is constructed, comparing and 
analyzing the performance gap of this network and other network 
models such as ResNet50 and BotNet. Finally, summarized and 
analyzed the important results of the experiment.

2. Construction of test dataset

2.1. Test facility and data acquisition

The dataset for this experiment consists of two parts, one using 
the open source dataset, and the other part was observed using the 
ML-31-M biomicroscope equipped with a 10X/22 large field of view 
eyepiece as standard (Provided by Guangzhou Mingmei Technology). 
Under the lighting conditions of the LED coherent illumination that 
comes with the device, an MD50-T microscope digital camera with 
2.2 μm × 2.2 μm image element size and 5 megapixels was used to 
acquire an effective pixel high-resolution image of 2,592 × 1,944 size.

Figure 1 shows the schematic diagram of the ML-31-M biological 
microscope, where part A is the MD50-T microscope camera with a 
resolution of 5 megapixels, which can provide a frame rate of 14fps in 
full pixel mode. Part B is an adjustable large field of view 
WF10X/22 mm double-headed eyepiece. C is a four-hole converter 
equipped with four infinity distance flat-field achromatic objectives of 
10X/0.10, 20X/0.25, 40X/0.65, and 100X/1.25. The ML-31-M used is 
a binocular microscope with two fluoroscopic systems. The imaging 
principle is based on binocular stereo vision, where different parts of 
the objective are observed through different eyepieces and the images 
are subsequently combined through brain vision processes. As shown 
in Figure 2A, the sample slide forms an inverted real image by the 
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magnification of the objective lens, and the light rays are secondarily 
magnified by the multiplier module, and then the light rays are cast 
down to the eyepiece imaging lens for convergence, and finally enter 
the eyepiece to form a magnified orthogonal virtual image to 
be observed.

The microscope imaging process is based on the imaging 
principle of the convex lens, and the schematic diagram is shown in 
Figure 2B. P is the observation point of the sample, s is the distance 

from the center of the convex lens to the image detector, D is the 
diameter of the lens aperture, and R is the radius of the blurred image 
point where p’ falls on the image detector. The relationship between 
focal length f, object distance u, and image distance v satisfies 
Gauss’s formula:

 

1 1 1
u v f
+ =

 (1)

FIGURE 1

(A) Sketch of ML-31-M biological microscope. (B) Real picture of ML-31-M biological microscope.

FIGURE 2

(A,B) are the principle diagram. (A) Binocular microscope imaging principle diagram (Wu et al., 2020). (B) Microscope imaging principle diagram.
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When a clear flat image is observed, the viewing surface at this 
point is the focal plane of the system. But in defocus plane, will form 
a fuzzy image point on the observation surface, the radius of the image 
point R can characterize the degree of focus of the image, that the 
value of z in the figure is greater, the image is more away from the focal 
plane, the image point fuzzy circle is larger, the relationship holds:

 

R
D

z
v

s
v s/ 2

1 1
= = −







 (2)

From the above two equations, we can obtain:

 
R s D

f u s
= − −











2

1 1 1

 (3)

Clear imaging by changing the value of u\s\f so that the image 
plane is located at the focal plane.

Figure 3 shows the microscopic imaging of the same centroid in 
the tumor cells depicting the imaging situation at different focal 
planes. When z = 0um, microscopic imaging is in the plane of focus 
when the image clarity is the highest. Subsequently, the defocus plane 
image is acquired by moving up and down a certain step, and the 
z-value is the distance the objective lens is moved with respect to the 
plane of focus. It is clear from the microscopic images that the further 
away from the defocus plane to the focal plane, the lower the sharpness 
of the image.

2.2. Building of the dataset

High-resolution microscopic images located in the focus can 
clearly observe the morphology and structure of the sample. 

However, it is impractical to achieve manual focusing in the face of 
a large number of data samples, so there is an urgent need to 
develop a method that enables accurate prediction of the focal 
length to achieve high-resolution autofocusing. To achieve the 
accuracy of the model, it is not enough that only use the public 
dataset. For this reason, the experiments in this paper use a 
two-part dataset.

One part is a self-built dataset, that using the ML-31-M 
biomicroscope to collect. The process starts with the initial focusing 
of the sample, the next fine-tuning of the focus to achieve optimal 
definition, and move the sample to different defocus positions 
ranging from −10 μm to +10 μm in steps of 0.5 μm to obtain defocus 
images. As shown in Figure 4. The above steps were repeated for the 
entire sample in 1 mm lateral steps, and a total of 20 sets of data 
were collected, each containing approximately 40 images. Finally, 
the images and the corresponding focus position information were 
saved, and the defocus image under two magnifications of 20X and 
40X were acquired by same method.

Another part is the public dataset (Jiang et al., 2018), micrographs 
were observed with an Eclipse electron microscope (provided by 
Nikon Eclipse) at 0.75 NA, 20X lens, which was obtained from a 
5-megapixel color camera (Pointgrey BFS-U3-51S5C-C) with a 
3.45 μm pixel size. Keeping the defocus distance range from +10 μm 
to −10 μm, 40 defocus stacks with 0.5 μm step spacing were 
captured in the same field of view, totaling 40 × 40 images in the 
same field of view, and the obtained images were segmented into 
approximately 130,000 images of size 224 × 224 for network 
training. This is shown in Figure 4.

3. Model structure

3.1. Method overview

Deep convolutional neural networks have been widely used in 
image classification and processing in recent years. In this paper, 
we  use the collected defocus image data combined with 
convolutional neural networks to construct an end-to-end model 
to predict the focal length of an image, and maximize the 
requirements for high-accuracy prediction under multiple regions. 
The model is as follows:

 D F Sp
k= ( ),δ  (4)

Sk denotes a 224 × 224 size defocus cell image, Dp  is the 
predicted focal length obtained after training the network model, and 
F  is the regression function obtained after training, and δ  is a set of 
network learning parameters including learning rate, number of 
iterations, etc. In the training process, by feeding a large number of 
dataset consisting of defocus images into the network, the training is 
continuously iterated to obtain the optimal parameters δ of the 
model, the gap between the predicted focal length Dp and the real 
focal length Dt is minimized, which makes the problem 
transformed into:

 
δ δm

t pm L D D= ( )arg in ,
 (5)

FIGURE 3

Cell micrograph (observed with a 20X Eclipse motorized 
microscope, acquired by Pointgrey BFS-U3-51S5C-C camera).
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For some wide-field high-resolution images, in order to get the 
focal length more accurately and quickly, it needs to be partitioned 
into small images of 224 × 224  in height and width for prediction 
respectively, and the results will be averaged so that the original model 
will be transformed into:

 
D avg F s F s F sp

k k
h
k= ( ) + ( ) + + ( )( )( ..σ δ δ δ1 2, , ,

 (6)

Dp  is the focal length of the predicted wide-field and high-
resolution image, avg ( ) is the averaging function, s sk k

1 2, ⊃  is 
the same wide-field high-resolution image split into different 
224 × 224 small images，and σ  is the discriminant function, 
Because in the process of segmenting the wide-field high-
resolution image into small images, a part of the image will 
include most of the blank area, resulting in unreliable prediction 
results obtained from this part of area, which needs to 
be discarded.

3.2. The proposed network structure

For the autofocusing of wide-field and high-resolution microscopic 
images, this paper proposes an LDSE-NET automatic focal distance 
prediction deep learning framework, using DenseNet as the main 
framework of the model in the network. Since 2015 He et al. (2016) 
proposed ResNet for the problems of vanishing gradient, explosion 
gradient and performance degeneracy that occur with deeper network 
layer structures, and the performance of deeper networks can be further 
improved by jumping connections between shallow and deep networks, 
weakening the strong connections between each layer. However, due to 
the large number of layers built by ResNet, more computational 
resources and time are required. So Huang et  al. (2016) further 
improved the feature reuse capability based on ResNet and proposed 
DenseNet with dense connection operation.

Figure 5 the input of each layer of the network and the output of all 
previous layers of the network, which mainly focuses on improving the 
network performance from the perspective of feature reuse, enhancing 

FIGURE 4

Cell micrograph (observed with the ML-31-M biological microscope, acquired by the MD50-T microscope camera). (A) 20X objective observation 
(B) 40x objective observation.

FIGURE 5

Network structure of DenseNet.

https://doi.org/10.3389/fnins.2023.1213176
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnins.2023.1213176

Frontiers in Neuroscience 06 frontiersin.org

the feature propagation, and improving the efficiency of information and 
gradient transmission in the network. The network contains three layers 
structure of Dense block layer, Transition layer, and Classification layer. 
Where Dense block layer consists of a composite with BN, ReLU, and 
Conv nonlinear mapping functions, designed with a pre-activation 
strategy to make network training easier and generalization performance 
better; Conv represents the convolution layer in the deep neural network, 
which undertakes convolution calculation in the process of model 
reasoning. Transition layer is used for the connection between dense 
blocks and contains 1 × 1Conv, 2 × 2 Average pooling; Classification layer 
consists of Global average pooling and Fully connected layer, the input 
of each layer of the network includes the output of all previous layers of 
the network. Compared with ResNet50, this network mainly focuses on 
improving the network performance from the perspective of feature 
reuse, enhancing feature propagation, and improving the efficiency of 
information and gradient transmission in the network.

In addition, to emphasize the information feature channel, better 
adapt to the dataset, and further improve the prediction performance, 
the network architecture is adjusted and optimized in this paper. The 
number of Convolutional layers in the Dense Block is reduced, and 
some of the activation function in it are replaced with Tanh, making the 
network structure simpler and more efficient. On this basis, the SE 
module is connected after the last Dense Block to improve the accuracy 
of the image focal length prediction task to a certain extent. In this 
paper, the model is completed by sequentially superimposing the dense 
block, transition block, and squeeze excitation module. As shown in 
Figure 6.

The input of this CNN network structure is an unfocused blurred 
image captured by a microscope. The image is first passed through a 
Convolutional layer of a 7 × 7 matrix with a step size of 2 and a padding 
of 3 and then passed through a 3 × 3 maximum pooling layer with a step 
size of 2. The output is passed through the constructed Dense block 
layer in turn, compressing the Dense block layer input and all the 
extracted feature information with the help of Transition blocks, 
changing the size of the channels’ number so that the number of 
channels between adjacent dense blocks can correspond to each other, 
further enhancing the feature propagation between each layer, and the 
output is passed through the SE module to extract more feature 
information. Finally, the output is sent to the 7 × 7 Global average 
pooling layer and the Fully connected layer. The output of the network 
is a Regression layer, and the result is the predicted sample focal length.

3.2.1. Dense block layer
Dense block layer is an important part of LDSE-NET, which is 

used to further improve the effectiveness of information transfer 
between each layer, and the specific propagation formula is as follows:

 
X H X X XL L L= …( )−0 1 1, , ,

 (7)

X X XL0 1 1, , ,…[ ]− refers to the concatenation of the feature-maps 
produced in layer 0 1 1, , ,… −L , and HL[ ] is defined as a composite 
function of three consecutive operations consisting of normalization 
function, activation function, and convolution function, and the input 
of each layer is the output of the mapping results of all previous layers, 
and also the feature mapping result of the current layer is used as the 
input of the later layers, and the structure is shown in Figure 7.

3.2.2. Transition layer
The above-mentioned Dense block layer equation only works if the 

feature map is the same size, so the Transition layer needs to be used to do 
pooling and convolution to change the size of the feature map. So that the 
size of the feature map output from the Dense block layer is consistent 
with the shape size of the input of the next layer. The structure of the 
Transition layer used in this network is shown below, consisting of the BN 
layer of normalization function, Tanh of activation function, Conv of 
1 × 1, and Average pooling of 2 × 2, and the structure is shown in Figure 8.

3.2.3. Squeeze-excitation module
The SE module improves the representativeness of the network by 

enabling it to perform dynamic channel-wise feature recalibration (Jie 
et al., 2018). This structure consists of Global average pooling layer, 
Fully connected layer, and linear activation function. The feature 
outputs of LDSE-NET are used as input to the SE module to increase 
the sensitivity to useful feature information. It learns the global 
information by fusing the convolutional features of each channel and 
filters out the less useful feature information to improve the 
expressiveness of the model. This is shown in Figure 9.

3.2.4. Squeeze
Squeeze works by compressing the global spatial information into 

a single channel using Global average pooling. In principle, the 
channel statistics Z is achieved by reducing the spatial U dimension 
height and width, which can be summarized by the equation:

 
Z F u

H W
u i jm sq m

i

H

j

W
m= ( ) =

×
( )

= =
∑∑1

1 1

,

 (8)

3.2.5. Excitation
This module is designed to take advantage of the global information 

obtained by compression and aims to fully capture channel-wise 

FIGURE 6

Network structure of LDSE-NET.
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dependencies (Jie et al., 2018), and consists of two Fully connected 
layers and an activation function, as shown in Figure 9A. In order to 
better adapt to the data set of this experiment, the sigmoid activation 
function is changed to the Tanh activation function, so the excitation 
operation S can be summarized by the formula:

 S F z W g z W W W zes= ( ) = ( )( ) = ( )( ), ,σ σ δ2 1  (9)

where W R W R x x
C
r
C C C

r
1 2 0∈ ∈ ( ) = ( )

× ×
, , maxδ ,  representing 

the ReLU activation function alleviates the vanishing gradient 
problem, and compared with Sigmoid activation function, 

σ x e
e

x

x( ) = −

+

−

−
1

1

2

2
 improves the convergence speed, z is the channel 

information collected by the above Squeeze operation. The final 
output X Rm

H W∈ ×  is obtained by multiplying the channels between 
the scalar sm and the feature map um. This can be written as

 
X F u s s um scale m m m m= ( ) =, •

 (10)

4. Experiment results and analysis

4.1. Model training

The experimental training process in this paper was run on a 
desktop computer with an NVIDIA GeForce RTX 3080 graphics card, 

an Inter Core i5-12600KF CPU and 32 GB of RAM. After some small 
sample tests, the parameters of the LDSE-NET were determined. Mean 
square error (MSE) was used as the model loss function, defined as:

 
Loss MSE D D

n
D Dt p

i

n
i
t

i
p= ( ) = −( )

=
∑,
1

1

2

 (11)

In the above equation, MSE ( ) represents the root mean square 
error function, Dt represents the true focal length in the dataset, Dp 
represents the result predicted by the network, and n is the number of 
samples. The training optimizer uses Adam deep learning optimization 
algorithm, sets the network learning rate to 0.001, and uses the lr_
scheduler mechanism to adjust the learning rate at certain epoch 
intervals to achieve a better training effect. The batch size is set to 50 
images, and the training is stopped when the loss values of the test set 
and training set tend to stabilize and do not decline. Using RGB 
channels images from the public dataset, dividing the dataset RGB 
Channels images into training set and test set in a 9:1 ratio, and there 
is no intersection between them. To verify the performance of the 
network, this experiment compares the network structures of 
ResNet50 and BotNet (Bottleneck Transformer Network) and obtains 
the experimental results of each network structure separately.

4.2. Prediction results and analysis

According to the above indexes for training, the results of the 
prediction accuracy changes are shown in Figures  10A–C, the 
LDSE-NET has a small oscillation range of the loss values of the 
training set and the test set throughout the training process, and after 
about 50 epochs, the loss values of both the training set and the test 
set fluctuated within 0.005, and there was a significant decline in the 
training process, with the final model loss value stabilizing around 
1E-05. On the contrary, the other two networks showed larger 
fluctuations in the loss values during the training process. The BotNet 
test set loss value fluctuated sharply between 0.01 and 0.02 and could 
not decrease; when ResNet50 had a sharp increase in error after 
training to a certain epoch, followed by a dramatically decrease, and 
the loss value could not be stable. The final model loss values of both 
networks can only drop to around 1E-04, and the training effect is 
poor compared to the LDSE-NET.

FIGURE 7

Dense block layer of LDSE-NET.

FIGURE 8

The transition layer of LDSE-NET.
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Besides, this paper compares three models in multiple sets of renal 
sample images of the focal length prediction results, and selects the error 
result distribution of three sets of data as shown in Figures 11A–C. From 
the figure, the three networks have little difference in the prediction 
effect in the range of −10 μ m to −5 μ m, because defocus images blur to 
a large degree and contain fewer image features, making each network 
have the same effect. In the interval of −5 μm ~ +5 μm, by evaluating the 
prediction error distribution, it can be found that most of the error 
distribution of LDSE-NET model is within +250 nm ~ −250 nm. In 
contrast, the prediction error of the ResNet50 model is mostly 
distributed beyond 500 nm. Overall, compared with BotNet and 
ResNet50 networks, the prediction accuracy of LDSE-NET network is 
improved by 1 and 2.5 times, respectively.

In addition to the improvement in prediction accuracy, the 
purpose of this paper is to increase the computational speed of the 
model as well as to make it more lightweight. The specific comparison 
results are shown in Table 1. All three networks were trained by the 
same hardware device, and when the model training was completed, 
the training time of LDSE-NET was about 6 h, and the speed was 

improved by 20% compared to BotNet and 33.3% compared to 
Resnet50. The model size is simpler and lighter than the other two 
networks, with only about 12% of the size of the two networks.

4.3. Comparison of the predicted effect of 
variable magnification, variable area

To further evaluate the performance of the network. In this paper, 
we also use the 20 sets of data collected above containing a total of 
about 110,000 images of size 224 × 224 for training and testing, which 
are also divided into training set and test set in the ratio of 9:1, with 
no intersection between the two sets of data. The network models were 
trained according to the above-mentioned network parameter metrics 
to obtain the network models under 20X lens and 40X lens, 
respectively, and used to predict the focal length of defocus images 
under different magnifications.

As shown in Figure 12, the predicted images were first divided 
into nine regions of 3 × 3, which do not have overlapping parts, and 

A B

FIGURE 9

(A) Squeeze-Excitation module overall structure diagram. (B) Detail connection diagram.

Training Epoch Training EpochTraining Epoch

A B C

FIGURE 10

(A–C) represents train_loss and test_loss for ResNet50, BotNet, LDSE-NET three different networks.
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the focal length prediction was performed for these regions separately. 
Comparing the prediction results under the two magnifications, it can 
be seen that the prediction effect of 20X is better than 40X, and the 
error is reduced by about 100 nm ~ 200 nm. This is due to the fact that 
the field of view under the 40X lens is narrower and contains fewer 
cells, and the edge position becomes more blurred compared to the 

20X lens, which makes each image may contain many blank areas after 
cutting into small images, resulting in its feature information is more 
blurred and sparse, which makes the prediction focal error increase. 
In addition, the prediction results of the network for the middle of the 
image are better than the edge locations, which is most likely because 
the entire field of view is too large for the microscope head and camera 
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FIGURE 11

(A–C) Prediction error distribution of the three networks for sample 1, sample 2, and sample 3.

TABLE 1 Performance comparison of ResNet50, BotNet, and LDSE-NET.

NET Focusing error (nm) Model size Final loss Train time

ResNet50 0.5 ± 0.32 4.002 MB 3.89E-04 9 h

BotNet 0.38 ± 0.29 3.701 MB 2.04E-04 7.5 h

LDSE-NET 0.15 ± 0.17 480 KB 7.65E-05 6 h
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Error/nm

B:290
L:229

R:253
B:202
L:151

R:222
B:214
L:116

R:368
B:263
L:200

R:339
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L:119

R:394
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L:242

R:337
B:327
L:223

R:398
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L:159

R:442
B:316
L:204

Actual focal:+2500nm

R:638

40x

Error/nm

B:391
L:341

R:689
B:551
L:360

R:472
B:224
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L:264

R:594
B:366
L:240
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FIGURE 12

R, B, and L represent ResNet50, BotNet, and LDSE-NET three different networks. (A) Prediction error of 20X lens (B) Prediction error of 40X lens.
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FIGURE 13

Focal length error of 20X, 40X images predicted by different networks.

to focus over the entire field of view, resulting in the possible existence 
of more blurred locations on the edges. Therefore, during the training 
and prediction process, the image in the center of the field of view can 
be selected, and more accurate results will be obtained.

Secondly, Figure 13 shows the prediction focal error plots of 
each of the three networks for the same high-resolution defocus 
image with a large field of view at different magnifications. 

Combining the results of this experiment, it can be seen that for 
20X magnification images, the prediction error of ResNet50 and 
BotNet are mostly above 300 nm. On the contrary, most of the 
prediction error of LDSE-NET remain below 300 nm. Similarly, 
from the 40X magnification error map distribution, it can be seen 
that more than 60% of regions of ResNet50 and BotNet have error 
over 500 nm, while the average error of LDSE-NET is controlled 
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around 300 nm. Therefore, the error of LDSE-NET is significantly 
smaller than the other two networks for both 20X and 40X 
magnification data, and the accuracy of some areas is improved by 
1 ~ 2 times compared to BotNet and ResNet50.

In addition, to satisfy the requirement for error reduction, the 
computational speedup is also an important purpose. Here, three 
models are utilized to directly predict the single image focal 
length, as shown in Figure 14, large-field high-resolution images 
of different regions of the same sample are selected, all 
experiments are conducted on the same computational platform 
and obtain the running time. The specific comparison effect is 
shown in Figure 15, in terms of time efficiency comparison, the 
computation time of LDSE-NET network is improved by 

0.02 s ~ 0.04 s. Combined with the above experimental contents, 
this shows that this network is better than ResNet50 and BotNet 
in terms of accuracy and time.

5. Conclusion

In this paper, we present a dense model LDSE-NET with squeeze 
excitation for predicting the focal length of the defocus images 
under the medical microscope. Its effectiveness in focal length 
prediction is verified by using multi-region and multi-magnification 
image data. Through the evaluation of the prediction results in the 
test set, compared with the other two networks of BotNet and 

FIGURE 14

(A–F) represent picture1 ~ picture6 test sample images respective.

FIGURE 15

Comparison of the time required to predict a single image by different network predictions.
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ResNet50, the accuracy of the image focal length prediction of 
LDSE-NET is improved and the model proposed is lighter. This 
network reduces the information loss, improves the transmission 
efficiency of information in the network, and further proves the 
feasibility and practicability of deep learning in the prediction of 
focal length of microscopic imaging on the basis of previous studies, 
and provides ideas for future research.
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