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Brain-inspired deep spiking neural network (DSNN) which emulates the function

of the biological brain provides an e�ective approach for event-stream

spatiotemporal perception (STP), especially for dynamic vision sensor (DVS)

signals. However, there is a lack of generalized learning frameworks that can

handle various spatiotemporal modalities beyond event-stream, such as video

clips and 3D imaging data. To provide a unified design flow for generalized

spatiotemporal processing (STP) and to investigate the capability of lightweight

STP processing via brain-inspired neural dynamics, this study introduces a training

platform called brain-inspired deep learning (BIDL). This framework constructs

deep neural networks, which leverage neural dynamics for processing temporal

information and ensures high-accuracy spatial processing via artificial neural

network layers. We conducted experiments involving various types of data,

including video information processing, DVS information processing, 3D medical

imaging classification, and natural language processing. These experiments

demonstrate the e�ciency of the proposed method. Moreover, as a research

framework for researchers in the fields of neuroscience and machine learning,

BIDL facilitates the exploration of di�erent neural models and enables global-local

co-learning. For easily fitting to neuromorphic chips and GPUs, the framework

incorporates several optimizations, including iteration representation, state-

aware computational graph, and built-in neural functions. This study presents a

user-friendly and e�cient DSNN builder for lightweight STP applications and has

the potential to drive future advancements in bio-inspired research.

KEYWORDS

spatiotemporal processing framework, spiking neural network, global-local co-learning,

synaptic plasticity, video recognition, brain-inspired computing, leaky integrate and fire,

reward-modulated STDP

1. Introduction

Humans can perceive the continuously changing world, including static features such

as object shapes and colors, as well as dynamic features such as motion trajectories and

waveforms. These perceptions require high processing precision and need to be performed in

real time with low computational power requirements. It is worth noting that brain-inspired

computing features rich neural dynamics for efficiently processing temporal signals (Carlos

et al., 2019) and deep learning technologies provide the capability for high-precision spatial

information processing, which leads to the widespread development of the deep spiking
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neural networks (DSNNs) be deployed for spatiotemporal

processing (Gu et al., 2019; Wu et al., 2021, 2022b). However,

most of the current DSNN research focuses on dynamic vision

sensor (DVS) processing or image recognition tasks. For most non-

event-stream scenarios, a DSNN still lacks satisfactory accuracy.

There are also many high-accuracy spatiotemporal networks,

including two-stream networks (Simonyan and Zisserman,

2014a), convolutional 3D networks (Tran et al., 2015), and

video transformer networks (Neimark et al., 2021) for video clip

processing, networks (Han et al., 2019) for 3D imaging (image

sequence) processing, long short-term memory (LSTM) (Greff

et al., 2016), and transformer (Vaswani et al., 2017) networks for

natural language processing (NLP) etc. The key issue is that the

computational complexity and parameter size of these networks

are much larger than pure spatial processing, which makes them

hard for real-time high-throughput perception. Therefore, in

this study, we aim to extend DSNN to lightweight generalized

STP. The bio-inspired neurons are integrated into deep artificial

neural networks (ANNs) and enable spatiotemporal processing

with a computational complexity approaching pure spatial

processing level, by introducing lightweight neural dynamics. It

is revealed that temporal processing can be achieved with limited

computational cost and memory footprint. We further verified

that the accuracy can be improved by advanced neural models,

especially for video clip processing. From this point, we develop

a generalized spatiotemporal processing methodology via neural

dynamics and deep neural networks (DNNs) and then designed

a framework named brain-inspired deep learning (BIDL) that

can adapt to a variety of modalities, such as video, DVS, text,

sensor signals, etc., and finally achieves a real-time high accuracy

processing. Therefore, this study extends the DSNN application

domain to a much wider scope.

In another aspect, BIDL aims to provide a research platform for

DSNNs. Existing frameworks mostly cater to either neuroscience

researchers or machine learning researchers but not both. For

computational neuroscience researchers, it is essential to have

the flexibility to configure neural models, synaptic plasticity,

and network structure in a research platform. Additionally,

realistic applications are crucial for validating their ideas. From

the perspective of neural simulators, there are already several

simulators available, ranging from high-accuracy simulation

(Carnevale and Hines, 2006) to large-scale simulation (Gewaltig

and Diesmann, 2007). Some frameworks also accelerate network

simulation using GPUs (Yavuz et al., 2016; Golosio et al., 2021). In

terms of applications, Bekolay et al. (2014) and Wang et al. (2022)

provided rich examples of bio-inspired networks and dynamics.

BIDL offers similar design flexibility to these frameworks and

enables vectorized acceleration for neuron populations and synapse

connections using PyTorch. Furthermore, BIDL enables back

propagation through time (BPTT) training for advanced neural

models.

Machine learning researchers require a fast development

platform for DSNNs with a deep neural network (DNN) design

style. Support for global-local learning is essential for validating

brain-inspired local learning with gradient-based global learning.

Among the frameworks that fulfill these requirements, some

frameworks such as Hazan et al. (2018), Rasmussen (2019),

and Bohte et al. (2000) enable spiking neural network (SNN)

designs using deep learning frameworks such as Jax, PyTorch,

and TensorFlow. Among them, Fang et al. (2020) enabled

BPTT learning, which achieves high accuracy. Inspired by these

frameworks, BIDL provides a rapid development platform for

designing and training DSNNs using a DNN-style approach. BIDL

also introduces a configuration file that integrates networks with

datasets and pre-processing pipelines, similar to OpenMMLab

(MMCV-Contributors, 2018), enabling efficient DSNN design.

Additionally, BIDL introduces a unified flow for global-local co-

learning in DSNNs, including BPTT learning and programmable

generalized synaptic plasticity. Therefore, BIDL serves as a unified

research framework for both neuroscience and machine learning

researchers.

Moreover, BIDL incorporates a range of optimizations to

fit the designed network to neuromorphic chips, particularly

focusing on the iteration representation. Since most neuromorphic

chips operate in a timestep-driven manner, some frameworks are

specifically designed for such cases (Gewaltig and Diesmann, 2007;

Davison et al., 2009; Wang et al., 2022). However, for speeding up

GPU processing, an iteration within each temporal layer proves

to be a better choice, as applied in SpikingJelly (Fang et al.,

2020). Consequently, BIDL supports both internal and external

iteration methods, allowing training within a single framework

while utilizing the same design flow.

The main contributions of this study are as follows:

(1). BIDL provides a unified DSNN design flow for a range

of STP applications, including video clip processing, moving

trajectory processing, dynamic vision sensor (DVS) recognition, 3D

medical imaging classification, and NLP task. These experiments

demonstrate the efficiency of BIDL, achieving high accuracy

while consuming significantly less computation than traditional

convolutional 3D (Conv3D) or LSTM approaches. Finally, real-

time processing of these experiments on embedded platform is

realized.

(2). As a research framework for neuroscience and machine

learning researchers, BIDL facilitates the exploration of various

differentiable neural models such as the leaky integrate-and-

fire (LIF) and LIF+ models. It also supports different neural

configurations, including analog spike and residual membrane

potential (RMP). Furthermore, BIDL enables global-local co-

learning through the use of back-propagation through Time

(BPTT) for global learning and generalized synaptic plasticity

rules for local learning. To demonstrate the exploration capability

of BIDL, we provide an anti-noise example utilizing BPTT and

localized plasticity co-learning as well as a DVS recognition

example employing various LIF+ neurons.

(3). To ensure compatibility with neuromorphic chips and

GPUs, the BIDL framework incorporates both internal iteration

and external iteration of timesteps into a unified design flow.

Additionally, we propose a state-variable indicated computational

graph as a representation of the networks, which facilitates seamless

integration with downstream SNN compilers.

The article is organized as follows: Section 2 illustrates the

generalized spatiotemporal processing network through neural

dynamics. Section 3 discusses the characteristics of the BIDL

research platform, catering to the needs of researchers in the field.
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Section 4 presents optimizations and considerations for deploying

BIDL on neuromorphic chips. Section 5 provides diverse examples

of spatiotemporal processing, advanced neural models, and global-

local co-learning. Section 6 presents a discussion on the design

choices of the BIDL framework. Finally, Section 7 concludes the

study.

2. Generalized spatiotemporal
processing via neural dynamics

Generalized lightweight spatiotemporal processing requires

several criteria. First, it needs to be a generalized method that can

adapt to a variety of modalities, such as video, DVS, text, and sensor

signals. Second, it should have high accuracy in processing both

spatial and temporal information. Third, it should be lightweight in

terms of computation and memory usage, enabling real-time low-

latency processing. In this section, we will discuss how BIDL meets

these requirements.

For a generalized spatiotemporal framework, the neural

networks in BIDL treat all spatiotemporal source signals as

spatiotemporal tensors. These tensors contain both spatial and

temporal information, forming a spatio-temporal (ST) tensor with

the shape [B,T,C,H,W]. In this study, B represents the batch

size, T denotes the total timesteps, H and W represent height

and width, respectively, and C denotes the number of channels.

This spatiotemporal tensor format allows the representation of

spatial information in [C,H,W] and temporal information with T

timesteps.

BIDL requires a data pre-processing procedure to convert the

source data into the ST tensor format, as illustrated in Figure 1. For

a video clip, the temporal tensor represents a sequence of frames.

The video frames undergo a sampling rate conversion followed by

image preprocessing to derive the temporal tensor. For DVS signals,

the event format represented as (x, y, t, ps) over a time duration

t ∈ ts is collected and forms a frame. In this study, x and y denote

the pixel location, and two channels represent the increase and

decrease of light intensity, respectively. Each pixel is represented

by an integer value indicating the count of events at that location.

To satisfy the spiking format for SNN, it can also be transformed

into a binary format, where one or several neurons represent a

pixel. For 3D imaging data, each slice of the 3D imaging can be

treated as a “frame,” allowing the 3D data direct transformation into

a temporal tensor. For purely temporal signals, such as text or voice,

they can be represented in the 5D format with H = 1 and W = 1.

However, for easier understanding inmost cases, we use a 3D tensor

format with the shape [B,T, S], where S represents the dimension

of hidden states. Therefore, multiple modalities can be converted

into a unified ST tensor format for neural network processing. BIDL

also provides a set of data pre-processing pipelines for converting

data formats into the unified ST format. It is important to note

that this procedure is defined by the user, and the methods for

processing new data sources may vary. Detailed information about

the pre-processing for each experiment can be found in Section 5.

For high-accuracy spatiotemporal processing, BIDL utilizes

a DSNN, where ANN layers and SNN layers are interleaved

and stacked in a network. With the advantages of deep

learning technologies, ANN layers, including convolution, batch

normalization, pooling, dropout, linear, residual connections, and

attention mechanisms, are proficient in spatial (image) processing,

as shown in Figure 1. Additionally, the backbone network of

DSNN can be directly adopted from DNN, such as ResNet (He

et al., 2016) or VGG (Simonyan and Zisserman, 2014b). On the

contrary, SNN layers, such as LIF, can be inserted into these

DNNs to introduce temporal processing capability. Therefore,

ANN layers are responsible for spatial processing, while SNN layers

handle temporal processing. It has been demonstrated that the

neural dynamics of these neural models can effectively extract

temporal information (Wu et al., 2021, 2022a). In particular,

the ConvLIF is an ST block that incorporates convolution,

batch normalization, and LIF, making it suitable for lightweight

spatiotemporal processing. The ConvLIAF block is an improved

ST block that replaces spike activations with analog activations

while maintaining the neural dynamics of LIF (Wu et al.,

2021), thereby enhancing spatial signal transfer accuracy. These

ConvLIF/ConvLIAF blocks can be considered as the fundamental

building blocks for constructing spatiotemporal networks, as

shown in Figure 2. We can also leverage basic backbone networks

from DNN designs and insert neural models to enable temporal

processing, such as ResNet-LIF or VGG-LIAF. These networks can

be trained in BIDL using global learning methods, such as BPTT,

or learned through local learning methods, such as Hebb or spike-

timing-dependent plasticity (STDP). BPTT provides high-accuracy

processing through supervised learning, while local methods offer

unsupervised or weakly supervised learning, which can be used for

adapting to new tasks or environments. The top-level architecture

of the proposed framework is illustrated in Figure 3.

2.1. Definition of the LIF/LIAF neural model

The definition of LIF, Leaky Integrate and Analog Fire (LIAF),

and Residual Membrane Potential (RMP) applied in this study has

been previously illustrated in Han et al. (2020), Wu et al. (2021),

and Wu et al. (2022b). For an easy understanding of the proposed

framework, we reintroduced the definitions as follows.

The original LIF model is described in a differential function

(Ferré et al., 2018; Roy et al., 2019) to reveal the neural dynamics,

following the equation

τ
dVj(t)

dt
= −(Vj(t)− Vrest)+ RIj(t), (1)

where j represents the neuron index. τ is the timing factor of the

neuron, Vrest is the resting potential, and Ij(t) is the input current.

When Vj(t) reaches a certain threshold Vth, a spike is emitted, and

the Vj(t) is reset to an initial value Vreset .

We introduce the Euler method (Wu et al., 2018; Neftci et al.,

2019) on Eq. 1 to obtain an iterative representation in discrete-

time for easy inference and training. We define 1t as the sampling

duration which is a small fraction of time, with the Euler method,

the equation can be solved numerically:

Vj(t) = Vj(t − 1t)+
1t

τ

(

−Vj(t − 1t)+ Vrest + RIj(t − 1t)
)

.

(2)
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FIGURE 1

Proposed ST processing on various input modalities, including event-stream, video clip, 3D imaging, and 1D signals (including text). The data are first

converted to an ST tensor via a conversion pipeline and then processed by a DSNN with ST blocks. The ST block consists of synaptic processing,

such as convolution or linear layers, homeostasis, such as batch normalization, and neural dynamics, including LIF/LIAF/LIF+. The event-stream

demonstration sub-figure is modified from Hinz et al. (2017).

After sampling with a sampling rate of 1/1t, we denote the

timestep as tn, where t = tn1t, then we have

Vj(tn1t) = Vj((tn−1)1t)(1−
1t

τ
)+

1t

τ
Vrest+

1t

τ
RIj((tn−1)1t).

(3)

For simplicity, we further define α = 1− 1t
τ
, β =

1t
τ
Vrest , and

r = R
α

1t
τ
, then Eq. 3 can be written as

Vj(tn1t) = α(Vj((tn − 1)1t)+ rIj((tn − 1)1t))+ β (4)

In the discrete form, we skip the notation 1t, therefore, we get

V
tn
j = α(V

tn−1
j + rI

tn−1
j )+ β . (5)

Therefore, we obtained the LIF representation in a discrete

form. In the remaining part of this article, all the expressions are in

a discrete form, and we use t instead of tn to represent the timestep

for simplicity.

We further pack a group of neurons in a tensor for a more

compact expression, where I
t , V t , V th, Vreset , α, β , and r are all

in a tensor format, and we have re-written LIF/LIAF in following

calculation procedure:

(a). Accumulate input current with the previous membrane

potential:

V
t
m = V

t−1
+ r · I

t , (6)

where V
t−1 and V

t refer to the previous and current membrane

potential, respectively. The input current usually comes from

convolutional synaptic calculation or linear (fully connected)

synaptic calculation.

(b). Compare with the threshold and fire:

F
t
= V

t
m ≥ V th, (7)

where Ft is the fire signal. For each Ftj in F
t , Ftj = 1 indicates a firing

event; otherwise, Ftj = 0.

(c). Reset the membrane potential when fired:

R
t
= F

t
· Vreset + (1− F

t) · V t
m (8)

When using residual membrane potential (RMP) (Han et al.,

2020), a soft reset instead of a hard reset is applied:

R
t
= F

t
· (V t

m − V th)+ (1− F
t) · V t

m (9)

(d). Perform leakage:

V
t
= α · R

t
+ β (10)

where α and β represent the multiplicative decay and additive

decay, respectively.

(e). Output:

Y
t
=

{

F
t , for LIF

f (V t), for LIAF,
(11)

where f (x) is the analog activation function.
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FIGURE 2

Proposed spatiotemporal processing by utilizing neural dynamics for temporal processing. (A) Traditional spatiotemporal processing via 3D

convolution or Convolutional LSTM. (B) The proposed ST block (such as ConvLIF/ConvLIAF) is applied for spatiotemporal processing, where 2D

convolution or linear operations are employed for spatial processing, and bio-inspired neurons with dynamics are introduced for temporal

processing. Due to the lower computational requirements of 2D convolution and bio-inspired neurons compared to Conv3D or ConvLSTM, the

network becomes lightweight and enables real-time processing.

In the following illustrations, we term convolutional integration

with LIAF/LIF as ConvLIAF/ConvLIF, respectively. We use an

RMP flag (such as ConvLIF-RMP) when a soft reset is used. In

addition, parameters V th, Vreset , α, and β may vary for each

convolutional channel termed as channel sharing mode (CSM)

or be the same for all neurons termed as all sharing mode

(ASM). Since r is a resistance to the input current, and the

input current is derived from synaptic integration, we discarded

it since it can be represented as a gain factor of the synaptic

weights. There are also many variations for the proposed LIF,

which are noted as LIF+. Please refer to Section 3.1.1 for

details.

2.2. Lightweight processing

To verify the lightweight characteristics of the proposed

networks in BIDL, we summarized the computational cost and

memory cost of the proposed ST block, comparing it with

traditional ST blocks such as Conv3D and ConvLSTM. The

comparison is shown in Table 1.

We assume that the hidden state and output have the same

spatiotemporal tensor size, denoted as [B,T,H,W,C], where

B = 1. (I, J) represents the convolution kernel size of Conv2D,

ConvLIF, ConvLIAF, and ConvLSTM, while (U, I, J) represents the

convolution kernel size of Conv3D. The variable K denotes the size

of input channels. For the sake of comparison, in Table 1, we use

R and Q to represent T · H · W · C and I · J · K, respectively.

We also fix these parameters to a set of typical values and plot

the corresponding values of computational operations and weight

parameters, as shown in Figure 4.

The results from Table 1 and Figure 4 reveal that the

computational overhead of ConvLIAF is not significantly different

from that of Conv2D (time-distributed). Furthermore, ConvLIF

consumes fewer multiplications thanks to its spiking format. It

can be observed that, for the same temporal tensor shape, both

ConvLIAF and ConvLIF achieve a computational reduction of 3x

compared to Conv3D and 8x compared to ConvLSTM, as shown

in Figure 4. Therefore, compared with Conv3D and ConvLSTM,
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FIGURE 3

Top-level architecture of BIDL. BIDL is based on PyTorch and OpenMMLab (MMCV-Contributors, 2018). It consists of learning modules, a layer library

(neural models), a network library, datasets, and demo applications. The networks designed by BIDL can be ported to the neuromorphic compiler via

a state-aware computational graph representation.

ConvLIAF can save a significant amount of computational

resources and storage overhead. The impact on accuracy is reported

in literature Shi et al. (2020) and Wu et al. (2021), and is also

discussed in our experiment section.

3. BIDL: an easy-to-use platform for
SNN researchers

The BIDL platform is designed to cater to two main types of

researchers: computational neuroscience researchers and machine

learning researchers.

3.1. For computational neuroscience
researchers

Computational neuroscience researchers primarily focus on

building various neural models, exploring synaptic plasticity

rules, and studying network structures. Hence, BIDL provides

support for these features, and spatiotemporal applications serve

as experimental examples to support their theoretical viewpoints.

3.1.1. Neural model support
Unlike most computational neuroscience frameworks

such as Nest (Gewaltig and Diesmann, 2007) and Neuron

(Carnevale and Hines, 2006), where neurons cannot be directly

trained using gradient-based learning methods, BIDL introduces

a group of neurons called LIF+ that can be trained directly using

backpropagation through time (BPTT) with surrogate gradients.

The LIF+ neurons are derived from the original leaky integrate and

fire (LIF) model by incorporating improvements in key aspects of

the differential equations to enhance neurodynamics, as inspired

by Lee et al. (2018). Figure 5 illustrates the decomposition of

LIF+ into five stages, each offering several choices for improving

the similarity to biological neural dynamics. Detailed definitions

of each mode can be found in Lee et al. (2018). Additionally,

BIDL supports customized neural models, allowing users to

define their own models expressed as sub-networks in PyTorch.

3.1.2. Generalized synaptic plasticity rules
Exploring various synaptic plasticity approaches is

common among computational neuroscience researchers.

In BIDL, we introduce a local learning module, which is

a customizable programmable module that supports Hebb,

spike-timing dependent plasticity (STDP), and reward-

modulated STDP (R-STDP), as shown in Figure 6. This

module receives spikes and optionally membrane potentials

from the current neuron population (e.g., a LIF layer) as

well as the previous neuron population. It also receives the

reward signal from the external environment and reads the
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TABLE 1 Formulas for calculating the computational complexity and the weights of di�erent spatiotemporal layers.

Layer MUL ADD Weights

ConvLIAF (Q+ 1) · R (Q+ 2) · R (Q+ 1) · C

ConvLIF R (Q+ 2) · R (Q+ 1) · C

Conv2D (TD) Q · R Q · R (Q+ 1) · C

Conv3D U · Q · R U · Q · R (U · Q+ 1) · C

ConvLSTM (4 · (Q+ I · J · C)+ 3) · R (4 · (Q+ I · J · C)+ 1) · R (Q+ I · J · C + 1) · 4 · C

TD refers to the time-distributed operation, i.e., duplicate over time.

FIGURE 4

Computational complexity and number of weights of a

representative ST block for an example parameter setting (T = 8, H =

W = 16, C = K = 64, U = I = J = 3). It reveals that ConvLIF/ConvLIAF

consumes similar computational resources and parameters to

(time-distributed) Conv2D, while much fewer than Conv3D and

ConvLSTM.

previous weights of the synaptic array. Using the user-defined

update function SP, the module calculates the weight update

value 1w.

3.2. For machine learning researchers

3.2.1. A deep learning style SNN builder
For machine learning researchers, their focus is on how

SNNs can assist DNNs in efficient spatiotemporal processing

and designing SNNs using a DNN building approach. BIDL

leverages popular DNN designing frameworks such as PyTorch

and OpenMMLab (MMCV-Contributors, 2018) to provide a

familiar development environment. Researchers can reuse DNN

backbones such as ResNet and VGG for building SNNs in BIDL.

The networks can be trained using backpropagation through

time (BPTT) similar to pure DNNs, enabling DNN researchers

to seamlessly transition to SNN work with minimal adaptation

required.

3.2.2. Global-local learning support
Global learning methods such as BPTT excel in learning

from supervised information and achieve high accuracy for many

applications. However, they come with a high computational

burden and memory usage since the membrane potentials and

activations of each timestep in the forward propagation need

to be recorded for the backward propagation. On the contrary,

local learning methods based on synaptic plasticity rules offer

better computational energy efficiency but often suffer from lower

accuracy. In this regard, we propose a hybrid training approach

that integrates global-local learning into a unified flow, allowing

interleaved operation of global learning and local learning.

During global learning, the synaptic plasticity learning module

is detached, and the network is trained using BPTT. During local

learning, the weights are adjusted via local plasticity, and BPTT is

not required. This hybrid approach is particularly useful in pre-

training-finetuning scenarios, where the network is first trained

globally using BPTT and then fine-tuned using reward-modulated

STDP (R-STDP) to adapt to changes in the environment.

4. Mapping optimizations for
neuromorphic chips

BIDL can also serve as an application builder for neuromorphic

chips, taking into consideration their unique characteristics and

constraints. It generates a computational graph that can be

used by subsequent neuromorphic compiling tools. Currently,

neuromorphic chips accept computational descriptions with

specific constraints, including being timestep driven, caching state

variables (membranes) for use in the next timestep, and parameter

quantization for memory savings.

(1). Most neuromorphic chips operate in a timestep driven

manner, where a timestep iteration is located outside the neural

network. The device computes all the layers in each timestep and

then switches to the next timestep. In contrast, GPU-based SNN

frameworks usually locate the timestep iteration within each layer,

resulting in outputs with an extra temporal dimension. To address

this difference, we designed two modes of operation: internal

iteration mode (IIM) and external iteration mode (EIM), shown in

Figure 7.

In IIM, single-step layers such as convolutions and LIF neurons

are wrapped by a timestep iteration and a reset phase, forming

iterated layers. The network is built based on these iterated layers,

which have a temporal dimension on both the input and output.

In EIM, the single-step network is built directly using single-step
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FIGURE 5

LIF+ neuron with configurable modes. Each mode can be treated as an improvement of the original simplified LIF model, including A: decay, B: spike

accumulation, C: spike trigger condition, D: inhibitory, and E: refractory. Detailed definitions can be found in Lee et al. (2018).

FIGURE 6

Generalized local learning module, which can be configured to support STDP, R-STDP, Hebb, or user-defined synaptic plasticity rules. The two LIF

populations and synaptic connections are part of the neural network, while the remaining parts of the neural network are denoted as “Network” for

simplicity. This also indicates that only a subset of the synaptic weights of interest are adjusted during local learning.

layers, and the network is invoked T times, where T is the number

of timesteps. Both modes can be trained using BPTT and achieve

similar accuracy.

IIM offers more flexibility as each iterated layer can have its

own total number of timesteps, and temporal transforms (such as

decreasing the number of timesteps) or attention operations can be

applied between timesteps for temporal information aggregation.

For classification tasks, where there is a single timestep at

the end of the network, a temporal aggregation layer (e.g., sum

or average) is applied before the classification head to reduce
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FIGURE 7

Processing flow of internal iteration (IIM) (A) and external iteration (EIM) (B). In IIM, a loop and reset wrapper is introduced in each spatiotemporal (ST)

block, and all the timesteps for the current block are calculated before moving to the next block. In EIM, the timestep iteration is located outside the

network, and all the layers in the network are processed before moving to the next timestep.

the number of timesteps to 1. This is straightforward in IIM,

but for EIM, all layers share the same timestep setting, making

direct temporal aggregation impractical. In such cases, we use

an accumulator instead of temporal aggregation. Mathematically,

instead of calculating the output as the sum of inputs over

timesteps, i.e.,Out =
∑T−1

i=0 Input(i), we use an accumulator Acc(i)

defined as Acc(i) = Acc(i − 1) + Input(i), with a reset value of

Acc(−1) = 0, and the output is obtained as Out = Acc(T − 1).

(2). When compiling the network for neuromorphic chips, we

utilize EIM, and only a single-iteration network is compiled. We

represent the network in a computational graph format, where each

node corresponds to a functional layer, and each edge represents

an intermediate tensor. In a traditional computational graph, these

tensors can be destroyed after the graph computation is finished,

meaning all the variables survive only at the current timestep.

However, some state tensors, such as membrane potentials, need

to be carried over to the next timestep and updated in place. To

handle this, we introduce two additional nodes to the graph: the

load node and the save node. The load node can be associated

with a constant tensor node, which provides the initial value

during the initialization stage or is reset by the user. Resetting

is typically done when calculating a new sample and requires

erasing the membrane potential from the previous sample. To

distinguish between different state tensors in the graph, we assign

them unique string identifiers, generated as universally unique

identifiers (UUIDs). The load and save nodes are represented as

customized layers in PyTorch.

(3). The compiled network is executed on the neuromorphic

chip using a runtime tool.Within a single input sample, the runtime

tool iterates through each timestep, provides input data to the

device, performs the network inference, and obtains the output.

The input data consists of a sequence of frames, with one frame

processed at each timestep. For networks that generate single-step

outputs (e.g., classification or detection), only the output of the last

timestep is required. After executing all the timesteps, a state reset

command is issued to reset the membrane potential, preparing for

the next sample.

(4). Using PyTorch layers to represent the computational

process of neurons may introduce additional nodes to the graph,

making it more complex and less recognizable for optimization on

neuromorphic chips. In most devices, basic neural models such as

LIF neurons have dedicated circuits for implementation. Therefore,

we rewrote the LIF neuron in PyTorch using two customized

layers specifically for inference (not for training). These layers,

cmp_and_fire and reset_with_decay, represent the compare-to-

threshold and firing process and the membrane reset and decay

process, respectively. These blocks can be treated as black boxes in

the computational graph and recognized directly by neuromorphic

chips, enabling circuit-level optimization.

Figure 8 illustrates the implementation of LIF neurons

using the hardware-defined built-in blocks for acceleration

on neuromorphic chips. The previous membrane potential is

loaded and then added to the input post-synaptic current.

The cmp_and_fire block is used to calculate the spike, and
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FIGURE 8

LIF neuron implementation with hardware-defined built-in blocks

for neuromorphic chip acceleration.

the reset_with_decay block is applied to update the membrane

potential and perform decay.

(5). To reduce memory footprint and computational energy,

quantization is applied. BIDL provides float16 training, which

utilizes the float16 support in PyTorch with the loss amplified by

a user-defined setting, such as 512. These mechanisms discussed

in this sub-section have been deployed in the brain-inspired chip

Lynchip KA200.1

5. Experiments

In this section, we demonstrate several spatiotemporal

applications in BIDL across multiple modalities, including video,

DVS, 3D imaging, and NLP. We also evaluate several models

in LIF+ with various neuronal variations to illustrate the neural

modeling capabilities. Finally, we showcase local-globalized co-

learning for high-accuracy transfer learning.

5.1. Applications

5.1.1. Video processing
Video gesture recognition (Jester): Currently, there is limited

literature discussing video processing with spiking neural networks,

and most existing networks for video processing have high

computational complexity, consuming more power than image

processing. In this study, we propose an SNN approach, ResNet18-

LIF, which achieves a similar computational cost as the traditional

ResNet-18, to demonstrate its lightweight processing capability.

We chose Jester dataset (Materzynska et al., 2019) for our

experiments. Jester is a dataset of video clip gesture recognition

1 The commercial version of BIDL with Lynchip support is named LYNBIDL.

collected using an ordinary camera, consisting of 27 types of

hand gestures recorded by 1,376 participants in unconstrained

environments, including different rooms, rotating fans, and

moving animals. To the best of our knowledge, this is the

largest video clip dataset showing human gestures, with 1,48,092

short video clips, each lasting for 3 s. We split the dataset

into training/validation/test sets with a ratio of 80%/10%/10%.

Many of the actions in this dataset are symmetric, such as

“move finger to the left" and “move finger to the right," which

require strong temporal modeling capabilities for accurate action

recognition.

We conducted two versions of experiments with different image

resolutions and network architectures. Version 1 focuses on low-

cost processing, while version 2 prioritizes high accuracy.

Each action is represented as a sequence of multi-frame RGB

images. For each frame, the image is resized to 112 × 112 for

version 1 and 224 × 224 for version 2. We take 16 frames (T

= 16) and perform simple data augmentation before inputting

them into the network. The input data format for the network

is [B, 16, 3, 112, 112] for version 1 and [B, 16, 3, 224, 224] for

version 2.

The neural network architecture follows a structure similar to

ResNet-18, with LIAF used as the neural module for temporal

processing (Figure 9). In version 1, the results of all timesteps are

summed at the SumLayer and then divided by T for temporal

dimension aggregation. The classified output is obtained through

the fully connected (FC) layer. In version 2, we refine the

network by substituting LIAF with the electrical coupling LIAF-

RMP neural model (Wu et al., 2022b). Although the LIAF-RMP

model achieves better accuracy, it incurs higher computational

cost and a larger parameter size (the electrical synapses lead

to a network weight size increase from 12 × 106 to 24 ×

106).

We trained the network on the training set using a learning

rate of 1e-1, weight decay of 1e-4, and momentum stochastic

gradient descent (SGD) optimizer with a momentum value

of 0.9. The training process utilized a cosine annealing

learning rate tuning strategy. After training for 200

epochs, the top-1 classification accuracy reached 93.7% and

95.0% on the validation set for version 1 and version 2,

respectively.

Moving trajectory processing (RGB-gesture): In some cases,

we are only interested in the trajectory of the target and do not

focus on static image features. In such situations, we can use the

differential frame sequence as input, resulting in a simpler network.

In this study, we propose the RGB-gesture dataset for this purpose.

The dataset is collected using an ordinary camera and contains 10

moving gestures captured for each person similar to the DVS128

Gesture dataset (Amir et al., 2017). The video is decoded into frame

data at a frequency of 25 frames per second and stored. The RGB-

gesture dataset includes 760 training samples and 102 validation

samples.

The RGB frames are first converted to grayscale images. We

obtain a differential image by subtracting the corresponding

pixel values of adjacent frames. If the pixel value changes

are below a threshold, they are considered as background.

Significant changes indicate moving objects and are marked
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FIGURE 9

Designed neural network structures for the proposed experiments.

as foreground. The differential results in two image channels:

enhancement and weakening. After preprocessing, each

sample in RGB-gesture has a dimension of [B, 60, 2, 40, 40],

with T = 60.

The model is trained using the Adam optimizer with a learning

rate of 1e-3 and weight decay of 1e-4. We also use the pre-trained

model trained on the DVS128 Gesture dataset. The model is trained

for 50 epochs, achieving a top-1 classification accuracy of 97.7% on

the validation set.

5.1.2. DVS signal processing
DVS is a silicon retina device that mimics the human retina’s

perception mechanism to perform information acquisition. The

data preprocessing for converting event flow to spatiotemporal

(ST) tensor is as follows: A sliding window is used to slide

along the time, and an event set contains the timestamp range

of events within the sliding window. Then, all events in an

event set are extended into a three-dimensional vector called a

frame based on their coordinate and polarity information. The

positive/negative polarity events are filled in a H × W matrix

according to their coordinate information in the positive/negative

polarity channel, while the unfilled coordinates are set to

zero. After T timesteps, an ST tensor with T frames can

be obtained.

DVS classification (CIFAR10-DVS): CIFAR10-DVS (Li et al.,

2017) is a dataset derived from the CIFAR10 dataset and

collected using the DVS. We follow the event-to-ST tensor

conversion methods described above. The ST tensor has a

shape of [B, 10, 2, 128, 128], where T = 10, and the temporal

sliding window is 5 ms. The proposed network contains

five Conv2DLIF layers, followed by a SumLayer for time

aggregation, and two FcBlock layers. We use the Adam optimizer

with a learning rate of 1e-2 and weight decay of 1e-4 to

train this network. The network’s neuron parameters are set

to all-share mode. The model is trained for 100 epochs,

achieving a top-1 classification accuracy of 68.2% on the

validation set.

DVS recognition (DVS128 gesture): The DVS128 Gesture

dataset (Amir et al., 2017) is recorded directly from real-world

scenes using a DVS camera. The DVS128 Gesture dataset has a

raw spatial pixel resolution of 128 × 128. We chose a subsampled

resolution of 40 × 40 (1/3.2) to save memory. To use the network

structure for training, we generated event frames of size 40 × 40

by accumulating spike sequences within each 25 ms. Then, each

frame was expanded into two channels depending on whether the

brightness of each pixel was weakened or strengthened. Finally,

multiple adjacent event frames were stacked in chronological order

to obtain samples of shape [B, 60, 2, 40, 40]. This network structure

includes three Conv2DLIF modules and two FCLIF modules. The
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neuron parameters were trained in the all-share mode. We used the

Adam optimizer with a learning rate of 1e-2 and weight decay of 1e-

4 to train this network and employed a learning rate tuning strategy

during training. The network was trained for 100 epochs, achieving

a top-1 classification accuracy of 94.6% (ASM) and 95.1% (CSM)

on the validation set.

5.1.3. 3D medical imaging
The Luna16Cls dataset is derived from the Lung Nodule

Analysis 2016 (LUNA16) dataset (Setio et al., 2017). It contains

CT images of 888 patients and 1, 186 nodule labels (malignant and

benign) annotated by radiologists.

The preprocessing steps for the Luna16Cls dataset are as

follows: (1) convert all raw data to Hounsfield Units (HU); (2)

mask extraction; (3) convex hull and dilation processing; (4)

gray normalization: linearly transform HU values [–1,200, 600] to

grayscale values within the range of 0 to 255; and (5) downsample

the dataset to a 32 × 32 image resolution to obtain samples with

shape [8, 1, 32, 32]. A total of 3,795 samples are processed, with

3,416 samples used for training and the remaining samples for

validation.

The Luna16Cls classification network consists of three

Conv2DLIF blocks. After that, a temporal average layer is used

to aggregate information along the time dimension. The model

ends with an FcBlock, containing three fully connected layers for

classification.

We use an SGD optimizer with a learning rate of 0.03, weight

decay of 1e-4, and momentum of 0.9 to train the model on the

training set. The learning rate is fine-tuned during the training

process. The neural parameters are set to all-sharemode. Themodel

is trained for 20 epochs, achieving a top-1 classification accuracy of

90.4% on the validation set.

5.1.4. NLP task
To test the capability of the proposed method on long sequence

signal processing, such as text, a simple natural language processing

(NLP) task was conducted using the IMDB dataset (Maas et al.,

2011). The dataset contains 50,000 highly polarized reviews from

the Internet Movie Database (IMDb). Each word in the sample data

was converted into a numeric representation using a dictionary

of size 1,000. Each sample data was padded to a size of 500

timesteps, resulting in a dimension of [B, 500] for each sample.

Binary classification was used for labeling, with 0 representing

negative sentiment and 1 representing positive sentiment.

The data are embedded in a tensor with shape [B, 500, 256],

followed by an FCLIAF layer, and finally, classification is performed

using a fully connected layer. This model does not have a time

aggregation layer and only outputs the result of the last timestep.

For training, the Adam optimizer with a learning rate of 1e-3

and weight decay of 1e-4 is used. The learning rate is adjusted based

on the epoch during training. The model is trained for 50 epochs,

achieving a classification accuracy of 82.9% on the validation set. T
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TABLE 3 Comparison of proposed solutions with other approaches in terms of accuracy and computational costs.

Proposals Network Computations (×109 Ops) Accuracy (%)

Video processing (Jester)

Meng et al. (2021) LSTM ADD: 14.7 MUL: 14.7 93.5

Meng et al. (2021) AdaFuse (TSN+ResNet18) ADD: 7.6 MUL: 7.6 93.7

Jiang et al. (2019) STM (ResNet50) - 96.7

Zhang et al. (2020b) STSNN (Optical flow+RGB) - 95.7

Zhang et al. (2020a) PAN (TSM+ResNet101) ADD: 503.4 MUL: 503.4 97.4

This study (version 1) ResNet18-LIAF ADD: 7.8 MUL: 7.8 93.7

This study (version 2) ResNet18-LIAF-RMP ADD: 37.07 MUL: 37.07 95.0

Video processing (RGB-Gesture)

This study ConvLIAF ADD: 1.0 MUL: 1.0 97.7

DVS signal processing (DVS128 Gesture)

Massa et al. (2020) SNN converted from CNN on Loihi - 89.6

Amir et al. (2017) CNN on TrueNorth - 94.6

Kugele et al. (2020) SNN converted from ANN - 95.6

Khoei et al. (2020) Converted CNN - 95.1

Wang et al. (2019) PointNet++ - 95.3

Bi et al. (2020) Residual graph CNN+Res.3D ADD: 14 MUL: 14 97.2

Wu et al. (2021) ConvLIF ADD: 6.8 MUL: 0.013 94.1

Wu et al. (2021) ConvLIAF ADD: 6.8 MUL: 6.8 97.6

This study ConvLIF ADD: 1.0 MUL: 1.0 94.6

This study ConvLIF+CSM ADD: 1.0 MUL: 1.0 95.1

DVS signal processing (CIFAR10-DVS)

Cannici et al. (2019) Attention Mechanisms - 44.1

Sironi et al. (2018) HATS - 52.4

Wu et al. (2019) iterative LIF + NeuNorm ADD: 8.1 MUL: 8.1 ∗ 60.5

Wu et al. (2021) ConvLIF ADD: 3.8 MUL: 0.21 63.5

Wu et al. (2021) ConvLIAF ADD: 3.8 MUL: 3.3 70.4

This study ConvLIAF ADD: 0.84 MUL: 0.84 68.2

3D medical imaging processing (Luna16Cls)

Yan et al. (2017) Vanilla 3D CNN - 87.3

Shen et al. (2017) Multi-crop CNN - 87.4

Zhu et al. (2018) Deep 3D DPN ADD: 26 MUL: 26 ∗ 87.1

Dey et al. (2018) DenseNet ADD: 0.14 MUL: 0.14 ∗ 88.4

Dey et al. (2018) MoDenseNet ADD: 0.14 MUL: 0.14 ∗ 90.4

Shi et al. (2020) LIF-classification Net - 94.1

This study ConvLIAF ADD: 0.089 MUL: 0.089 90.4

Text processing (IMDB)

This study LSTM ADD: 0.4 MUL: 0.4 85.7

This study FCLIAF ADD: 0.0024 MUL: 0.0024 82.9

∗ Indicates that we calculate the data based on the network structure of the corresponding study.
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5.2. Experiment results analysis

We chose these examples since they include multiple

modalities, different network structures (ResNet-LIF and

sequential LIF), iteration modes (IIM and EIM), neural parameter

sharing mode (CSM and ASM), and various application domains,

which are listed in Table 2. We also evaluated the streaming

processing speed (with batch size = 1) vs. the accuracy performance

of these models. It can be revealed that all the applications can

work in real time both in Nvidia GPU V100 and Nvidia Jetson

Xavier with streaming processing capability. Jester version 2

achieves better performance than version 1 while it suffers more

computational cost. The two DVS128 Gesture implementations

show that CSM achieves slightly better performance than ASM.

We further compared the accuracy and the computational

complexity of the proposed implementations with other related

work, and the comparison is revealed in Table 3. For the Jester

dataset, our implementation (version 1) achieves lightweight

processing which consumes half of the computations compared to

the LSTM approach and similar computation to the lightweight

CNN approach AdaFuse (Meng et al., 2021). Higher accuracy

can also be achieved via Jester version 2, which has comparable

performance to other high accuracy approaches. For DVS128

Gesture, we also achieve a better balance of performance and

computational cost. For CIFAR10-DVS, we achieve better accuracy

than most of the other approaches while reducing the computation

by more than 4 times. For Luna16Cls, we achieve the smallest cost

while maintaining accuracy. For IMDB, the proposed approach

consumes only 7% of the computation compared to LSTM

while maintaining accuracy (with less than 3% performance

loss). In conclusion, the proposed framework can process various

spatiotemporal signals with guaranteed performance and better

computational efficiency.

5.3. Global-local co-learning

Recent studies have shown that global-local co-learning is more

resistant to noise (Wu et al., 2022a). In this study, we conducted

an experiment to demonstrate the application of co-learning on

a spatiotemporal network to achieve improved noise resistance

performance.

To introduce noise into the data, we added background noise to

the preprocessed frames of the DVS128Gesture validation set. First,

we defined a noise ratio α ∈ [0, 1]. For each validation sample, we

randomly selected n = α ×W ×H pixels on each channel of every

frame and set their values to 1, thereby introducing background

noise. The training set remained unchanged. The network used

FIGURE 10

An example implementation of the BPTT and R-STDP co-learning for improved anti-noise performance. (A) Network architecture with R-STDP

finetuning. (B) Visualization of the three ST frames with di�erent noise ratios.
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FIGURE 11

Accuracy versus noisy ratio (alpha) curves of the three approaches:

BPTT without population coding (original), BPTT with population

coding (BPTT finetuned), BPTT+STDP with population coding (STDP

finetuned). When population coding is introduced, seven neurons

represent one classification category; otherwise, one neuron

represents a category.

for co-learning is similar to the one described in Section 3.2.2 and

Section 5.1.2.

The experiment followed the procedure outlined below. First,

we trained the network using BPTT, as described in Section

3.2.1. For comparison purposes, we performed inference on this

network directly without local training on the noisy validation set,

varying the value of α, and recorded the corresponding inference

accuracies.

Next, we employed a local learning method to further refine the

trained network. We adjusted the weightsW of the last FCLIF layer

using R-STDP. In the figure, W is represented by a 256x11 matrix,

and we used seven neurons to represent each category, resulting in a

total of 11 categories. The weight update process was streamed, with

each sample being updated at every timestep and a batch size of one.

The specific architecture of the R-STDP local learning is depicted in

Figure 10A, and the noisy frames are visualized in Figure 10B.

The R-STDPmethod we propose consists of the following three

steps:

(1) Reward calculation: Calculate the mean spikes of neurons

belonging to each category as Oi =
1
N

∑N−1
i=0 Oij, where i ∈ [0, 10]

represents the 11 categories, and N = 7 indicates the seven

neurons in each category (i.e., population coding). Then, calculate

the reward rij as the difference between the label and the output

spikes: rij = L− Oi, where L denotes the label.

(2) Weight update based on R-STDP: Calculate 1W using the

input spike Sin and output spike Sout as follows:

1W = tin · Sout − Sin · tout . (12)

Here, the traces tin and tout are derived from spikes and are updated

as

tin/out = 2 · tin/out + η · Sin/out . (13)

(3) Update weights: w = w+ lr · 1w.

TABLE 4 LIF+ performance with selected configurations on the

CIFAR10-DVS dataset, where the “All default” configuration is equivalent

to a LIF model, and other configurations are defined in Section 3.1.1.

Configuration Accuracy (%)

All default (A=0, B=0, C=0, D=0, E=0) 67.86

A=0, B=3, C=0, D=0, E=0 67.43

A=0, B=3, C=1, D=0, E=0 67.63

A=0, B=3, C=2, D=0, E=0 67.56

We set lr = 0.001, 2 = 0.95 and η = 1.0.

After the training, we evaluated the accuracy of the noisy

validation set. The accuracies obtained by the two methods

are plotted in Figure 11. The three approaches compared are

BPTT training without fine-tuning and 11 output neurons

(original curve); BPTT with R-STDP fine-tuning and 77 output

neurons (STDP fine-tuned curve); and BPTT with BPTT fine-

tuning and 77 output neurons (BPTT fine-tuned). The results

demonstrate that in a noisy environment, global-local co-learning

achieves better anti-noise performance compared to a pure BPTT-

trained network with the same number of output neurons

and significantly outperforms the non-population coding BPTT

version.

5.4. LIF+ neural models

To verify the performance impact of various neural models, we

re-implemented CIFAR10-DVS using several LIF+ configurations

while keeping all other settings the same as illustrated in

Section 3.1.1. We tested a subset of configurations and present

the results in Table 4. While some neural dynamics are not

compatible with gradient backpropagation and result in lower

performance, certain configurations still achieve similar results

to the default LIF model. This indicates the admissibility

of exploring neural models for spatiotemporal tasks. Future

studies can focus on identifying neural models with improved

performance.

6. Discussions

6.1. Single frame (image) processing

Processing images within this framework is possible by

encoding the image into a sequence of specialized frames

using a coding scheme, such as binary frames for SNN

processing. However, we assume that SNN’s multiple timestep

processing may require more computation compared to single-

frame processing in CNNs. Since most of the computation in

CNNs is attributed to the convolutional operation, which does

not benefit significantly from sparse (event-driven) processing,

the computational cost of an SNN for processing a frame

is unlikely to be significantly lower than an equivalent-sized

CNN. Therefore, our framework does not aim to process image

sources.
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6.2. Neural coding

For the entire network, spikes are emitted based on neural

dynamics and trained using gradient-based or local algorithms.

Thus, no dedicated neural coding is assigned to any neuron, and

the neurons fire based on their dynamics. Regarding input data, it

is possible to represent temporal-free data using neural coding in

the temporal domain. For instance, a pixel in the input image can

be represented by a spike train with a corresponding firing rate (rate

coding) or first firing time (temporal coding). The network’s output

in BIDL is primarily in analog format, but it can be encoded into a

spike train.

6.3. Direct training vs. conversion methods

In this framework, we utilize direct training for DSNN.

Conversely, there are approaches (Tran et al., 2015; Xingjian et al.,

2015) that convert artificial neural networks (ANNs) to SNNs,

achieving high accuracy. However, these conversion methods are

primarily designed for image processing without temporal domain

information in the source data. The temporal domain is generated

using neural coding during the conversion stage. Our study focuses

on spatiotemporal processing, where the temporal information

already exists in the source data. Additionally, direct training

achieves better performance and enables fine-tuning, offering more

flexibility compared to post-training conversion methods.

6.4. Strengths and limitations of BIDL

Prior studies (Chen and Gong, 2022; Chen et al., 2022) have

also proposed spatiotemporal investigations aiming to establish

brain-inspired models and verify visual processing functions

with biological evidence. In comparison, BIDL focuses more on

solving real-world spatiotemporal tasks with DSNNs. It explores

the utilization of brain-inspired technologies for spatiotemporal

applications, emphasizing computational efficiency and real-time

processing. Unlike some DSNN works (Wu et al., 2018; Shen

et al., 2022), BIDL incorporates multiple modalities such as video

and 3D imaging data, flexible neuron models, and global-local

co-learning. However, BIDL has limitations in modeling sparse

brain networks, especially with synaptic delays, as the computation

is performed in a dense tensor format. Furthermore, it does

not gain significant benefits from event-driven processing due

to tensor-based convolution/linear operations. Nevertheless, BIDL

achieves better efficiency through neural dynamics, which serve

as lightweight processors of temporal information compared to

Conv3D and ConvLSTM.

7. Conclusion

This study introduces a brain-inspired deep learning

framework, BIDL, which provides a foundation and design flow

for rapidly developing spatiotemporal applications, particularly

lightweight real-time video clip analysis and dynamic vision

sensor (DVS) applications. BIDL also serves as a research platform

for investigating neuron models, synaptic plasticity, global-local

co-learning, and network structure. Networks designed using BIDL

can be easily deployed on GPU platforms and neuromorphic chips.

We hope that BIDL will inspire further research in the design,

exploration, and application development of bio-inspired neural

networks.
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