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Introduction: Ketamine, a glutamate NMDA receptor antagonist, is suggested to 
act very rapidly and durably on the depressive symptoms including treatment-
resistant patients but its mechanisms of action remain unclear. There is a 
requirement for non-invasive biomarkers, such as imaging techniques, which 
hold promise in monitoring and elucidating its therapeutic impact.

Methods: We explored the glucose metabolism with [18F]FDG positron emission 
tomography (PET) in ten male rats in a longitudinal study designed to compare 
imaging patterns immediately after acute subanaesthetic ketamine injection 
(i.p.  10 mg/kg) with its sustained effects, 5 days later. Changes in [18F]FDG 
uptake following ketamine administration were estimated using a voxel-based 
analysis with SPM12 software, and a region of interest (ROI) analysis. A metabolic 
connectivity analysis was also conducted to estimate the immediate and delayed 
effects of ketamine on the inter-individual metabolic covariance between the 
ROIs.

Results: No significant difference was observed in brain glucose metabolism 
immediately following acute subanaesthetic ketamine injection. However, a 
significant decrease of glucose uptake appeared 5 days later, reflecting a sustained 
and delayed effect of ketamine in the frontal and the cingulate cortex. An increase 
in the raphe, caudate and cerebellum was also measured. Moreover, metabolic 
connectivity analyses revealed a significant decrease between the hippocampus 
and the thalamus at day 5 compared to the baseline.

Discussion: This study showed that the differences in metabolic profiles appeared 
belatedly, 5 days after ketamine administration, particularly in the cortical regions. 
Finally, this methodology will help to characterize the effects of future molecules 
for the treatment of treatment resistant depression.
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Introduction

Ketamine is a dissociative anesthetic agent that has been widely 
used in medicine since the 1960s. Recently, this glutamate receptor 
antagonist has been the subject of numerous studies for the treatment 
of drug resistant unipolar depression at subanesthetic doses (Krystal 
et al., 2019). By inhibiting N-methyl-D-aspartate receptors (NMDAR), 
ketamine is believed to produce rapid-acting and robust antidepressant 
effects (Berman et al., 2000; Zarate et al., 2006).

In 2019, a nasal form of the S(+) enantiomer of ketamine, also 
known as esketamine, was developed and approved as a medication 
by the European Medicines Agency (EMA) and the Food and Drug 
Administration (FDA) in the USA for treatment-resistant depression 
(TRD) and MDD (Sanacora et al., 2017).

However, ketamine can cause a variety of side effects (such as 
psychiatric and cardiovascular disorders), and its status as a narcotic 
with abuse potential makes its use complex (Bonaventura et al., 2021). 
In order to assist in the development of new rapid-acting 
antidepressants (RAADs) (Duman, 2018), a better understanding of 
the mechanisms involved in the sustained action of subanesthetic 
doses of ketamine is needed (Witkin et al., 2019). While many studies 
focused on the molecular and cellular mechanisms of ketamine (Li 
et al., 2010; Autry et al., 2011; Niciu et al., 2014; Park et al., 2014), less 
studies have investigated its action at the scale of the entire brain. 
Moreover, specific translational biomarkers of ketamine effects are still 
needed both in animal models and humans.

In this regard, neuroimaging techniques are a valuable tool for 
investigating in vivo brain activity in both rodents and humans. An 
example of a commonly used technique for studying cerebral activity at 
macroscale is observing and quantifying glucose metabolism in the 
brain using [18F]-fluoro-2-deoxy-D-glucose (FDG) PET (positron 
emission tomography). [18F]FDG is a radiolabeled glucose derivative, 
whose brain uptake is highly correlated to brain function, that has been 
largely used for the explorations of psychoactive drugs and their 
mechanism of action (Schöll et al., 2014; Levigoureux et al., 2019) and 
notably ketamine (Vollenweider et  al., 1997; Långsjö et  al., 2004; 
Radford et al., 2018; Chen et al., 2022). These clinical and preclinical 
studies find metabolic modifications in similar regions, in particular the 
anterior cingular cortex (ACC), the thalamus, and the frontal cortex, 
supporting the translational aspect of this method. Other PET studies 
using specific radiotracers have been carried out on various 
neurotransmitter systems involved in the ketamine mechanism (Salmi 
et al., 2005). For instance, a clinical study using [11C]ABP688 showed a 
decrease of mGluR5 receptor availability after ketamine administration 
(Esterlis et al., 2018) and a preclinical PET study using [18F]FDOPA 
revealed an increase in dopamine synthesis (Halff et al., 2022).

Other complementary imaging techniques can be also used as 
biomarkers of the effects of ketamine. Indeed, several functional 
magnetic resonance imaging (fMRI) studies described regional effects 
of subanesthetic doses of ketamine in frontoparietal regions, ACC or 
hippocampus [reviewed in Ionescu et al. (2018)].

However, these studies have mainly focused on the immediate 
effects of ketamine. Therefore, we  propose a novel design using 
metabolic imaging with [18F]FDG PET in rats to compare changes in 
glucose brain metabolism after acute subanaesthetic ketamine 
injection (10 mg/kg) with its sustained effects (5 days later). In 
addition to explore changes in radioactive patterns, we  also 
investigated changes in metabolic connectivity, as a way to examine 

the effects of ketamine on the interaction between different brain 
regions. This method has been shown to provide valuable additional 
insights into brain metabolism [reviewed in Yakushev et al. (2017)], 
similarly to the functional connectivity analysis in fMRI.

Methods

Experimental animals

A total of ten adult male Sprague–Dawley rats (Charles River 
laboratories, France) weighing 225–250 g were used in the present 
study. Animals were received in 3 different batches and the rats were 
housed between two and four per cage in standard temperature 
(22 ± 2°C) and humidity (50%) conditions with a 12 h/12 h light/dark 
cycle, light on at 8.00 am; food (Teklad 18% protein rodent diet, 
Envigo, USA) and tap water were provided ad libitum. All experiments 
were performed in accordance with the European guidelines for care 
of laboratory animals (directive 2010/63/EU) and approved by the 
University of Lyon review board. An initial acclimatization period of 
5 days was observed before scans.

PET imaging procedures and data analyses

PET/CT protocol and image acquisition
A longitudinal design was used with each animal that underwent 

3 different PET scans with [18F]FDG (Figure 1): a first one representing 
the baseline (Day −2), a second 48 h later (Day 0) with a subanesthetic 
dose of ketamine and a final one, 5 days after ketamine (Day 5). 
Ketamine®1,000 (100 mg/mL) was obtained from Virbac, France and 
dissolved in saline at a dose of 10 mg/kg, qsp 0.5 mL. Rats were fasted 
for 4 h before each scan. Fifteen minutes after i.p. injection of 0.5 mL 
of ketamine (at Day 0) or saline (at Day −2 and Day 5), the caudal vein 
was catheterized and [18F]FDG (38.94 ± 2.5 kBq/g) was injected under 
awake conditions. Thirty minutes later, rats were anesthetized with 
constant insufflation of isoflurane (4% for induction then 2% during 
acquisition, 1 L/min) and placed in the PET-CT imaging scanner 
(INVEON®, Siemens). PET scans were acquired in list mode during 
30 min, completed by a computed tomography (CT) scan for the tissue 
attenuation correction. Static images of the 30 min acquisitions were 
reconstructed with attenuation and scatter corrections. The 
reconstructed volume was constituted of 159 slices of 128 × 128 voxels, 
in a bounding box of 49.7 × 49.7 × 126 mm3 and with voxel size 
0.388 × 0.388 × 0.796 mm3 OSEM 3D.

PET data analyses
Data processing was carried out using INVEON Research 

Workplace (IRW®, Siemens) software, and the statistical parametric 
mapping software SPM12®. Images were analyzed in two steps, i.e., a 
voxel-based analysis and a regions of interest (ROIs) analysis.

Voxel-based analyses (VBA)
Individual PET images were realigned and spatially normalized 

based on our own previously built CT template, co-registered on an 
anatomical MRI template. Each PET volume was then spatially 
normalized and smoothed using an isotropic Gaussian filter 
[1 mm × 1 mm × 1 mm]. Local voxel activities were normalized to the 
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mean uptake of the whole brain taken as a unique ROI. In other 
words, the activity in each voxel was divided by the average value of 
the whole brain. A voxel-to-voxel statistical analysis was performed to 
compare the metabolic profiles, using a variance analysis in a 
generalized linear model, to compare mean uptakes between the 
different conditions. This statistical analysis resulted in activation 
(Contrast: Day 0 or Day 5 – baseline] and inhibition ([Baseline – Day 
0 or Day 5]) maps. A significant threshold was set up at p < 0.001 
uncorrected, at the voxel level.

Regions of interest (ROIs) analyses
Eight brain ROIs were selected from the Lancelot rat brain atlas 

on the corresponding MRI template (Lancelot et al., 2014), as being 
potentially involved in the mechanism of action of ketamine. Mean 
uptake ratios were extracted in the different ROIs, and a two-way 
mixed ANOVA for repeated measures (factors: time and ROI) with 
Tukey’s post-hoc tests (corrected for multiple comparisons) were 
performed using GraphPad Prism 8.0 software to compare the [18F]
FDG uptake ratios between the different conditions.

To minimize the variability and account for potential confounding 
factors such as changes in peripheral glucose metabolism, the 
standardized uptake values in each scan were normalized to the mean 
radioactivity in the whole brain, in order to ensure a consistent 
comparison of regional effects. Because this approach may 
underestimate global changes in brain metabolism, we also reported 
the mean standard uptake values (SUVs).

Metabolic connectivity analysis
For each day (Baseline, Day 0, Day 5), pairwise regional 

correlations across subjects were evaluated by the Pearson correlation 
coefficient. For statistical comparisons of correlation matrices between 
the different days, we used a permutation testing method as previously 
described (Choi et  al., 2015) using Matlab (R2023a, Mathworks). 
Briefly, correlation coefficients were transformed into Fisher Z scores. 
For each comparison (Baseline vs. Day 0, Baseline vs. Day 5, Day 0 vs. 
Day 5), normalized to the whole brain PET images of the 
corresponding groups were randomly permuted to make pseudo-
random groups reassigned 10,000 times and from each pseudo-group 

of rats, correlation matrices were calculated. The differences between 
the pseudorandom matrices were calculated for all 10,000 
combinations. For each pair of regions, the value of p was determined 
by the comparison between the actual observed Z score difference 
(obtained with the original groups) and the distribution obtained 
from the permuted data. For multiple comparison correction, 
we applied false-discovery rate (FDR) at a threshold of FDR < 0.1.

Results

In Figure 2A, the statistical comparison of [18F]FDG uptake ratios 
between rats receiving acute ketamine and saline injections is 
displayed on the left-side using a voxel-to-voxel approach. There was 
no significant difference observed between baseline and bolus 
injection of ketamine at subanesthetic dose (Day 0). Nevertheless, 
alterations in the metabolic pattern appeared with a delay of 5 days 
following ketamine administration (on the right side). Notably, 
significant clusters of hypometabolism (in blue) were identified 
bilaterally in cortical regions, particularly in the cingulate and 
frontal cortex.

Similarly, results from the ROIs analysis (Figure 2B) also showed 
that no significant difference was found between baseline and 
ketamine bolus injection (Day 0). The effects in terms of metabolic 
pattern of the molecule at Day 5 are in line with the voxel-based 
analysis: a significant decrease in metabolism in the frontal cortex 
between Baseline and Day 5 (−6.4%, p < 0.05) and between Day 0 and 
Day 5 (−5.8%, p < 0.05) was found. A decrease in the cingulate cortex 
between Baseline or Day 0 and Day 5 was also observed (ns).

Significant increases in [18F]FDG uptake ratio were found in some 
ROIs, that were not apparent in the voxel-to-voxel analysis. A 
significant increase between Baseline and Day 5 (+2%, p ≤ 0.01) and 
between Day 0 and Day 5 (+3.8%, p ≤ 0.01) were found in the raphe 
suggesting a time-lagged effect of ketamine. In addition, a significant 
increase was detected in caudate (+3.3%, p < 0.05) between Baseline 
and Day 5. An increase was also found in the cerebellum between Day 
0 and Day 5 (+6.4%, p  < 0.05) and in the thalamus (ns) and the 
hippocampus (ns).

FIGURE 1

Timeline and PET study design.
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We also compared the raw SUVs values between the conditions 
and found no significant difference when no whole-brain 
normalization was performed, in the ROIs as well as in the whole 
brain (Figure 2C).

Metabolic connectivity

To further study the effects of ketamine, metabolic activities of 
regions of interest were correlated to each other, and the changes in 
regional pairwise correlations across rats after ketamine injection were 
evaluated. As shown in Figure 3A, regional correlation matrices were very 
different between the three time points. The permutation analysis on the 
Fisher Z-scores differences between groups showed a significant decrease 
of metabolic connectivity between the hippocampus and the thalamus at 
Day 5 compared to the baseline (Figure 3B). Indeed, as further illustrated 
in Figure 3C, the uptake ratios in these two regions at baseline tended to 
be positively correlated (r = 0.646, p = 0.06), whereas 5 days after ketamine 
administration, a negative correlation was found (r = −0.682, p = 0.03). 
No other significant metabolic connectivity changes were found.

Discussion

Acute effects of ketamine

In this study, no significant difference was observed in brain 
glucose metabolism following acute subanaesthetic ketamine injection 
in Sprague–Dawley rats and this in terms of [18F]FDG uptake ratio or 
metabolic connectivity. These findings are to be  compared with 
previous studies that are limited and conflicting in both animals and 
humans. For example, Saur et al. (2017) reported no changes in rats, 
whereas Radford et al. (2018) found an increase in [18F]FDG uptake in 
regions such as the amygdala, hippocampus, and hypothalamus, or a 
decrease in the cerebellum. In humans, a cortical increase was typically 
observed, such in ACC, while a decrease was seen in regions like the 
habenula or amygdala (Carlson et al., 2013; Li et al., 2016; Chen et al., 
2018; Ionescu et al., 2018). In the prefrontal cortex, studies described 
positive (Li et al., 2016) or negative changes (Carlson et al., 2013).

Delayed effects of ketamine

Interestingly, the differences in metabolic profiles appeared in a 
delayed manner, 5 days after ketamine administration. We found a 
glucose uptake decrease in the frontal cortex, supporting the 
hypothesis that this region may be involved in the pharmacological 
delayed effects of ketamine. Excitatory/inhibitory (E/I) imbalance in 
this area has been suggested to contribute to depressive symptoms, 
although whether the E/I is increased or decreased following MDD, 
or chronic stress is still debated. Overall, many studies support the 
concept of a pyramidal hyperactivity in the mPFC in depressive state 
(Mayberg et al., 2005; Bittar and Labonté, 2021). Our findings suggest 
that ketamine pharmacological activity might be linked to an overall 
inhibition of activity in the mPFC, contributing to a normalization 
of the E/I balance. Interestingly, synaptic plasticity has been suggested 
to be involved in the antidepressant long-lasting effects of ketamine 
(Li et al., 2010). This hypothesis has been recently investigated in 

FIGURE 2

Comparison of metabolic profiles using [18F]FDG PET scans between 
acute and sustained subanaesthetic effects of ketamine (10 mg/kg, 
i.p.). (A) Voxel-to-voxel statistical comparisons of [18F]FDG uptake 
ratio between acute injection of ketamine at subanaesthetic dose 
(10 mg/kg, i.p.) and saline baseline in rats (n = 10). T scores are 
represented in color scales (significant decreases in blue; p < 0.001, 
Student’s t test). Left panel: no significant change of glucose 
metabolism between Day 0 (ketamine injection at subanaesthetic 
dose, 10 mg/kg, i.p.) and saline baseline (Day −2) in rats. Right panel: 
decrease of glucose metabolism between Day 5 (saline injection 
5 day after ketamine injection at subanaesthetic dose) and saline 
baseline (Day −2) in rats (n = 10). Coronal sections are from +4 to 
−13 mm with respect to Bregma. (B) [18F]FDG uptake ratio in several 
ROIs after acute ketamine injection at subanaesthetic dose (Day 0) 
and its sustained effect at 5 days (Day 5) in rats (n = 10). Baseline 
represents saline injection 48 h before ketamine injection. Bars are 
the mean ± s.e.m.; *p < 0.05, **p < 0.01, Tukey’s multiple comparisons 
test, following two-way ANOVAs; region factor: F(2.367, 
21.30) = 359.2, p < 0.0001; treatment factor: F(1.923, 17.31) = 0.7752, 
p = 0.4713; interaction factor: F(3.599, 28.28) = 5.186, p = 0.0037. Thal, 
Thalamus; Hip, Hippocampus; Amy, Amygdala; Cereb, Cerebellum; 
Cing, Cingulate cortex; Front, Frontal cortex. (C) [18F]FDG mean SUVs 
in several ROIs after acute ketamine injection at sub-anaesthetic 
dose (Day 0) and its sustained effect at 5 days (Day 5) in rats (n = 10). 
Baseline represents saline injection 48 h before ketamine injection. 
Bars are the mean ± s.e.m.; Tukey’s multiple comparisons test, 
following two-way ANOVAs; region factor: F(2.253, 20.27) = 128.8, 
p < 0.0001; treatment factor: F(1.143, 10.28) = 0.07003, p = 0.8285; 
interaction factor: F(1.569, 13.23) = 1.380, p = 0.2789. Thal, Thalamus; 
Hip, Hippocampus; Amy, Amygdala; Cereb, Cerebellum; Cing, 
Cingulate cortex; Front, Frontal cortex.
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human using PET imaging of synaptic density (Holmes et al., 2022). 
Overall, no significant changes of SV2A density were observed 24 h 
after administration in healthy controls and patients, but some 
individuals that displayed initial low SV2A density displayed 
increased uptake after ketamine. Although in a different species, our 
findings raise the possibility that the sustained effects of ketamine 
might be  more obvious only several days after administration. 
Nevertheless, it would be valuable to evaluate the correlation between 
glucose uptake changes and synaptic density in the same individuals 
after ketamine administration in future PET studies, to understand 
the relationship between synaptic density and cerebral glucose uptake 
in patients and animal models. In addition, future studies could use 
specific antagonists to evaluate the different molecular contributions 
to the effect of ketamine of synaptic plasticity, as the TrkB antagonist 
ANA-12 for the BDNF–TrkB pathway.

Interestingly, an increase in glucose uptake was found in the dorsal 
raphe nuclei (DRN) region in this study, suggesting a contribution of 
the serotonergic system in the delayed action of ketamine, and in line 
with some previous findings (Gigliucci et al., 2013; Fukumoto et al., 
2018; Pham and Gardier, 2019). In addition, and in accordance with 
clinical data, we found an increase in glucose uptake at the striatum 
level. Studies have shown that ketamine administration can lead to an 
increase in dopamine release in the striatum (Kokkinou et al., 2018; 
Sterpenich et al., 2019). This might also support its therapeutic effect 
since dysregulation of the dopamine system in the striatum may play 
a role in the development of as depression (Grace, 2016).

Our results did not find any significant effect of ketamine in 
glucose uptake in the limbic system (such as the cingulate cortex or 
hippocampus), which could also be involved in the antidepressant 
action of ketamine (Vollenweider and Kometer, 2010; Aleksandrova 

FIGURE 3

Effects of ketamine on metabolic connectivity assessed by [18F]FDG PET. (A) Pairwise connectivity matrices for each group, obtained by correlation 
analysis of individual uptake ratio values between the different ROIs. (B) Metabolic connectivity displayed as Fisher-Z scores for all pairs of regions; 
Significant result shown for *q < 0.1 after the permutation test and FDR correction. (C) Scatter plot and linear regression showing the relationship 
between uptake ratios in the hippocampus and in the thalamus, at baseline and 5 days after ketamine injection.
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et  al., 2017). However, we  measured a significant reduction in 
metabolic connectivity between the hippocampus and the thalamus, 
5 days after ketamine administration, although the glucose uptake 
ratio tended to increase in both regions. The functional relevance of 
this observation is unclear but consistent with the numerous findings 
in the literature showing that ketamine modulates the connectivity 
between the thalamus and other regions (Dawson et al., 2013; Höflich 
et al., 2015; Liao et al., 2016; B Hughes et al., 2020). The complex 
interaction between thalamus and hippocampus under ketamine 
influence was previously studied using local field potentials recordings 
in rats, showing that ketamine effects in the hippocampus are 
mediated through both thalamus-dependent and independent 
mechanisms, preferentially the latter at lower dose (Zhang et  al., 
2012). Still, this does not fully explain the delayed negative correlation 
that we observed, which deserves further investigation.

Study limitations

There are several limitations for the present study that should 
be acknowledged. Healthy rats were used, and the next study should 
be  performed on animal models presenting a ‘depression-like’ 
phenotype, such as the chronic mild stress or chronic corticosterone 
models. In this study, the administered molecule was a ketamine 
racemic. Studies has shown that the actions of R-ketamine and 
S-ketamine are distinct (Masaki et  al., 2019; McMillan and 
Muthukumaraswamy, 2020; Bonaventura et al., 2021). Additionally, it 
is essential to highlight the differences in the administration methods 
used across studies. In this case, intraperitoneal administration was 
chosen for practical reasons, but the pharmacokinetics and 
pharmacodynamics may vary when using other routes of 
administration, such as nasal or infusion. Moreover, future studies 
should be conducted with repeated administrations of ketamine or 
additional time-points (later and earlier) to elucidate the onset and 
duration of the effects. Static data acquisition was chosen (no kinetic 
modeling was performed) to enable awake [18F]FDG uptake. Indeed, 
uptake of this radiotracer in anaesthetized animals can strongly alter 
measurements (Levigoureux et al., 2019). For improved robustness of 
the findings, changes occurring in 5 days after injection of saline could 
have been studied, but we  chose to focus on the longitudinal 
comparisons in a single group of animals in this proof-of-concept 
study, in order to reduce the number of animals (each subject serves 
as its own control). For questions of reproducibility, an injection was 
carried out at Baseline, Day 0 and Day 5, since stress can induce 
variations in glucose metabolism and therefore in [18F]FDG uptake.

Conclusion

In summary, this research extends the existing literature on 
ketamine mechanism of action as a rapid-acting antidepressant, which 
has currently little explored the late effects of a single dose of ketamine. 
By its longitudinal aspect, the present study was able to demonstrate 
the sustained and prolonged effects of ketamine on cerebral glucose 
metabolism. The frontal cortex, cerebellum, striatum, and DRN were 
found to be the main regions affected by ketamine’s prolonged activity. 
Furthermore, the connectivity analysis revealed a shift in the limbic 
system, characterized by a decrease in metabolic connectivity between 
the thalamus and hippocampus. This study suggests that [18F]

FDG-PET is useful to evaluate the sustained effects of ketamine, 
which could be further used to this aim in human studies, given the 
easy accessibility to this radiotracer.
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