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Introduction: Micro-expressions are facial muscle movements that hide genuine 
emotions. In response to the challenge of micro-expression low-intensity, recent 
studies have attempted to locate localized areas of facial muscle movement. 
However, this ignores the feature redundancy caused by the inaccurate locating 
of the regions of interest.

Methods: This paper proposes a novel multi-scale fusion visual attention network 
(MFVAN), which learns multi-scale local attention weights to mask regions of 
redundancy features. Specifically, this model extracts the multi-scale features 
of the apex frame in the micro-expression video clips by convolutional neural 
networks. The attention mechanism focuses on the weights of local region 
features in the multi-scale feature maps. Then, we mask operate redundancy 
regions in multi-scale features and fuse local features with high attention weights 
for micro-expression recognition. The self-supervision and transfer learning 
reduce the influence of individual identity attributes and increase the robustness 
of multi-scale feature maps. Finally, the multi-scale classification loss, mask loss, 
and removing individual identity attributes loss joint to optimize the model.

Results: The proposed MFVAN method is evaluated on SMIC, CASME II, SAMM, 
and 3DB-Combined datasets that achieve state-of-the-art performance. The 
experimental results show that focusing on local at the multi-scale contributes to 
micro-expression recognition.

Discussion: This paper proposed MFVAN model is the first to combine image 
generation with visual attention mechanisms to solve the combination challenge 
problem of individual identity attribute interference and low-intensity facial 
muscle movements. Meanwhile, the MFVAN model reveal the impact of individual 
attributes on the localization of local ROIs. The experimental results show that 
a multi-scale fusion visual attention network contributes to micro-expression 
recognition.
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1. Introduction

Human-computer interaction not only requires machines to complete specified tasks, but 
also requires machines to have emotional cognition, communication, and feedback capabilities 
like humans during the interaction process (Ahmad et  al., 2019). Human emotions can 
be  expressed through speech (Zhao et  al., 2021), text (Wang et  al., 2020b), gestures (Li 
Y. -K. et al., 2022), and physiological signals (Wu et al., 2023), but facial expressions most 
intuitively reflect human emotions. The research has found that people would intentionally 
display certain facial expressions in certain situations, yet when people try to hide their facial 
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expressions in high-stakes situations, it is necessary to interpret facial 
micro-expressions to determine their true emotional state (Ekman 
and Friesen, 1969).

Facial micro-expressions (hereinafter referred to as micro-
expressions) are short-duration and low-intensity facial muscle 
movements. Since it is usually caused by suppressed emotions and can 
result from genuine motivations and emotions (Ekman, 2009). If 
people are not professionally trained, it is impossible to hide the 
appearance of micro-expressions (Holler and Levinson, 2019). 
Researchers found that micro-expressions are often present in lie 
detection scenarios. Thus, it has major implications when it comes to 
high-risk situations including criminal investigation, social 
interactions, national security, and business negotiations (O’Sullivan 
et al., 2009). It is less accurate to recognize micro-expressions (Ben 
et al., 2021; Tran et al., 2021; Zhou et al., 2021; Bisogni et al., 2022; 
Wang et  al., 2022; Zhu et  al., 2022; Wei et  al., 2022a) than facial 
expressions (Shao and Qian, 2019; Li and Deng, 2020; Chowdary et al., 
2021; Bisogni et al., 2022). The current research on micro-expression 
recognition is still correlating datasets collected the laboratory 
environments, which is not enough for application in high-risk scenes.

With the rapid development of image acquisition equipment, 
researchers use high-speed cameras to collect micro-expression images 
to create the Spontaneous Micro-Expression Database (SMIC) (Li 
et al., 2013), Chinese Academy of Sciences Micro-expression database 
(CASME II) (Yan et  al., 2014), Spontaneous Actions, and Micro-
Movements (SAMM) (Davison et  al., 2016), Micro-and-Macro 
Expression Warehouse (MMEW) (Ben et  al., 2021), and Third 
Generation Facial Spontaneous Micro-Expression Database (CAS 
(ME)3) (Li J. et al., 2022). These datasets are collected by high-speed 
cameras to alleviate the problem of short duration. However, facial 
muscle movements low-intensity are still an important factor inhibiting 
the enhancement accuracy of micro-expression recognition. For the 
low-intensity challenge of micro-expressions, researchers extract 
efficient local features for micro-expression recognition through 
regions-of-interest (ROIs) localization prior knowledge (Xu et al., 2017; 
Niu et al., 2019; Yu et al., 2019; Merghani and Yap, 2020) or local ROIs 
localization based on deep learning (DL) (Bai, 2020; Chen et al., 2020; 
Xia et al., 2020; Xie et al., 2020; Wang et al., 2020a; Li et al., 2021; Zhao 
et al., 2022). Although the local features extraction after local ROIs 
locating through prior knowledge or deep learning methods is helpful 
for micro-expression recognition, but these methods ignore the feature 
redundancy caused by the inaccuracy of ROIs. Moreover, psychological 
research has shown that muscle movement changes during facial 
expression did not correlate with individual identity attributes such as 
gender, age, and ethnicity (Ekman and Friesen, 1971). However, these 
micro-expression recognition methods do not consider the effect of 
individual identity attributes on the localization of ROIs. To overcome 
the challenge of low-intensity facial muscle movements in the micro-
expression recognition task, this paper proposes a novel multi-scale 
fusion visual attention network (MFVAN). This model explores the 
effect of reducing individual identity attributes on emotional change 
ROIs localization and learns multi-scale local attention weights to mask 
regions of redundancy features. The framework of the MFVAN model 
is shown in Figure 1.

The micro-expression image (apex frame) is input into the 
convolutional neural network (CNN) that is mapped to a calm state 
image (onset frame) to reduce the effect of individual identity attributes 
and obtain multi-scale feature maps. The multi-head self-attention 

(MSA) extracts the local features of the multi-scale feature maps and 
obtains the attention weights of these features. We  reduce feature 
redundancy by dropping out local features irrelevant to micro-
expressions according to attention weights. At the same time, local 
features with higher attention weights in multi-scale are fused to improve 
the robustness features. Finally, the multi-scale classification loss, mask 
loss, and removing individual identity attributes loss joint to optimize the 
MFVAN model. The experimental results on SMIC, CASME II, SAMM, 
and their combined datasets (See et  al., 2019) demonstrate that the 
MFVAN can achieve state-of-the-art performance by fusing multi-scale 
local attention features. Overall, our proposed MFVAN model is the first 
to combine image generation with visual attention mechanisms to solve 
the combination challenge problem of individual identity attribute 
interference and low-intensity facial muscle movements. In summary, 
the main contributions of this paper can be summarized as follows:

 1. This paper analyzed the combined effects of facial identity 
attributes on micro-expression recognition. This paper analyzes 
the combined effects of low-intensity of facial muscle 
movement changes and individual identity attributes in micro-
expression recognition.

 2. This paper is the first study that combines image generation 
with visual attention mechanisms and proposes an MFVAN 
framework. The self-supervised and transfer learning is jointly 
trained to remove individual identity attributes.

 3. Meanwhile, the MFVAN model utilizes the global and multi-
scale local attention weights connected for micro-expression 
recognition. The focal loss, removing identity attributes loss, 
and the marked loss are used to optimize the MFVAN model. 
The experimental results on SMIC, CASME II, SAMM, and 
their combined datasets demonstrate that the MFVAN can 
achieve state-of-the-art performance that focuses on local at 
the multi-scale and contributes to micro-expression recognition.

The rest of this paper is structured as follows: In Section 2, we review 
the micro-expression recognition datasets, handcrafted features, and deep 
learning micro-expression recognition methods. Section 3 presents the 
proposed MFVAN framework. Section 4 presents the experimental 
dataset, evaluation metrics, quantitative analysis, and analysis of ablation 
experiments. Finally, Section 5 summarizes the proposed algorithm and 
discusses future research trends.

FIGURE 1

The framework of MFVAN model to explores the effect of reducing 
individual identity attributes on emotional change ROIs localization 
and learns multi-scale local attention weights to mask regions of 
redundancy features.
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2. Related research

This section introduces the facial micro-expression recognition 
dataset used in the experiments part. Then, by comparing the 
research status of micro-expression recognition based on 
handcrafted features and deep learning, the shortcomings of existing 
research are obtained that laying the groundwork for the 
research method.

2.1. Datasets description

The premise of micro-expression recognition must have sufficient 
data with emotional labels. However, the research on facial micro-
expression recognition through computer vision has just started. At 
present, there are very few micro-expression datasets, mainly 
including imitation and spontaneous datasets. The most important 
difference between the two is the correlation of facial micro-expression 
manifestations with underlying emotional states. Among them, 
spontaneous micro-expressions are facial movements shown through 
external stimuli, which are consistent with underlying emotional 
states. Therefore, this paper adopts three spontaneous facial micro-
expression datasets and their combined datasets to verify the proposed 
MFVAN method.

The SMIC is the first public dataset used for micro-expression 
recognition. This dataset includes 328 videos collected from 20 
subjects. During the experiment, a high-speed camera with a 
resolution of 640 × 480 pixels and a transmission rate of 100 frames 
per second (FPS) was used to collect the facial images of each subject 
throughout the process. The researchers screened 164 video clips 
(negative, positive, surprise) inspired by all 16 subjects participating 
in the experiment to form SMIC for facial micro-expression 
recognition. The CASME II was recorded with a camera with 640 × 480 
pixels and 200 FPS from 26 subjects. The researchers screened 246 
video clips (happiness, surprise, disgust, repression, others) that were 
selected from more than 3000 facial actions. The SAMM is a high-
speed and high-resolution dataset that uses a camera with a frame rate 
of 200 and a resolution of 2040 × 1088 to capture images. The database 
collected video data from 32 subjects with an average age of 33.24 years 
by spontaneous elicitation, with an even and rich ethnic distribution. 
The 159 samples were labeled including happiness, surprise, contempt, 
anger, others, disgust, fear, and sadness. The 3DB-combined dataset is 
a reclassification and combination of CASME II and SAMM based on 
SMIC dataset labels. Among them, depression, sadness, contempt, and 
disgust are divided into negative categories in the SMIC dataset, and 
happiness is divided into positive categories. The recombined 
3DB-combined dataset contains 442 samples among which 109 
positive, 250 negative, and 83 surprised, including all 164 samples in 
SMIC, 145 samples in CASME II, and 133 samples in SAMM.

2.2. Handcrafted features methods

Facial micro-expression recognition methods are generally divided 
into two categories, one is to extract the manual change features of facial 
images of micro-expression video sequences for micro-expression 
recognition, and the other is to first use deep learning methods for 
micro-expression recognition. In the previous facial micro-expression 
recognition, to describe the changes of micro-expressions, many research 

works have used manual feature-based methods to extract the changes 
in texture, color, and optical flow characteristics of image sequences, 
splicing them into a compact feature vector and outputting it to the 
classifier identifies micro-expressions.

The Local Binary Pattern from Three Orthogonal Planes (LBP-
TOP) (Pfister et al., 2011) is the representative handcrafted feature 
extraction method applied to micro-expression recognition. The 
follow-up research work is the improvement of LBP-TOP. The Local 
Binary Pattern Six Interception Points (LBP-SIP) (Wang et al., 2014) 
and Local Binary Pattern from Mean Orthogonal Planes (LBP-MOP) 
(Wang et al., 2015) are used to reduce the redundancy problem. The 
Kernelized Two-Groups Sparse Learning (KTGSL) (Wei et al., 2022b) 
automatically learns more discriminative features from Local Binary 
Pattern with Single Direction Gradient (LBP-SDG) (Wei et al., 2021) 
and Local Binary Pattern from Five Intersecting Planes (LBP-FIP) 
(Wei et al., 2022a) two sets of features to improve micro-expression 
recognition performance. The Discriminative Spatiotemporal Local 
Radon Binary Pattern Based on Revisited Integral Projection 
(DiSTLBP-RIP) (Huang et  al., 2019) fuses shape features into 
LBP-TOP to improve the ability to discriminate micro-expressions.

In addition to texture and shape features, optical flow features are 
also manual features commonly used in micro-expression recognition 
(Li et al., 2020). The Fuzzy Histogram of Optical Flow Orientation 
(FHOFO) (Happy and Routray, 2017) is employed the Facial Action 
Coding System (FACS) to locate 36 facial ROIs to extract the subtle 
changes in these regions for micro-expression recognition. The 
Weighted Oriented Optical Flow (BI-WOOF) (Liong et al., 2018) 
weighted average of the overall and local histogram of oriented optical 
flow features. The Sparse Main Directional Mean Optical Flow 
(SMDMO) (Liu et al., 2018) averages the optical flow features of the 
region of interest of 36 motion units in the face area to reduce the 
noise effect caused by head movement in micro-expression 
recognition. Although the method based on handcrafted features can 
achieve good performance in micro-expression recognition, it 
requires a lot of preprocessing such as face detection alignment and 
video frame insertion in the early stage. With the application of 
end-to-end deep learning methods in the field of image recognition, 
more and more researchers have begun to consider how to use deep 
learning methods to solve micro-expression recognition tasks.

2.3. Deep learning methods

With the development of DL, especially the proposal of the CNN 
model which includes AlexNet (Krizhevsky et al., 2012), GoogLeNet 
(Szegedy et al., 2015), ResNet (He et al., 2016), and SENet (Hu et al., 
2018) for image recognition. With the application of DL in face 
detection, face recognition, face editing, and expression recognition, 
more researchers have begun to pay attention to micro-expression 
recognition through DL methods. Kim et al. (2016) is the first attempt 
to use the combination of CNN and Long Short-Term Memory 
(LSTM) to extract spatiotemporal features of micro-expression video 
sequences for MER.

Gan et al. feed apex optical flow (OFF-Apex) (Gan et al., 2019) 
images into CNN for micro-expression recognition. The Dual-Stream 
Shallow Network (DSSN) (Khor et  al., 2019)model reduces the 
complexity of the model by pruning the CNN model while improving 
the recognition performance of micro-expressions. The Stacked 
Hybrid Convolution Feature Network (SHCFNet) (Huang et al., 2020) 
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enhances the CNN network with optical flow features of different 
scales. The GEender-based Micro-Expression (GEME) (Nie et al., 
2021) reduces the impact of gender on CNN models through a 
two-stream multi-task framework. The Local and Global information 
joint learning module (LGCcon) (Li et al., 2021) localizes the main 
emotional information local area while suppressing the negative 
impact of irrelevant local areas on micro-expression recognition. The 
Action Unit – Graph Convolution Network (AU-GCN) (Lei et al., 
2021) enhances the feature representation of nodes and graph edges 
extracted by the graph convolutional network by fusing AU coding 
features. The Two-Stream Graph Attention Convolutional Network 
(TSGACN) (Kumar and Bhanu, 2021) encodes features and optical 
flow features by fusing facial key points. The (Feature Refinement, 
FeatRef) (Zhou et al., 2022) framework uses the attention model to 
select the obvious discriminant features for micro-expression 
recognition. The Prototypical Learning with Local Attention Network 
(PLAN) (Zhao et al., 2022) learns local facial action change features 
through local attention modules.

These deep learning techniques can improve recognition 
performance by learning more efficient depth features than hand-
crafted features from video sequences or the apex frame of micro-
expression samples. However, these works rarely consider the impact 
of local information. Although the AU-GCN, TSGACN, and PLAN 
methods use AU information to assist micro-expression recognition, 
they do not consider the influence of individual identity attributes 
on local information.

3. Methods

In this paper, our proposed network extracts global features by 
removing individual identity attributes. Then multi-scale attention 

mechanism is used to capture local information of the global image 
and different convolutional layers. Finally, the multi-scale local 
features with high weights are fused to classify the apex frame. The 
architecture of MFVAN is illustrated in Figure  2, our proposed 
method framework MFVAN is a multi-scale joint network.

3.1. Removing identity attributes

Psychologists believe that facial micro-expressions are not related to 
individual identity attributes. Meanwhile, Valstar and Pantic (2011) 
consider that the onset frame in the micro-expression video sequence 
represents the moment when the appearance of the face is enhanced. So, 
the onset frame can be considered as an identity image, which contains 
the identity attributes of the individual. The apex frame is the coupling of 
individual identity attributes and emotional representation. In the process 
of decoupling identity information, we map the apex frame to the onset 
frame through the autoencoder model. The encoder module is used to 
map apex frames to identity features. Then the identity features are used 
to generate an identity image through the decoder module. Therefore, 
we map the apex frame (facial micro-expression images) into CNN to the 
onset frame (neutral states image) to remove the identity information and 
obtain the global change features.

The problem of a small dataset of micro-expressions severely 
constrains the training of the mapping model for removing identity 
attributes. To better learn the CNN mapping model, we  use self-
supervised and transfer learning to train the mapping model. We train 
the teacher model by a deep image self-supervision approach. The 
image is mapped to a high-dimensional feature space using multiple 
residual modules at the image encoder and then returned to the 
original image by deconvolution. The teacher networks are complex 
with superior performance. Then a shallow network student network 

FIGURE 2

The MFVAN model contains three components. The first is a de-identity attribute model based on Convolutional Neural Network (CNN) to extract 
global facial features. Then multi-scale vision transformer (MViT) model is used to capture local information about the apex frame and different 
convolutional layers where the red boxes represent regions with higher weights. Finally, multi-scale local features with high attention weight are fused 
for micro-expression recognition.
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is designed to learn the mapping relationship of the apex to the onset 
frame. This teacher network is used as a soft target to guide shallow 
student networks so that a simpler student model with fewer 
parameters can have a similar performance as the teacher network. 
The network structure is shown in Figure 3.

In the training process, we first pre-trained the teacher model. 
Image self-supervised training is performed by feeding all images 
from the micro-expression video samples into the teacher model. 
Then the teacher and student network are jointly trained. The apex 
frame input generates a network to output the onset frame. The model 
parameters are optimized by the mean squared error (MSE) loss 
function of the two models. The loss functions for the pre-training 
model and the removing identity attribute model are Lpre and Lremove
, which are computed as follows:
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where x  is the image of micro-expression video samples. ′x  is the 
image generated by the pre-trained model. xonset  is the onset frame. 
xonset′  and xonset′′  is the image generated by the teacher and 
student network.

3.2. Multi-scale fusion visual attention 
network

The low-intensity characteristic of micro-expressions represent as 
muscle movement changes in  localized regions of facial images. 
However, inaccurate localization of local regions can lead to feature 

redundancy and thus affect recognition performance. In this paper, 
we  propose an MFVAN model for improving micro-expression 
recognition performance by extracting the local features of the multi-
scale feature map. The feature weights of the apex frame and the patch 
token of the feature map at multiple scales are learned by MSA in the 
visual transformer model (Dosovitskiy et al., 2021). Then the patch 
token with a high weight at each scale is input into multi-layer 
perceptron (MLP) fusion to recognize micro-expressions. The 
MFVAN structure is shown in Figure 4.

The MFVAN model flattens the apex frame and multi-scale 
feature maps are split into s s×  patches and flattened to generate 
image sequences xi. These image patches sequence is mapping to a 
feature vector fi  with convolution operating and weighting the 
positional embedding f pos  to generate a new feature vector. The 
dimension of fi  is k q× . The parameter k  is s s×  which is the image 
patches token length. The dimension q  is determined by the 
convolution mapping performed on each block to generate the 
feature dimension. For each scale feature vector, we add a class 
token. The calculation process of the new feature vector fi′ of the 
i th−  scale is shown in Eq. (5).

 f f f f ii c i i pos
′ = +  ∈( ), ,, , ,1 2 3  (5)

 f F x w bi conv i i i= ∑ +( ) (6)

where fc i,  is the class token of the i th−  scale, fi  is the feature by 
convolution mapped, f pos  is the positional embedding, i  is the scale, 
wi and bi are the weights of the convolution mapped of the i th−  scale.

In the transformer encoder model, the class token is a learnable 
classification parameter. But in the MFVAN model, the class token is 
not only used for classification, but also used to learn the attention 
weight of each patch, and perform mask operation on the patch with 
low weight. The transformer encoder module in the MFVAN model 
contains L layers of MSA and MLP blocks. The feature vectors 
corresponding to patches with attention weights greater than θ  are 
fused by the MLP module for classification. The classification process 
is shown in Eq. (7).
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FIGURE 3

Illustration of the transfer learning framework for removing identity attributes.
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where p the prediction result of the MFVAN model, FMLP f−  is 
the fused function, fi,0′  is the input embedding vector, fi L,′  is the 
output of the transformer encoder module of the i th−  scale, fc is the 
attention weight, θ  is the threshold for dividing the attention weights, 
L is the number of MSA and MLP blocks, FMSA l,  and FMLP l,  are the 
l-th layer block.

3.3. Loss function optimization based on 
global and local

In this paper, we  use removing identity attributes loss, global 
classification loss, multi-scales classification loss, and multi-scales 
mask loss function joint to optimize the MFVAN model and learn the 
local patch attention weight when the micro-expression occurs.
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where Lremove is the removing identity attributes loss, Lclass global_  
is the global level of classification loss, Lclass scale i_ ,  is the classification 
loss of the i th−  scale, p is the probability of the global prediction, 

pi scale, , is the probability of i th−  scale, y is the ground truth, Lclass is 
the classification loss, Lmask  is mask loss, αt , r  are hyperparameters. 
αt  represents the weight of the t-th class sample, and pt  represents the 
probability value of the t-th class output by Softmax.

4. Experimental analysis

In this section, the evaluation metrics, comparative analysis of 
experimental results, ablation experiments, and visualization analysis 
will be  introduced in detail. The proposed MFVAN method is 
evaluated on SMIC, CASME II, SAMM, and 3DB-Combined datasets.

4.1. Evaluation metric

The evaluation metric for micro-expression recognition is the 
accuracy and F1-score on the single dataset by the Leave-One-
Subject-Out (LOSO) cross-validation. The Unweighted F1-score 
(UF1) and Unweighted Average Recall (UAR) on the combined 
datasets. The evaluation metric is computed using:

 
F score Precision Recall

Precision Recall
1 2
_ = ×

×
+  

(12)

 
Recall TP

TP FN
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+  
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Precision TP

TP FP
=

+  
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FIGURE 4

The architecture of MViT model. The apex frame and multi-scale feature are input transformer encoders. Then the local feature with high weights on 
each scale is fused.
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where TP is true positive, TN is true negative, FP is the false 
positive, and FN is false negative, C is the total number of categories.

4.2. Result analysis of a single datasets

In this part, we evaluate the effectiveness of the MFVAN model by 
comparing it with two types of baseline methods based on handcrafted 
features and deep learning on the single dataset. In the comparison 
experiment of handcrafted feature methods, this paper selects the most 
representative LBP-TOP, BI-WOOF, DiSTLBP-RIP, LBP-SDG, and 
KTGSL with our proposed MFVAN model contrasted. In the deep 
learning method comparison experiment, we chose the OFF-Apex, 
DSSN, LGCcon, GEME, AU-GCN, and FeatRef models. The Bi-WOOF 
method based on handcrafted features and the AU-GCN model based 
on deep learning adopt the method of ROIs positioning. The 
experimental results are shown in Table 1.

The experimental comparison in the SMIC dataset found that the 
accuracy of MFVAN was 4.23 and 12.19% higher than the best KTGSL in 
handcrafted features and the best OFF-Apex in deep learning. The 
performance of the F1-Score is 0.1109 and 0.13 higher, respectively. The 
MFVAN model also achieves state-of-the-art performance on two other 
single CASME II and SAMM datasets. In all comparative experimental 
analyses, almost all methods input video sequences of micro-expression 
samples, only OFF-Apex, DSSN, GEME, and AU-GCN methods use apex 
frame (or apex frame and onset frame) for micro-expression recognition. 

The OFF-Apex model is one of the representative methods that only use 
peak frame information for deep learning training in the early stage of 
micro-expression recognition. Most of the subsequent methods are based 
on it to improve and improve the model or method. For example, DSSN 
compresses the model by pruning, and GEME eliminates the influence of 
individual gender. Although GEME has considered the interference of 
gender, their limitation is that it only considers the interference of gender, 
and the individual identity attribute has the influence of other attributes 
such as skin color and age in addition to gender. Therefore, the MFVAN 
model self-supervision and transfer learning reduce the influence of 
individual identity attributes and increase the robustness of multi-scale 
feature maps to improve the performance of micro-expression recognition.

4.3. Result analysis of a combined dataset

This section also further verifies the effectiveness of the MFVAN 
model on the 3DB-Combined dataset of the MEGC 2019. Since 
DiSTLBP-RIP, LBP-SDG, KTGSL, and DSSN do not report 
experimental results on combined datasets, we conduct comparative 
experiments with the remaining methods. It is worth noting that 
since the SMIC dataset does not provide the marker of the peak 
frame, in the comparison experiment of the composite dataset, the 
LGCcon model only reports the experimental results of the adjusted 
dataset. The experimental results are shown in Table 2.

The first 6 columns are the experimental results of the adjusted 
three-category dataset. Similar to the original dataset, the MFVAN 
model can achieve competitive results, and the UF1 and UAR 
indicators are 0.0794/0.0684, 0.0263/0.0186, and 0.0186/0.0263 higher 
than the optimal AU-GCN model on the two datasets. The MFVAN 
can achieve state-of-the-art performance in the combined dataset.

4.4. Ablation experiment analysis

To evaluate the effectiveness of the MFVAN model, we conducted 
ablation experiments analysis comparison of attention models at 
different scales on SMIC, CASME II, and SAMM. The detailed 

TABLE 1 Micro-expression recognition performance comparison on the SMIC (3 categories), CASME II (5 categories), and SAMM (5 categories).

Methods SMIC (3) CASME II (5) SAMM (5)

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

LBP-TOP (2011) 48.78 0.4600 39.68 0.3589 35.56 0.3589

Bi-WOOF (2018) 61.59 0.6110 57.89 0.6125 – –

DiSTLBP-RIP (2019) 63.41 – 64.78 – – –

LBP-SDG (2021) 69.68 0.6200 71.32 0.6700 – –

KTGSL (2022) 75.64 0.6900 72.58 0.6800 56.11 0.4900

OFF-Apex (2019) 67.68 0.6709 68.94 0.6967 – –

DSSN (2019) 63.41 0.6462 70.78 0.7297 57.35 0.4644

LGCcon (2021) – – 65.02 0.6400 40.90 0.3400

GEME (2021) 64.63 0.6158 75.20 0.7354 55.88 0.4538

AU-GCN (2021) – – 74.27 0.7047 74.26 0.7045

FeatRef (2022) 57.90 – 62.85 – 60.13 –

MFVAN 79.87 0.8009 78.45 0.7616 76.47 0.7325

The bold values represent the state-of-the-art performance of Handcrafted features and deep learning methods, as well as the performance of our proposed MFVAN method.
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experimental comparisons of global features (Global), global features 
with removed identity attributes (Global+RI), and fusion with local 
features at different scales (Global+scale). The results are shown in 
Table 3. The experiment found that removing the interference of identity 
information by the apex to the onset frame mapping method can 
improve the performance of Accuracy and F1-Score, both in global 
features and global features fused with multi-scale local features. This 
situation also illustrates that removing the identity attributes can 
optimize the recognition performance of micro-expressions on SMIC, 
CASME II, and SAMM.

At the same time, we found that the performance of micro-expression 
recognition increases accordingly with the fusion of local features at 
multiple scales. In the SMIC and SAMM, multi-scale local feature fusion 
can better capture the local detail changes of the apex to the onset frame 
and improve the recognition performance of micro-expressions. However, 
we achieve the best performance by fusing Accuracy and F1-Score with 
the original scales in CASME II, which are 79.45 and 0.7816, respectively. 
Therefore, for the consistency of experimental results across all datasets, 
we use multi-scale fusion to obtain the final experimental results in the 
experimental validation process.

4.5. Visualization analysis

This section further uses the confusion matrix of the MFVAN 
model on the SMIC, CASME II, SAMM, and 3DB-Combined 
datasets to visually analyze the recognition performance of different 

types of micro-expressions. The experimental results are shown in 
Figure 5. In general, whether it is a single data set or a combined 
data set, the performance of the negative type is higher than the 
emotional performance of the positive type. The experimental 
results mainly include two reasons. First, in the process of 
constructing the micro-expression dataset. The negative emotion 
category of the subject is more likely to be stimulated, making the 
samples of negative emotions in the data set higher than the samples 
of positive emotions; on the other hand, the reason is that the 
MFVAN model tends to be more inclined to negative emotional 
types, this is exactly one of the problems that need to be solved in 
the follow-up.

We visualized analysis of the effect of multi-scale features on 
the micro-expression recognition through the Grad-weighted 
Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). 
The experimental results are shown in Figure 6. The first column 
is the original image. The second column is the category 
activation map corresponding to the local features at the scale of 
the original image. The third and fourth columns are the category 
activation maps corresponding to the first and second 
convolutional feature map scales. In terms of the performance on 
the multi-scale local feature of the class activation maps 
corresponding to single-scale features, the local attention weights 
focused are more dispersed in the original image scale. And the 
local features at small scales are relatively more concentrated. 
Therefore, it is necessary to fuse local features from multiple 
scales to recognize micro-expressions.

TABLE 2 Micro-expression recognition performance comparison on the 3DB-combined datasets.

Methods SMIC CASME II SAMM 3DB-combined

UF1 UAR UF1 UF1 UF1 UF1 UF1 UAR

LBP-TOP (2011) 0.2000 0.5280 0.7026 0.5882 0.5882 0.7026 0.3954 0.4102

Bi-WOOF (2018) 0.5727 0.5829 0.7805 0.6296 0.6296 0.7805 0.5211 0.5139

OFF-Apex (2019) 0.6817 0.6695 0.8764 0.7196 0.7196 0.8764 0.5409 0.5409

GEME (2021) 0.6288 0.6570 0.8401 0.7395 0.7395 0.8401 0.6868 0.6541

LGCcon (2021) 0.6195 0.6066 0.7762 0.7499 0.4924 0.4711 – –

AU-GCN (2021) 0.7192 0.7215 0.8798 0.7914 0.7914 0.8798 0.7751 0.7890

FeatRef (2022) 0.7011 0.7083 0.8915 0.7838 0.7838 0.8915 0.7372 0.7155

MFVAN 0.7986 0.7899 0.9061 0.8100 0.8100 0.9061 0.8322 0.8289

The bold values represent the state-of-the-art performance of the deep learning method and our proposed MFVAN method.

TABLE 3 Evaluation for global and local features on the SMIC (3 categories), CASME II (5 categories), and SAMM (5 categories).

Methods SMIC (3) CASME II (5) SAMM (5)

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Global 59.88 0.5964 62.29 0.5860 40.35 0.4056

Global+RI 62.67 0.6274 63.23 0.6288 43.01 0.4240

Global+scale1 64.03 0.6394 76.55 0.7614 71.72 0.7061

Global+scale1 + RI 66.41 0.6661 79.45 0.7816 74.32 0.7164

Global+scale1,2 67.47 0.6851 75.39 0.7427 75.11 0.7137

Global+scale1,2 + RI 72.15 0.7155 75.71 0.7500 75.89 0.7267

Global+scale1,2,3 70.10 0.6941 75.92 0.7482 75.32 0.7297

Global+scale1,2,3 + RI 79.87 0.8009 78.45 0.7616 76.47 0.7325

The bold values  represent the optimal performance compared to ablation experiments.
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FIGURE 5

The confusion matrices on of MFVAN model on micro-expression datasets.

FIGURE 6

The Grad-weighted Class Activation Mapping of the multi-scale features on the SMIC, CASME II, and SAMM.
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5. Conclusion

In this paper, we propose a multi-scale fusion visual attention 
network model that fuses the local attention weights of the multiple-
scale feature maps of the removing identity attributes network for 
micro-expression recognition. For the problem of the small micro-
expression dataset, a combination of unsupervised and transfer 
learning is used to reduce the influence of identity attributes by 
learning the mapping relationship from apex to onset frame in 
micro-expression video sequences. Then, the local detail features 
are extracted by focusing on multi-scale local attention weights. 
Finally, micro-expressions are classified by fusing global features 
with local features with high weights. In general, we  reveal the 
impact of individual attributes on the localization of local ROIs. The 
experimental results show that a multi-scale fusion visual attention 
network contributes to micro-expression recognition.

The research work related to micro-expression analysis in this 
paper mainly discusses the micro-expression recognition problem, 
but often there is still how to locate the occurrence of micro-
expressions in the real environment. In a real environment, the 
occurrence of micro-expressions is often to conceal true emotions, 
so micro-expressions are often accompanied by the occurrence of 
macro-expressions. How to locate the location of micro-expressions 
in a complex environment and emotional changes is also important 
to research in future work.
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