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Cortical structural differences 
following repeated ayahuasca use 
hold molecular signatures
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Introduction: Serotonergic psychedelics such as ayahuasca are reported to 
promote both structural and functional neural plasticity via partial 5-HT2A agonism. 
However, little is known about how these molecular mechanisms may extend to 
repeated psychedelic administration in humans, let alone neuroanatomy. While 
early evidence suggests localised changes to cortical thickness in long-term 
ayahuasca users, it is unknown how such findings may be  reflected by large-
scale anatomical brain networks comprising cytoarchitecturally complex regions.

Methods: Here, we  examined the relationship between cortical gene expression 
markers of psychedelic action and brain morphometric change following repeated 
ayahuasca usage, using high-field 7 Tesla neuroimaging data derived from 24 
members of an ayahuasca-using church (Santo Daime) and case-matched controls.

Results: Using a morphometric similarity network (MSN) analysis, repeated 
ayahuasca use was associated with a spatially distributed cortical patterning of 
both structural differentiation in sensorimotor areas and de-differentiation in 
transmodal areas. Cortical MSN remodelling was found to be spatially correlated 
with dysregulation of 5-HT2A gene expression as well as a broader set of genes 
encoding target receptors pertinent to ayahuasca’s effects. Furthermore, these 
associations were similarly interrelated with altered gene expression of specific 
transcriptional factors and immediate early genes previously identified in 
preclinical assays as relevant to psychedelic-induced neuroplasticity.

Conclusion: Taken together, these findings provide preliminary evidence that the 
molecular mechanisms of psychedelic action may scale up to a macroscale level 
of brain organisation in vivo. Closer attention to the role of cortical transcriptomics 
in structural-functional coupling may help account for the behavioural differences 
observed in experienced psychedelic users.
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Introduction

In recent years, classical psychedelic compounds such as psilocybin, lysergic acid 
diethylamide (LSD) and N,N-dimethyltryptamine (DMT) have demonstrated significant utility 
for the treatment of neuropsychiatric disorders, including depression, anxiety, and substance-use 
disorders (Bogenschutz et al., 2022; D’Souza et al., 2022; Holze et al., 2023). A promise of their 
therapeutic efficacy is their capacity to elicit sustained behavioural and cognitive change 
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following a single administration, making them a rapid-acting and 
durable treatment option (Knudsen, 2023).

Current data on classical psychedelics strongly suggest that 
activation of the serotonergic 5-HT2A receptor not only mediates the 
acute hallucinogenic effects of psychedelics but also potentiates 
neuroplastic adaptations proposed to underlie persisting symptom 
improvements (Kwan et  al., 2022; Vargas et  al., 2023). A general 
umbrella term that refers to the brain’s ability to modify, change, and 
adapt throughout life and in response to experience, neuroplasticity 
arises at both functional and structural axes of organisation (Mateos-
Aparicio and Rodríguez-Moreno, 2019). Ample preclinical evidence 
has highlighted the induction of both structural and functional 
plasticity in cortical neurons following the application of 5-HT2A 
agonists and subsequent glutaminergic drive. These changes span 
from the promotion of immediate early genes (IEGs) such as ARC and 
cFOS, implicated in long-term cellular responses to external stimuli 
and spiking activity, to more downstream evidence of augmented 
synaptogenesis, neurogenesis and dendritogenesis (Calder and Hasler, 
2023). In humans, these “psychoplastogenic” properties (Olson, 2018) 
are hypothesised to underlie neuroimaging findings in both clinical 
and neurotypical populaces of enduring alterations to the topography 
of large-scale brain functional networks following administration of a 
psychedelic compound (Sampedro et al., 2017; Barrett et al., 2020; 
Pasquini et al., 2020; McCulloch et al., 2022). For example, resting-
state analyses have highlighted that 5-HT2A-rich higher-order 
functional networks exhibit greater functional interconnectedness and 
neural flexibility after psilocybin treatment, detectable for at least 
1 week after a single dose exposure (Doss et  al., 2021; Daws 
et al., 2022).

However, little is known regarding the impact of repeated exposure 
to a psychoplastogen, an important question given that (recreational) use 
of a psychedelic is rarely limited to a single occurences (Glynos et al., 
2022). Furthermore, chronic use of a host of ultimately glutaminergic 
substances such as 3,4-methylenedioxymethamphetamine (MDMA), 
ketamine or cannabis has been frequently suggested to elicit gross 
alterations to brain structure (Liao et al., 2011; Lanteri et al., 2014; Müller 
et  al., 2019; Manza et  al., 2020; Robinson et  al., 2023). A cultural 
phenomenon pertinent to the study of repeated psychedelic use is the 
ritualistic intake of ayahuasca by syncretic religions such as Santo Daime. 
Members of Santo Daime drink ayahuasca (or “Daime”) on a near-
weekly basis as a religious sacrament, with membership often maintained 
for life (Moreira and MacRae, 2011; Labate, 2012; Hartogsohn, 2021). A 
psychedelic brew made from Psychotria viridis leaves and Banisteriopsis 
caapi vines, respectively containing the 5-HT2A agonist DMT and 
monoamine oxidase inhibiting (MAOI) β-carboline alkaloids such as 
harmine, harmaline, and tetrahydroharmine (Riba et  al., 2003), 
ayahuasca has been previously shown to promote neuroplasticity and 
neurogenesis, as well as elicit enhancements in brain-derived 
neurotrophic factor (BDNF) in vivo (Morales-García et al., 2017; de 
Almeida et al., 2019; Colaço et al., 2020; Morales-Garcia et al., 2020). At 
a behavioural level, single doses of ayahuasca have been demonstrated to 
occasion improvements in mood, empathy, creativity and satisfaction 
with life in (sub)clinical populations (Uthaug et al., 2018; Palhano-Fontes 
et al., 2019; Uthaug et al., 2021; van Oorsouw et al., 2022).

Given the neuroplastic effects of ayahuasca, a parsimonious 
explanation of sustained changes in behaviour and functional network 
dynamics seen following intake is that they are underpinned by 
changes to the anatomical organisation shaping cortical function. 

Attesting to this, prior work has demonstrated Santo Daime members 
can be distinguished from case-matched controls from a thinning of 
cortical midline structures such as the posterior cingulate cortex 
(PCC), a key hub of the default mode network and thickening of the 
isthmus of the corpus callosum (Bouso et al., 2015; Simonsson et al., 
2022). However, it is still unknown how these group-wise univariate 
assessments may be reflective of 5-HT2A-mediated structural plasticity, 
let alone correspond to an individual participant’s anatomical 
organisation, which imposes strong constraints on whole-brain 
dynamics of functional networks (Bullmore and Sporns, 2012; Cabral 
et al., 2017; Hansen et al., 2022).

In recent years, tried-and-tested holistic approaches to structural 
neuroimaging such as morphometric similarity network (MSN) 
analysis which combines multiple morphological features from 
structural images, have been used to elucidate whole-brain anatomical 
networks for individual subjects (Seidlitz et al., 2018). By following the 
assumption that cortical regions which fire and wire together also 
share similar regional morphometric profiles (Goulas et al., 2017; Wei 
et al., 2018; Fulcher et al., 2019), MSNs have highlighted that cortical 
regions sharing a common cytoarchitecture are also likely to 
be anatomically connected. Since its conception, altered morphometric 
similarity (MS) has been shown to closely align with morphometric 
changes in a range of neuropsychiatric disorders sharing aberrant 
neuroadaptation as a hallmark as well as to predict individual 
differences in behaviour (Morgan et al., 2019; Seidlitz et al., 2020; Li 
et al., 2021; Wu et al., 2023). Edges (the pairwise relationship between 
two regions) comprising MSNs are closely associated with cortical 
fundamental properties, spanning gene expression, cytoarchitecture, 
and myeloarchitecture to evolutionary expansion (Seidlitz et al., 2018; 
Wei et al., 2018; Yang et al., 2021). Thus, MSNs provide an alternative 
neuroimaging phenotype useful for linking brain structural variation 
to neurogenetic markers of brain organisation.

Here, we sought to consolidate prior evidence of local structural 
differences following sustained psychedelic usage by using MSNs to 
explore global differences in anatomical network morphometry and 
tie them to neurogenetic markers of 5-HT2A-induced neuroplasticity. 
Leveraging the high signal-to-noise ratio afforded by 7T magnetic 
resonance imaging (MRI) in 24 Santo Daime members and a sample 
of matched controls, we tested the hypotheses that (i) repeat users 
would exhibit abnormalities in MSNs compared to controls (ii) MSN 
alterations would cluster within anatomical nodes pertinent to higher-
order functional networks, and (iii) these differences would co-localise 
to transcriptional markers of 5-HT2A expression.

Methods

Participants

The cohort comprised 24 volunteers (10 females, 55.2 [SD: 10.2] 
years) enrolled in a within-subject, fixed-order observational study 
conducted by Maastricht University as previously described (Mallaroni 
et al., 2022). Individuals were active members of the Dutch chapter of 
the church of Santo Daime who met the inclusion criteria comprising 
absence of ferromagnetic devices/implants (MRI contraindications), 
pregnancy, and use of (medicinal) substances in the past 24 h. 
Participants were highly experienced ayahuasca users with a mean 
(SD) membership duration of 14.2 (8.3) years, and a mean (SD) 
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attendance of Santo Daime ceremonies of 563 (650) times. All 
participants gave written informed consent prior to scanning. The 
study was conducted according to the Declaration of Helsinki (1964) 
and amended in Fortaleza (Brazil, October 2013) and in accordance 
with the Medical Research Involving Human Subjects Act (WMO) and 
was approved by the Maastricht Academic Hospital and University’s 
Medical Ethics committee (NL70901.068.19/METC19.050).

Twenty-four healthy age (55.7, SD = 13) and sex (10 female) 
matched controls (age – p > 0.6266, CI [−1.73 – 2.81]) were randomly 
selected from the ‘Atlasing of the basal ganglia (ATAG)’ multimodal 
ultra-high resolution structural 7-Tesla MRI data repository 
(Forstmann et al., 2014). All participants had normal or corrected-to-
normal vision, and none suffered from neurological, psychiatric, or 
somatic diseases.

MRI acquisition

Whole-brain T1-weighted images (T1w) for the Santo Daime 
group were collected with a 7T Siemens Magnetom scanner (Siemens 
Medical, Erlangen, Germany) using 32 receiving-channel head array 
Nova coil (NOVA Medical Inc., Wilmington MA). The T1w images 
were acquired using a using magnetisation-prepared 2 rapid acquisition 
gradient-echo (MP2RAGE) sequence collecting 190 sagittal slices 
following parameters: repetition time (TR) = 4,500 ms, echo time 
(TE) = 2.39 ms, inversion times TI1/TI2 = 900/2750 ms, flip angle1 = 5°, 
flip angle2 = 3°, voxel size = 0.9 mm isotropic, bandwidth = 250 Hz/pixel.

T1-weighted images for the control group were acquired using a 
7 T Siemens Magnetom MRI scanner using a 24 receiving-channel 
head array Nova coil (NOVA Medical Inc., Wilmington MA). An 
MP2RAGE acquisition collecting 240 sagittal slices with the 
parameters: TR = 5,000 ms, TE = 2.45 ms, inversion times TI1/
TI2 = 900/2,750 ms, flip angle1 = 5°, flip angle2 = 3°, voxel size = 0.7 mm 
isotropic, bandwidth = 250 Hz/pixel.

MP2RAGE signal inhomogeneity was normalised by 
reconstructing “robust” T1w equivalents for all subjects as outlined by 
O'Brien et  al. (2014). In sum, a normalised complexity ratio was 
extrapolated from T1w (GRETI1) and PDw (GRETI2) image volumes 
and applied to generate a uniform T1w image volume of minimal 
signal intensity variance (O'Brien et al., 2014). In addition outside of 
visual quality inspection, T1ws were assessed according to a set of 
quality control metrics: (i) coefficient of joint variation (CJV) assessing 
the presence of heavy head motion and large intensity nonuniformity 
artefacts (Ganzetti et al., 2016) (ii) contrast-to-noise ratio (CNR) an 
improvement of SNR to evaluate how separated the tissue distributions 
of GM and WM are (Magnotta et al., 2006), and (iii) the full-width 
half maximum (FWH) of the spatial distribution of the voxel intensity 
values, measuring the presence of image blur (Forman et al., 1995).

Data preprocessing

Surface preprocessing of structural images was performed using 
the anatomical workflow of sMRIPrep  0.6.2 (as outlined here1) 

1 https://www.nipreps.org/smriprep/

(Esteban et al., 2019). Briefly, T1w images were corrected for intensity 
nonuniformity with N4BiasFieldCorrection (ANTs) (Tustison et al., 
2010) and skull-stripped with antsBrainExtraction.sh (ANTs). Skull-
stripping was performed through OASIS template co-registration. 
Intensity-nonuniformity-corrected T1w volumes were then merged 
using reference subject T1w maps with mri_robust_template 
(FreeSurfer) (Fischl, 2012). Brain surfaces were then reconstructed 
and visually assessed using the subject’s T1w reference with recon-all 
(FreeSurfer) (Dale et al., 1999). Brain masks were estimated using a 
custom variation of a Mindboggle method (Klein et  al., 2017) to 
reconcile ANTs-derived and FreeSurfer-derived segmentations of the 
cortical grey matter (GM). Brain tissues (cerebrospinal fluid [CSF], 
white matter [WM], and grey matter [GM]) were segmented from 
reference, brain extracted T1w images using FAST100 (FSL).

Generation of MSN

Cortical surfaces were divided into 308 spatially contiguous nodes 
of approximately equal size (~5 cm2), derived from a subparcellation 
of the 68 cortical regions included within the Desikan-Killiany (DK) 
atlas (Desikan et al., 2006). This approach employs a backtracking 
algorithm to minimise the effect of inter-subject variability in parcel 
sizes defined by anatomical atlases (Romero-Garcia et  al., 2012). 
We  next transformed this parcellated DK atlas template to each 
participant’s native space using the inverse spherical normalisation 
parameters estimated during cortical surface reconstruction to avoid 
any further normalisation-induced heterogeneity. For each node, 
we extrapolated seven T1w morphometric features as per prior work 
(Seidlitz et al., 2018; King and Wood, 2020). Cortical thickness (CT), 
surface area (SA), mean (extrinsic) curvature (MC), Gaussian 
(intrinsic) curvature (GC), folding index (FI), curvature index (CI), 
and grey matter volume (GM). For each participant, morphometric 
feature vectors were z-scaled across regions to control for inter-feature 
variability. Pearson’s correlations were then performed for each pair of 
z-scored morphometric feature vectors, forming a 308 × 308 MSN per 
participant (Seidlitz et al., 2018).

Case–control MSN analyses

Regional MS was calculated by summing weighted correlation 
coefficients between a given region and its correlations to all other 
regions. From this, the mean regional MS per condition can be derived 
by averaging across participants. To examine case–control differences, 
we fitted linear regression models (LRMs) to regional MS values and 
regressed out age, sex, and age x sex to further account for potential 
demographic differences. This model was fitted for each region, and 
the two-tailed t-statistic (contrast = ayahuasca – healthy controls 
[HCs]) was extracted. Significance was set at p < 0.05 with Benjamini–
Hochberg false discovery rate (BH-FDR) for multiple comparisons 
across 308 regions. Furthermore, to contextualise macroscopic 
differences between groups, we  referred them to two prior 
classifications of cortical areas (see Supplementary material for 
additional details): the Yeo 7 atlas of the cortex classified according to 
resting-state functional connectivity networks (Thomas Yeo et al., 
2011) and the von Economo atlas of the cortex classified by 
cytoarchitectonic organisation (Scholtens et  al., 2018). As a 
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supplementary set of analyses, we also sought to assessed how changes 
in MS may influence the modular topology (Sporns and Betzel, 2016) 
of anatomical networks (their relative community structure and 
composition) using graph theory (see Supplementary material).

Extraction and selection of regional gene 
expression values

To relate regional changes in MS to the cortical topography of 
gene expression for candidate receptors, we  used cortical gene 
expression data from the publicly available Allen Human Brain Atlas 
(AHBA2). Regional gene expression levels for 20,000 + human genes 
were obtained microarray probes across hundreds of cortical loci in 
six postmortem brains from adult human donors with no history of 
psychiatric or neuropathological disorders (aged 24–57 years), as 
described in Hawrylycz et  al. (2012). The AHBA dataset was 
preprocessed according to the steps outlined by Romero-Garcia et al. 
(2018) and mapped to our DK-308 parcellation. Since only two of the 
six AHBA brains included samples from the right hemisphere, 
we performed our transcriptomic analyses on 152 cortical regions in 
the left hemisphere in order to minimise lateralisation biases.

To reduce the dimensionality of our analysis, we defined apriori a 
set of 66 gene targets (152 regions x 66) encoding either (i) receptors/
channels/transporters pertinent to ayahuasca’s binding profile (Ray, 
2010) or (ii) an exploratory list of candidate neuroplasticity genes 
found to be differentially expressed following the acute administration 
of 5-HT2A agonists as identified by de Vos et al. (2021). These targets 
not only included relevant primary receptors and transporters such as 
5-HT1A/2A/2C, SIGMA-1, MAOA/B but also neuroplasticity substrates 
such as NMDA/BDNF/cFOS/ARC/JUNB. For additional information 
pertaining exact gene targets, their respective studies, gene candidate 
selection criteria and their cortical distribution, see the 
Supplementary Tables S2, S3.

Associating regional changes in MSN and 
transcriptomes

Following prior work (Morgan et  al., 2019), we  employed a 
partial-least-squares (PLS) regression approach to assess the 
relationship between left-hemispheric MSN differences (t-values) and 
transcriptional activity for our 66 gene targets. Gene expression values 
were used as predictor variables of regional changes in MS. PLS 
regression approaches are best suited in instances where the number 
of predictors exceeds the number of observations and when the 
predictors (genes) exhibit multicollinearity (Haenlein and Kaplan, 
2004). The first component of the PLS (PLS1) was the linear 
combination of gene expression values that was most strongly 
correlated with regional changes in MS and provides an optimal 
low-dimensionality representation of the covariance of both variable 
sets. In order to assess the significance of the variance explained by 
PLS1, we  permuted our response variables 10,000 times across 
extracted features as well as performed spin-permutation to assess the 

2 http://www.brain-map.org

spatial relationship between our case–control MSN and PLS1 maps. 
We examined the relative contribution of each gene to PLS1 by using 
a bootstrapping procedure (random resampling and replacement of 
152 regional values in 10,000 iterations) in which the variability of 
each gene’s occurrence in PLS1 was estimated, and the ratio of the 
weight of each gene to its bootstrap standard error is used to 
extrapolate a Z-score for each gene for ranking. Related genes for 
either positive, PLS1+, or negative, PLS1− were retained with a 
conservative confidence threshold of 99%.

Quality control and replication analyses

Spin permutation testing was performed to mitigate potential 
confounding effects of spatial autocorrelations (Alexander-Bloch 
et al., 2018). Spatial maps were subject to 10,000 random spherical 
rotations at a vertex level to generate null models of spatial alignment. 
Pspin value was computed as the proportion of null values of the 
intermodal Pearson correlation coefficient that were greater than the 
real values of the correlation coefficient. In order to assess the validity 
of our results we: (i) constructed MSNs using Spearman rank 
correlations (ii) incorporated total intracranial volume as a nuisance 
regressor in our LRMs of regional MS. For the latter, we extrapolated 
Jaccard Coefficient scores in order to compute the similarity between 
our main and replication results. Furthermore, we sought to assess 
prior findings of reduced CT in Santo Daime (Bouso et al., 2015). To 
do so, we fitted LRMs to regional CT values, while controlling for age, 
sex, age*sex and mean cross-hemispheric CT.

Results

In order to assess structural differences associated to long-term 
ayahuasca use, we assessed MSNs in two imaging cohorts. Following 
quality control of images, we selected 24 Santo Daime members and 
matched them to 24 healthy controls. There were no significant 
(p > 0.05) between-group differences in the means of image quality, 
age, and sex (see Supplementary material).

Repeated ayahuasca use is associated with 
altered MSN topography

Overall, ayahuasca users exhibited diminished mean MS values 
compared to controls (t = 4.58, p < 0.0001), suggesting a predominant 
increase in anatomical differentiation. Within-group average summed 
weights of MSN values (308 regions) exhibited a normal distribution, 
balanced between regions of both high and low morphometric 
similarity (see Figure 1B). There was a significant difference between 
group distributions (p < 0.0001, two-sample Kolmogorov–Smirnoff 
test). Healthy control MSNs were found to show good spatial 
correspondence with 277 multimodal healthy control maps derived 
(r(306) = 0.53, pspin < 0.0001) from prior work (Morgan et al., 2019) and 
constructed using additional DTI and T2 parameters at 3-Tesla. As 
demonstrated in Figure 1A, regions of high morphometric similarity 
largely loaded onto frontal and temporal cortical areas and high 
negative morphometric similarity onto occipital and motor cortices. 
MS value distributions were comparable to prior multimodal 
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assessments in healthy individuals and reflect the notion that primary 
regions of the cortex are histologically differentiable from associative 
areas (Seidlitz et  al., 2018; Vázquez-Rodríguez et  al., 2019). MSN 
construction using a spearman rank approach yielded comparable 
regional residuals (pspin = <0.0001, r(306) = 0.97).

We next assessed regional differences between ayahuasca users 
and controls by fitting a MLR on each region and produced 
two-sided, FDR-corrected mean t-statistic map. As shown in 

Figure  1C, repeat ayahuasca users exhibited decreased 
morphometric similarity in sensorimotor cortices (e.g., inferior 
frontal gyrus, precuneus, pre/post central gyrus) with increased 
morphometric similarity in primarily in midline, temporal and 
prefrontal structures (e.g., orbitofrontal, entorhinal, cingulate, 
anterior insular cortices). A reduction of regional MS in regular 
ayahuasca users group implies greater architectonic differentiation 
between specified areas and the rest of the cortex, which can 

FIGURE 1

Morphometric similarity analyses of repeat ayahuasca usage. (A) Regional distribution of morphometric similarity (MS) in Santo Daime members and 
matched controls. (B) Case–control distributions of residual morphometric similarity, following regression of sex and age. (C) t-statistic and FDR 
flagged (p  <  0.05) regions for differences in MS between groups (ayahuasca – controls). (D) Top – kernel density scatterplot of the mean regional MS 
scores of controls (x-axis) and the ayahuasca-control t-statistic (y-axis), bottom – schematic of functional implication of MS scatter plot value 
distribution. Lighter hues reflect higher value densities. (E) Case–control MS differences relative to Yeo functional and von Economo cytoarchitectural 
communities. Absolute t-statistics are displayed. Yeo abbreviations correspond to the following: VIS, visual network; DAN, dorsal attention network; 
SMN, somato-motor network; DA, dorsal attentional network; VA, ventral attention network; L, limbic network; FPN, fronto-parietal network; DMN, 
default mode network. Von Economo labels reflect the following: Prim motor, granular primary motor cortex; Asso1, granular association isocortex 
type I; Asso2, granular association isocortex type 2; Sec sens, secondary sensory cortex; Prim sens, primary sensory cortex; Limbic, limbic regions 
(allocortex including entorhinal, retrosplenial, presubicular and cingulate); Insula, insular cortex (containing granular, agranular and dysgranular 
regions). For all renders, local maximum values are displayed.
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be  interpreted as reduced anatomical connectivity between less 
similar, more differentiated cortical areas, and conversely for 
regions expressing increased MS (see Supplementary Table S1 for 
regional values). The case–control t-map exhibited a strong negative 
spatial correlation with the mean control regional MS (Pearson’s 
r(306) = −0.84, pspin < 0.0001, Figure  1D), indicating that more 
connected regions tend to show greater reductions in MS and vice 
versa. Positive regional t-values and negative mean MS representing 
regional architectonic de-differentiation in regular ayahuasca users 
in comparison to controls were found in 29.55% of examined 
regions, whereas 56.17% of regions held negative t-values and 
positive mean MS and reflecting regional architectonic 
differentiation (in other words, uncoupling) in ayahuasca users 
relative to controls. While changes in MSN composition were not 
mirrored by alterations to whole-brain structural modularity 
(p > 0.05), functional community affiliations were found to shift 
across modules (see Supplementary material).

To make our findings generalisable to other levels of brain 
organisation, namely, resting-state brain functional networks known 
to shift under 5-HT2A agonists and cytoarchitectonic tissue classes, 
brain regions were also assigned to each of the Yeo 7 functional 
networks, as well as their corresponding von Economo 
cytoarchitectonic classes (Figure  1E). Here, ayahuasca users 
demonstrated decreased MS in Yeo SM, DA, and DMN networks 
(pFDR = 0.0165–0.0006) well as increased MS in the limbic (L) networks 
(p < 0.0001) For the von Economo classes, ayahuasca users had 
decreased MS in granular association isocortical classes types 1 and 2 
(pFDR = 0.0010, 0.0003 respectively) and increased MS for limbic and 
insular classes (pFDR  = 0.0002, < 0.0001, respectively).

Lastly, we sought to explore the relationship between ayahuasca 
use frequency and MS within our Santo Daime cohort. To do so, 
we employed two-tailed Spearman rank correlations to assess the 
relationship between ceremony attendance frequencies and mean 
FDR-flagged regional MS (significantly positive, negative and overall, 
see Figure 2A). A trend association was identified (max. Spearman’s 
rho(46) = −0.36, p = 0.0865).

Replication analyses

A prominent nuisance covariate in volumetric analyses are 
variations in head size (Barnes et  al., 2010), quantified by total 
intracranial volume (TIV). While no significant differences were 
found between groups, we validated the effect of TIV on our t-maps 
by including it as an additional nuisance regressor in our LRM. In this 
regard, FDR-flagged significant regions were largely congruent 
between methods (Jaccard = 90%, t-map pspin < 0.0001, r = 0.997, see 
Supplementary Table S1).

We also sought to reconcile the observed differences in our 
sample with prior findings of reduced CT in Santo Daime members 
(Bouso et al., 2015). As exemplified in Figure 2B and presented in 
Supplementary Table S1 and contrary to prior work, we identified 
opposing evidence of cortical thickening in midline structures and 
superior frontal regions (e.g., PCC, medial frontal cortex) as well as 
sparse cortical thinning in parietal and occipital regions (e.g., 
cuneus, postcentral). The resultant CT t-maps were found to 
be  significantly associated with MSN t-maps (pspin < 0.0001, 
r(306) = 0.39).

Gene expression profiles mark alterations 
in MSN

To identify cortical transcriptional signatures of MSN differences 
under sustained ayahuasca use, we  employed a PLS regression 
employing gene expression maps of 66 psychoplastogen targets (see 
Figures 3A,B). Following permutation testing (p = 0.0181), the first 
extracted component (PLS1) was retained and found to explain 11% 
of the case–control MSN t-map variance.

PLS1 gene expression weights exhibited a significant positive 
spatial correlation with MSN t-maps (Pearson’s r(150) = 0.33, 
pspin = 0.0004), signifying that genes which were positively weighted on 
PLS1 were overexpressed in regions demonstrating increased MS 
under ayahuasca relative to controls (Figure 3C), while genes which 
were negatively weighed in PLS1 were underexpressed in regions 
diminished MS. Closer examination (see Figure 3B) demonstrated 
that positive PLS1 gene expression weights strongly loaded onto 
prefrontal regions and conversely temporal regions for negative PLS1 
gene expression weights.

As per Morgan et al. (2019), we then assessed the contribution of 
each target gene to PLS1 weights by employing a bootstrapping 
procedure to allocate relative z-scores. Overall, 18/66 genes were found 
to make significant contributions to PLS1 (p < 0.01, Figures 3D,E, see 
Supplementary Table S2 for a complete list). Among them, 11 genes 
had positive normalised PLS1 weights and were overexpressed in 
regions of high MS while 7 genes had negative normalised PLS1 
weights and were underexpressed in regions of low MS.

Discussion

We provide early evidence of altered structural network 
topography following sustained psychedelic usage. Partly consistent 
with our hypothesis, Santo Daime members exhibited a cortical 
patterning of significant increases in morphometric similarity in 
midline regions as well as significant reductions in associative 
sensorimotor cortices pertinent to functional and cytoarchitectural 
organisation. Beyond 5-HT2A gene expression, case–control 
differences in morphometric similarity were more potently associated 
with receptors relevant to ayahuasca’s entourage effects on the human 
receptorome as well as a host of transcriptional factors and IEGs.

Methodological considerations

By combining multiple structural features such as grey matter 
volume, cortical curvature or thickness, morphometric similarity 
approaches have been suggested to be a closer approximation of 
anatomical connectivity than univariate structural covariance 
approaches (Seidlitz et al., 2020). MSNs may therefore provide a 
clinically feasible proxy by which to assess structural connectomes 
in frequent circumstances where “ground-truth” axonal connectivity 
using DTI cannot be derived (King and Wood, 2020). While control 
MSNs were correspondent with prior multimodal work, observed 
differences in MSN topology observed in Santo Daime members are 
likely more indicative of cytoarchitectonic (de-)differentiation 
given the limited spatial specificity of surface 
macrostructural features.
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Shifts in morphometric similarity following 
repeated ayahuasca use

A hallmark of psychedelic-induced altered states of consciousness 
is their capacity to produce an acute loss of self-referential awareness, 
termed ego dissolution (Nour et al., 2016). Contrary to occasional 
users, Santo Daime members have been indicated to show a 
diminished susceptibility to ayahuasca’s effects on self-consciousness 
and perception (Ramaekers et  al., 2023). The current findings of 
architectonic differentiation (denoted by decreased MS values) in 
cortices implicated in interoceptive and somatosensory functions 
(e.g., anterior insula, postcentral gyrus, precuneus) supporting both 
narrative and embodied self-consciousness (Blanke, 2012; Milliere, 
2017; Chen et al., 2021; Skipper, 2022) may consequently underlie 
longer-term compensatory neuroadaptative changes. Current 
mechanistic frameworks of acute psychedelic effects propose that 
5-HT2A agonists disinhibit thalamocortical pathways serving to gate 
sensory influx, leading to increased activation of cortical 
somatosensory areas (Preller et al., 2019). Prior work has highlighted 
structural alterations as correlating with behavioural measures 
pertinent to selfhood (Bouso et al., 2015). Similarly, other ayahuasca 
studies have indicated changes in self-related measures after use 
(Bouso et al., 2012; Soler et al., 2016; Jiménez-Garrido et al., 2020; 
Kiraga et al., 2021).

Santo Daime members also exhibited architectonic 
de-differentiation (denoted by increased MS values) of regions 
relevant to emotional processing and experiential phenomena 
(limbic structures, eg. temporal poles) (Olson et  al., 2007; 
Cristofori et al., 2016), executive control (prefrontal structures, eg. 
orbitofrontal cortex) (Friedman and Robbins, 2022) or serving as 

hubs for canonical resting-state networks (e.g., anterior cingulate 
– DMN) (Raichle, 2015). Transmodal nodes whose modular 
alliances swiftly change with task execution and hold extensive 
reciprocal projections to sensory and limbic modalities 
(Ghashghaei and Barbas, 2002), enable executive functioning and 
cognitive flexibility due to their role of mediating functional 
network reconfiguration (Braun et al., 2015; Medaglia et al., 2018; 
Finc et al., 2020). Prior evidence has demonstrated experienced 
ayahuasca users show a diminished susceptibility to drug-induced 
executive impairment relative to occasional users (Bouso et al., 
2013) and exhibit distinct transmodal functional network 
connectivity acutely (Mallaroni et  al., 2022). Furthermore, 
longitudinal assessments of Santo Daime have suggested members 
to exhibit better performance on measures of executive functioning 
and working memory (Bouso et  al., 2012), while other cross-
sectional studies indicate improved performance in verbal memory 
tasks compared to matched controls (Barbosa et  al., 2016). 
Consequently, a structural de-differentiation of nodes with high 
modularity – that is, areas mediating long-distance connectivity 
between brain modules – may further underscore prior evidence 
of a functional tolerance to ayahuasca’s effects (Bouso et al., 2015). 
As a final point, it is also noteworthy that a reduction of topological 
centrality (or “hubness”) and local vulnerability of high-value 
nodes is considered to be  a reliable transdiagnostic marker of 
neuropsychiatric disorders (Crossley et al., 2014; Hansen et al., 
2022), given that repeated ayahuasca use is related to lower rates 
of psychopathology (Fábregas et al., 2010; Barbosa et al., 2012; 
Jiménez-Garrido et al., 2020).

We also sought to characterise how changes in MS may spatially 
relate to functional networks relevant to psychedelic effects. 

FIGURE 2

Cortical thickness and ayahuasca use frequency correlations. (A) Spearman correlations of ceremony attendance rates with MS scores. MS scores in 
FDR flagged regions are aggregated per contrast (positive negative and global, indicated by arrows) and averaged per participant. Scatter plots depict 
mean regional MS scores of Santo Daime members (x-axis) and corresponding ceremony attendance rates (y-axis). (B) t-statistic and FDR flagged 
(p  <  0.05) regions for differences in CT between groups (ayahuasca – controls). For all renders, local maximum values are displayed.
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Differences in MS were diffuse across DMN, attentional networks 
(VA, DA) as well as primary sensorimotor (SM) and limbic (L) 
networks, correspondent with prior (sub-)acute functional imaging 
work (McCulloch et al., 2022). Furthermore, structural alterations 
coincided with specific cytoarchitectural classes, with differentiation 
being prominent within the isocortical areas comprising frontal and 
parietal lamination types while de-differentiation being present in the 
allocortex (limbic regions) and insular cortex (comprising granular, 
agranular and dysgranular lamination types). Whereas we  had 
initially hypothesised morphometric differences would solely cluster 
in regions comprising transmodal functional networks with high 
5-HT2A receptor expression density, system-wide differences in 
functional connectivity in the form of a de-differentiation of 
hierarchical brain organisation are typically observed acutely under 
classical psychedelics (Girn et al., 2022; Timmermann et al., 2023). 
Considering that a ubiquitous principle of neuroadaptation is that 
sustained changes in functional connectivity are closely mirrored by 
structural adaptation, shifts in anatomical organisation may instead 
span a larger repertoire of networks.

It should be said that the full functional significance of the 
directionality of morphometric differences has yet to 
be  established. While evidence of increased myelination or 
structural covariance between two cortical regions are typical 
precedents of structural plasticity (Cano et al., 2017; Kirby et al., 
2022), the possibility remains that ‘less is also more’ in at least 
some cases: the phenomenon of synaptic pruning or hippocampal 
differentiation provides forceful examples (Low and Cheng, 2006; 
Diniz and Crestani, 2023). Consequently, it may instead be that 
particular anatomical regions are more labile/susceptible to 
neurogenesis as a result of differing microenvironmental 
properties (Bjornsson et al., 2015). Thus, an emphasis on regional 
differences (excluding demographic or methodological differences) 
may also help account for our findings of enhanced cortical 
thickness in cortical midline structures of Santo Daime members. 
In the present study, however, no clear link with use frequency was 
identified. Future longitudinal studies employing Santo Daime 
members at different stages of enrolment may provide a greater 
variance of use frequencies.

FIGURE 3

Transcriptional profiles associated with Santo Daime differences in morphometric similarity. (A) Cortical map of left hemispheric t-values used for PLS. 
(B) Regional loadings of PLS1 weights. (C) Kernel density scatterplot of the regional PLS1 scores of controls (x-axis) and regional ayahuasca-control 
left-hemispheric t-statistic (y-axis). Lighter hues reflect higher densities. (D) Significant PLS1 loadings following FDR correction. Gene targets reflect 
selected markers encoded by gene expression maps. Lighter hues representing positive loadings and vice versa. (E) Scatterplots of top gene target 
normalised gene expression values derived from the AHBA atlas in relation to regional differences in MS, paired with corresponding renders of their 
spatial distribution. For all renders, local maximum values are displayed.
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Molecular profiles of altered morphometric 
similarity

In line with our hypothesis, 5-HT2A gene expression was identified 
as a significant contributor to PLS1. Strikingly, factor loadings 
reflected a downregulation of 5-HT2A receptor gene expression in 
sensorimotor cortices expressing greater morphometric 
differentiation. Similarly to currently approved psychiatric drugs, it is 
expected that the repeated use of psychedelic compounds affects the 
homeostasis of the 5-HT system via a sustained downregulation and 
desensitisation of 5-HT2A receptors (Callaway et al., 1994; Romano 
et al., 2010; Raval et al., 2021). Tellingly, prior animal studies have 
confirmed a rapid downregulation of 5-HT2A receptor expression in 
response to the repeated administration of LSD, concomitant to the 
onset of behavioural tolerance (Smith et al., 2014; Buchborn et al., 
2018; Raval et al., 2021; de la Fuente Revenga et al., 2022).

As a botanical psychedelic exhibiting a complex 
polypharmacology, ayahuasca’s pharmacodynamics span a broad set 
of neuromodulatory systems. This is compounded by the inherent 
variability in the chemical composition of ayahuasca between 
communities, at times comprising additional minor psychedelic 
tryptamines such as for example, 5-hydroxy DMT (bufotenine) 
stemming from the use of D. cabrerana as a DMT source (Kaasik 
et al., 2021; Rodríguez et al., 2022). Here, we identified an extended 
combination of dysregulated serotonergic, aminergic, dopaminergic 
and cannabinoid receptor gene expression underlying morphometric 
differences in sustained ayahuasca users. It is generally understood 
that the pleiotropic effects of 5-HT2A agonism are in part a 
consequence of downstream coupling with other Gq/11-coupled 
receptors (Inoue et  al., 2019; Kim et  al., 2020) identified herein 
(Lukasiewicz et al., 2010; Viñals et al., 2015; Moutkine et al., 2017). 
For example, in vitro assays have indicated acute stimulation of 
presynaptic 5-HT2A receptors may regulate synaptic excitability by 
promoting the formation and release of the endocannabinoid 
2-arachidonoylglycerol via an activation and subsequent 
downregulation of CB1 receptors (Parrish and Nichols, 2006; Best and 
Regehr, 2008). It is worthwhile noting alterations in peripheral 
primary endocannabinoids concentrations such as anandamide 
following acute ayahuasca intake have also been reported (dos Santos 
et al., 2022; Madrid-Gambin et al., 2022). It is also crucial to consider 
that indoleamines such as DMT are relatively nonselective 5-HT2 
receptor agonists (Carbonaro and Gatch, 2016). Off-target partial 
agonism of receptors such as 5-HT1A/2C or TAAR-1 are likely strong 
contributing factors to acute psychoactive effects of tryptamines 
(Canal et al., 2010; Pokorny et al., 2016; Shahar et al., 2022) and may 
consequently have neuroadaptive relevance. For example, Règue et al. 
(2019) have demonstrated 5-HT2C overexpression may dysregulate 
BDNF and cytokine signalling. Furthermore, beyond MAO 
inhibition, b-carboline alkaloids such as harmine have also been 
found to have a non-specific binding profile with the exception of a 
modest affinity for a-adrenergic receptors (Buckholtz and Boggan, 
1977; Drucker et al., 1990; Grella et al., 1998; Husbands et al., 2001; 
Grella et al., 2003).

By also exploring a subset of relevant genetic markers of 
neuroplasticity, the present analyses may help prioritise several 
pathways for future larger genetic association studies, comprising the 
totality of the AHBA transcriptome landscape. While the exact 
signalling cascades at play continue to be  poorly defined, AMPA 

(glur1), TrkB, and mTOR and the subsequent promotion of IEGs such 
as ARC or JUNC, as seemingly necessary steps for psychoplastogen-
induced neuronal growth (Ly et al., 2018, 2021; de Gregorio et al., 
2021). Expression of plasticity-related genes required activation of 
both CaMKII and MAPK pathways (Desouza et al., 2021) and are 
closely regulated by transcriptional factors such as the S100A10 
EF-hand protein (P11) or scaffolding proteins (IKAP), frequently 
implicated in neuropsychiatric disorders (George et  al., 2013; 
Chottekalapanda et  al., 2020). Furthermore, b-carboline alkaloids 
alone have been shown to assure neuroplasticity, cell survival and 
differentiation, BDNF expression, and inhibit both topisomerase and 
cyclin-dependent kinases (Fortunato et al., 2009; Sun et al., 2014; 
Morales-García et al., 2017; Pagano et al., 2017). In more recent years, 
both animal in vivo and human in vitro of models of 5-HT2A-mediated 
neuroplasticity have demonstrated differential expression of a sizeable 
number of genes (de la Fuente Revenga et al., 2021; Inserra et al., 2022; 
Kelley et al., 2022). Consequently, the present findings demand careful 
consideration given that the complex topographic interplay of 
employed genes and their regulatory mechanisms is far from fully 
understood nor can be modelled herein. Furthermore, with many of 
our epigenomic changes being isolated from rodent models, their 
transcriptional congruence with human models may vary. Cross-
species pair approaches (animal to human) may have limited 
translatability depending on the gene in question given that sequence 
homology cannot be readily guaranteed (Naqvi et al., 2019).

Limitations

While useful for establishing case–control differences in a target 
population, cross-sectional approaches such as those presented 
herein are not suited to derive direct causation. Aside from ayahuasca, 
it may be the case that other lifestyle factors inherent to Santo Daime, 
such as close social bonding, also drive morphometric differences 
(Taebi et  al., 2020). Importantly, the reliability of any corollary 
associations is dependent on larger sample sizes and close sample 
matching. The present study employed external controls that could 
solely be  matched on the basis of age and sex, and no other 
behavioural metrics relevant to morphometry such as verbal IQ or 
use frequency could be compared (Hyatt et al., 2020). Furthermore, 
practises pertaining to Santo Daime often regard ayahuasca as a 
medicinal sacrament, with members often originally enrolling with 
some form of psychopathology (Blainey, 2015) which may skew 
comparisons. While care was taken at a methodological level to 
ensure the reliability of our findings, particularly in relation to prior 
work by constraining our gene selection, differences in acquisition 
protocols between cohorts not flagged by our initial assessments may 
also in part contributed to morphometric differences. Lastly, while 
the AHBA atlas provides a complete mapping of relevant synaptic 
targets, otherwise inaccessible by PET atlases (e.g., BDNF), its 
postmortem gene expression maps are sparse (6 subjects) and likely 
closely covary with demographic variables such as age or sex 
(Arnatkeviciute et al., 2023).

To our knowledge, only one trial comprising 22 participants has 
previously sought to specifically address structural differences in 
Santo Daime congregants (Bouso et al., 2015). Brain-wide association 
studies of cortical features such as CT require thousands of individuals 
to generate robust phenotypes (Marek et al., 2022). Current global 
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estimates of Santo Daime report between 4,000–7,875 active members 
(Blainey, 2015; Bastos et al., 2017), constraining attempts to gather 
suitable samples exempt from confounding psychopathology. 
Consequently, multi-centre trials pooling additional syncretic 
organisations such as União do Vegetal (UDV) or Barquinha (MacRae, 
2004), as well as indigenous groups, could provide a fruitful venture 
for the study of repeat psychedelic use if approached in a culturally 
conscientious manner (Celidwen et  al., 2023). Similarly, use of 
baseline structural data derived from prior studies of experienced 
ayahuasca users may also provide a suitable immediate compromise. 
Going forwards, paying closer attention to shifts in structural-
functional coupling within holistic approaches informed by 
biophysical constraints, such as whole-brain models (Kringelbach 
et al., 2020), may provide predictive value for cohort-level differences 
in behaviour.

Conclusion

Altogether, these findings provide initial evidence that repeat 
ayahuasca use is associated with changes in anatomical organisation 
underlying key functional networks. By using a pharmacologically 
informed approach, these results imply that downstream molecular 
mechanisms of psychedelics may ultimately connect to macroscale 
structural change in humans. Given the rare opportunity the ritualistic 
use of ayahuasca presents to study the persisting effects of psychedelics, 
future dedicated consortiums may prove useful in orchestrating 
assessments of neuroadaptive change.
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