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Astrocytes comprise half of the cells in the central nervous system and play a 
critical role in maintaining metabolic homeostasis. Metabolic dysfunction in 
astrocytes has been indicated as the primary cause of neurological diseases, 
such as depression, Alzheimer’s disease, and epilepsy. Although the metabolic 
functionalities of astrocytes are well known, their relationship to neurological 
disorders is poorly understood. The ways in which astrocytes regulate the 
metabolism of glucose, amino acids, and lipids have all been implicated in 
neurological diseases. Metabolism in astrocytes has also exhibited a significant 
influence on neuron functionality and the brain’s neuro-network. In this review, 
we  focused on metabolic processes present in astrocytes, most notably the 
glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-
acid metabolic pathway. For glucose metabolism, we focused on the glycolysis 
pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In 
fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, 
and sphingolipid metabolism. For amino acid metabolism, we  summarized 
neurotransmitter metabolism and the serine and kynurenine metabolic 
pathways. This review will provide an overview of functional changes in astrocyte 
metabolism and provide an overall perspective of current treatment and therapy 
for neurological disorders.
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1. Introduction

Astrocytes are remarkably multifunctional cells, and most of their functions are closely 
connected with neurons in the brain. Astrocytes form a functional syncytial network via their 
gap junctions and play important homeostatic roles in the central nervous system (Dong et al., 
2022). This connection allows for intercellular communication of neurons and astrocytes 
through various mechanisms, including both chemical and synaptic transmissions (Lines et al., 
2020; Shan et al., 2021). Once cast as a supporting role for neurons, recent advances have slowly 
shifted the views of astrocytes to a more central role. Astrocytes have been found to undergo 
various changes ranging from hypertrophy, atrophy, or cell death in response to injury and 
neurological disorders (Verkhratsky et al., 2017b; Escartin et al., 2021). These morphological 
changes during neurological disorders may alter astrocytic metabolism (Cotto et al., 2019). 
Recent studies have highlighted the significant impact of astrocyte metabolism on neurological 
disorders (Muddapu et  al., 2020). However, the causal link between astrocytic metabolic 
dysregulation and the onset of various neurological disorders remains elusive (Phatnani and 
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Maniatis, 2015). In this review, we  explore the morphology and 
functionality of astrocytes, as well as the metabolic alterations they 
undergo in the context of neurological disorders such as depression, 
Alzheimer’s disease (AD), and epilepsy. Our goal is to offer innovative 
perspectives that can guide future research in this field.

2. Astrocyte morphology and 
functionality in the brain

Astrocytes exhibit various morphologies, such as star-shaped, 
bushy, and spongiform structures, which exist in the brain and spinal 
cord (Pathak and Sriram, 2023b). However, there are currently 
controversies over the total number of astrocytes and their proportions 
in different brain regions. It is estimated that astrocytes make up 
almost 40% of all cells in the human brain, with variations in different 
brain regions (Sherwood et  al., 2006; von Bartheld et  al., 2016). 
Astrocytes in the CNS are divided into four morphological types: 
protoplasmic, fibrous, varicose, and interlaminar (Falcone et al., 2019; 
Rasmussen and Smith, 2022). Protoplasmic astrocytes possess bushy 
processes and exist primarily in the gray matter. These protoplasmic 
astrocyte processes extend to the blood vessels, forming a connective 
membrane that connects to the blood brain barrier (BBB; Jackson 
et al., 2022). Protoplasmic astrocytes have various functions, including 
modulation of synaptic function, clearance of glutamate, regulation of 
blood flowrate, and participation in synaptogenesis (Aten et al., 2022). 
In contrast, fibrous astrocytes possess long extending processes and 
are typically distributed in the white matter (Sartoretti and Campetella, 
2022). Varicose projection and interlaminar astrocytes are only 
observed in humans and chimpanzees (Colombo, 2018). Interlaminar 
astrocytes connect to neurons, pia, and capillaries, suggesting roles 
such as cortical neuron communication, and may play an essential 
role in the BBB (Falcone et al., 2019).

The special cytoarchitectural and quantitative features of 
astrocytes make them play an important role in different metabolic 
pathways. Structurally, astrocytes are distributed around blood vessels 
and neurons in the brain, connecting the periphery and the brain for 
energy exchange and acting as a bridge for communication between 
cells (Chai et  al., 2017; Yue and Hoi, 2023). Regarding glucose 
metabolism, astrocytes are a primary site for glycolysis and provide 
neurons with glycogen and lactate, and the astrocyte-neuron lactate 
shuttle model (ANLS) is critical for neuronal activity (Herrera Moro 
Chao et al., 2022). Moreover, astrocytes participate in maintaining 
pathways of amino acid metabolism, fatty acid metabolism, ion and 
water homeostasis, defense against oxidative stress, and anti-
inflammation (Sofroniew, 2020). Changes in these astrocytic pathways 
also influence the activity of neurons and may lead to neurological 
disorders (Dzyubenko and Hermann, 2023; Patani et al., 2023; Yao 
et al., 2023).

3. Glucose metabolism

3.1. Astrocytes and the glucose metabolism 
pathway: main energy source of the brain

Astrocytes metabolize glucose from the bloodstream to fuel 
surrounding neurons (Figure  1). Glucose is regulated mainly by 

glucose transporters (GLUT; Mergenthaler et  al., 2013). These 
transporters, such as GLUT1 and GLUT3, are abundant in astrocytes 
and neurons, respectively, while astrocytes show limited GLUT2 
expression (Koepsell, 2020; Figure 1A). There are currently two types 
of GLUT1 isoforms. The first GLUT1 isoform is the 55-kDa isoform, 
which is located in the endothelial cells that form the BBB (Kreft et al., 
2012). Glucose enters astrocytes from the interstitium via the 45-kDa 
isoform of GLUT1 and into neurons via GLUT3, a neuronal GLUT 
(Kreft et al., 2012). GLUT 1 transporters are located in the astrocyte 
cell body and foot processes, which shuttle glucose from the 
bloodstream across the BBB into astrocytes (Nguyen et al., 2021). 
GLUT3 is located in the neural foot processes and transports glucose 
into neurons. Following its entry into the cell, glucose undergoes 
phosphorylation, a process catalyzed by hexokinase type I, which is 
ubiquitous in the brain and closely associated with mitochondria 
(Koepsell, 2020). Hexokinase type I migrates from mitochondria to 
microtubules during gap junction inhibition, inducing the expression 
of hexokinase type II and GLUT3, which are normally not present in 
astrocytes (Sánchez-Alvarez et  al., 2004). Postphosphorylation, 
glucose becomes glucose-6-phosphate (G6P), which then enters either 
glycolysis or the pentose-phosphate pathway (PPP; Takahashi, 2021). 
During glycolysis, G6P is converted into fructose-6-phosphate (F6P) 
by phosphohexose isomerase and subsequently phosphorylated by 
phosphofructokinase to yield fructose 1,6-bisphosphate (F1,6-bisP). 
Aldolase then cleaves F1,6-bisP to generate glyceraldehyde 
3-phosphate (Gly3-P) and dihydroxyacetone phosphate (DHAP), 
which can be  interconverted by phosphotriose isomerase. Gly3-P 
undergoes conversion into 1,3-bisphosphoglycerate (1,3-bisPG) 
through a process catalyzed by nicotinamide adenine dinucleotide 
(NAD)-dependent dehydrogenase and is then phosphorylated by 
phosphoglycerate kinase into 3-phosphoglycerate (3-PG). 3-PG is 
dephosphorylated to form 2-phosphogylcerate by phosphoglycerate 
mutase and subsequently dehydrated by enolase into 
phosphoenolpyruvate. Phosphoenolpyruvate is phosphorylated by 
pyruvate kinase into pyruvate, which can then enter the Krebs cycle 
or be converted to lactate. Both of these routes can generate NADH 
that can be used for continuous glycolysis, the former being more 
complicated due to transport out of the mitochondria (Kumari, 2018). 
Alternatively, pyruvate can be  converted into acetyl-coenzyme A 
(acetyl-CoA) by the pyruvate dehydrogenase complex, serving as a 
precursor for the synthesis of amino acids, phospholipids, ketone 
bodies, and other substrates (Shi and Tu, 2015). Glucose metabolism 
in astrocytes provides the necessary metabolic substrate to respond to 
the energy needs of neurons, ensuring their normal functions.

Another pathway for G6P is the PPP pathway, which accounts for 
approximately 3% of glucose metabolism (Figure  1B; Takahashi, 
2021). The PPP is a shunt pathway split into two phases: oxidative and 
nonoxidative (Kamada et al., 2003). The oxidative phase generates 
ribulose-5-phosphate (R5P) through G6P dehydrogenase and assists 
in neutralizing radical oxygen species (ROS; Wamelink et al., 2008; 
Takahashi, 2021). Meanwhile, in the nonoxidative phase, R5P can 
be  isomerized into ribose-5-phosphate and used for nucleotide 
biosynthesis (Wamelink et  al., 2008). Additionally, R5P can 
be  converted into glyceraldehyde-3-phosphate and fructose-6-
phosphate (F6P), with the latter being able to isomerize back to G6P 
(Wamelink et al., 2008). The PPP has been identified as a mechanism 
for protecting neurons from oxidative stress (Bolanos and Almeida, 
2010). Interestingly, the rate of glucose entry into the PPP in astrocytes 

https://doi.org/10.3389/fnins.2023.1217451
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1217451

Frontiers in Neuroscience 03 frontiersin.org

is five to seven times higher than that in neurons, reflecting astrocytes’ 
higher glycolytic rate (Takahashi, 2021). Under hypoxic conditions, 
the rate of glucose flux into the PPP in astrocytes is elevated, while 
PPP activity is decreased in cultured neurons (Takahashi, 2021). These 
observations underscore the critical role that astrocytes play under 
hypoxic conditions, providing antioxidant defense for neurons to help 
prevent neuronal cell death.

In situations of glucose availability, G6P is shunted into glycogen 
storage via conversion into glycogen by glycogen-synthase for later use 
(Wender et al., 2000). When astrocytes or neurons require energy, 
glycogen phosphorylase can revert glycogen back into G6P, allowing 
it to reenter glycolysis (Nadeau et  al., 2018). Notably, astrocytic 
glycogen is not uniformly distributed, and research suggests that it 
tends to accumulate in areas of the brain with the highest synaptic 
density (Phelps, 1972). This finding indicates that glycogen may play 
a role in synaptic functionality. However, subsequent research has 
revealed significant glycogen concentrations in the white matter as 
well, which does not contain synapses (Cruz and Dienel, 2002). Given 
that the white matter region consists of glial cells and is devoid of 
neurons, glycogen stored in this region may serve a supportive role for 
myelin or function as storage. Early research primarily considered 
glycogen as a safeguard against hypoglycemia, providing the brain 
with energy during periods of low glucose or when the glucose present 
in the blood is insufficient to meet increased energy demand (Brown 
et al., 2003).

Recent research has unveiled the versatile role of glycogen in the 
brain’s energy dynamics. It has been discovered that glycogen can 
be converted to lactate, power glutamate transport, and contribute to 
the synthesis of glutamine, a precursor to glutamate, a key 
neurotransmitter essential for neuronal communication (Brown et al., 
2004; Gibbs et al., 2006). These findings imply that glycogen may have 
a significant and multifaceted role in neuronal modulation through 
the process of glycogenolysis. Moreover, this implies that glycogen can 
be converted into other energy substrates, such as glucose and lactate, 
whenever necessary for maintaining brain functionality.

3.2. Astrocytes and lactate: functionality in 
neuronal regulation

In astrocytes, lactate is generated as a byproduct of glycolysis. 
Lactate is a critical energy substrate produced by astrocytes during 
neuronal activity (Figure  1C; Roberts and Chih, 2003; Xue et  al., 
2022). One hypothesis suggests that the synaptic release of glutamate 
can trigger glycolytic production of lactate in astrocytes. The lactate 
produced is then released extracellularly and taken up by surrounding 
neurons to fuel oxidative metabolism during activity (Pellerin and 
Magistretti, 1994). This hypothesis was indirectly supported by the 
distribution of lactate dehydrogenase isoforms in activity-dependent 
astrocytes (Pellerin et  al., 1998). However, PET measurements of 

FIGURE 1

Glucose metabolism in astrocytes. (A) Glucose is transported from the blood brain barrier (BBB) to astrocytes and neurons through glucose 
transporters (GLUTs) and phosphorylated to glucose-6-phosphate (G6P). G6P enters different pathways, such as glycolysis, the astrocyte-neuron 
lactate shuttle, the pentose-phosphate pathway (PPP), and the oxidative phosphorylation pathway. (B) In the PPP, G6P catalyzes ribulose-5-phosphate 
(R5P), converting nicotinamide adenine dinucleotide phosphate (NADP)  +  to NADPH at the same time. Concurrently, R5P can also be converted to 
glyceraldehyde-3-phosphate and fructose-6-phosphate (F6P), the latter of which can isomerize back to G6P. (C) The astrocyte-neuron lactate 
shuttles provide energy for neuron activity. Lactate is transferred from astrocytes into neurons through monocarboxylic acid transporters (MCTs) and is 
converted to pyruvate to generate ATP in mitochondria. (D) The oxidative phosphorylation pathway in astrocytes converts G6P to pyruvate, which 
undergoes oxidative decarboxylation to form acetyl-CoA and then enters the tricarboxylic acid (TCA) cycle to generate ATP in mitochondria. MPC1, 
mitochondrial pyruvate carrier 1; HK, hexokinase; GP, glycogen phosphorylase; LDH1, lactate dehydrogenase 1.
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cerebral oxygen consumption in the brain suggest that neurons 
increase their oxidative metabolism in parallel with an increase in 
pyruvate (Kasischke, 2009). This implies that glycolysis in neurons, 
not astrocytes, determines the kinetics of the metabolic response. 
More recent research found that lactate can act as a viable energy 
source and increase in the brain during neuronal activity, suggesting 
that it may replace glucose as the primary energy source for neurons 
(Wyss et al., 2011). Additionally, lactate produced from glucose or 
glycogen in astrocytes can be transferred via monocarboxylic acid 
transporters (MCTs) from astrocytes to neurons or so-called ANLS 
(Magistretti and Allaman, 2018; Yamagata, 2022). It is theorized that 
these shuttles shift between astrocytes, providing neurons with the 
necessary energy for normal operations. However, whether neurons 
prefer lactate over glucose remains undetermined. Lactate is released 
by astrocytes through MCTs into the extracellular matrix, from which 
it may be transported into neurons via MCTs present on neurons or 
passively through gap junctions (Dienel, 2019; Yamagata, 2022). It is 
theorized that astrocytes only release lactate to neurons during 
periods of low energy or as a supplementary energy source during 
neuronal activity, as suggested by research studies (Barros, 2013; 
Magistretti and Allaman, 2018). Once lactate enters the neurons, it is 
converted back into pyruvate and transported into the mitochondria 
to generate ATP (Alberini et al., 2018).

Although there have been theories on whether neurons require 
lactate as an energy source, Mangia et al. showed that neurons export 
lactate and astrocytes import lactate and for enabling astrocytes to 
export lactate, the glucose transport capacity of astrocytes must 
be increased 12-fold and that glucose must not respond to activation 
with increased glycolysis (Mangia et al., 2009). Furthermore, in a more 
recent study, Diaz-Carcia et al. measured the neuronal NADH/NAD+ 
ratio by employing a biosensor during stimulation and found that 
neurons upregulate glycolysis more than oxidation and release lactate 
(Diaz-Garcia et  al., 2017). These findings indicate that activated 
neurons do not depend on extracellular lactate for neuronal function, 
which questions the theory of ANLS at the cellular level (Dienel, 
2019). Although extracellular lactate is not used for energy 
supplementation for neuronal firing, there may be other functionalities 
of lactate in the brain. For instance, astrocytes have recently been 
found to contribute to memory formation (Kol et  al., 2020) and 
employ lactate in influencing memory or cognitive behaviors. Recent 
studies have revealed that lactate production in astrocytes expresses 
β2 adrenergic receptors (β2AR), which are integral for memory 
consolidation (Alberini et al., 2018). Furthermore, disruption of the 
astrocyte-neuron lactate shuttle was found to impair the formation of 
long-term memory (Lindberg et al., 2019). These findings underscore 
the importance of lactate production by astrocytes and its influence 
on cognitive functions. Lactate was also found to signal through 
specific G-protein coupled receptors expressed in neurons and glial 
cells, suggesting a possible role in neurotransmission, neurovascular 
coupling, and brain energy metabolism (Morland et al., 2015).

3.3. Oxidative phosphorylation pathway: 
mitochondrial metabolism in astrocytes

The oxidative phosphorylation pathway is present in both 
astrocytes and neurons. Although this pathway is more prominent in 

neurons, astrocytes utilize oxidative phosphorylation to protect 
neurons against oxidative stress by providing neurons with a reduced 
form of glutathione (Takahashi, 2021; Figure 1D). This pathway takes 
place in the cell’s mitochondria and is vital for maintaining cellular 
functionality. The mitochondrion, a small organelle in the cell 
responsible for energy generation, is found in the processes of 
astrocytes (Jackson and Robinson, 2018). The pyruvate generated 
from glycolysis is actively transported into the mitochondria via 
mitochondrial pyruvate carrier 1 (Rose et  al., 2020). Pyruvate 
undergoes oxidative decarboxylation, forming acetyl-CoA, which 
then enters the tricarboxylic acid (TCA) cycle. Upon reacting with 
oxaloacetate, citrate is formed, and a series of oxidation reactions 
generate ATP (Rose et  al., 2020). Although the oxidative 
phosphorylation pathway can produce energy in times of stress to aid 
in the survival of astrocytes and neurons, other pathways have also 
been found to be capable of sustaining astrocyte survival in the event 
of mitochondrial inhibition (San Martin et al., 2017). This activates 
5’-AMP-activated protein kinase (AMPK) to upregulate the glycolysis 
of 6-phosphofructo-1-kinase (PFK1), which compensates for the loss 
of mitochondrial ATP and maintains the mitochondrial membrane 
potential (Almeida et  al., 2004). During times of low energy 
production, such as under ischemic conditions, metabolic shifts occur 
from neurons to astrocytes to preserve energy due to the lower energy 
demand of astrocytes compared to neurons (Deitmer et al., 2019). 
Liang et al. found that GLUT3 presents unique Michaelis–Menten 
characteristics of low Km and high Vmax, indicating that GLUT3 can 
uptake glucose from the extracellular fluid of low glucose 
concentration by the highest possible maximum velocity (Liang and 
Bourdon, 2018). Therefore, GLUT3 on neurons is beneficial for 
glucose uptake at low glucose concentrations in the brain. In this 
condition, the glucose concentration of the brain parenchyma was 
maintained at 1–2 mM. Inhibition of the oxidative phosphorylation 
pathway in neurons can lead to cell death because glycolysis in 
neurons cannot be  activated to the same extent as in astrocytes 
(Bolanos et al., 1995). This activation of glycolysis is partially due to 
the presence of 6-phosphofructose-2-kinase/fructose-2,6-
bisphosphatase-3 (PFKFB3), a key enzyme promoting glycolysis 
(Almeida et al., 2004). Nonetheless, the oxidative phosphorylation 
pathway is essential in providing energy for both astrocytes and 
neurons, ensuring neuronal survival and maintaining functionality 
(Bonvento and Bolanos, 2021).

4. Fat and lipid metabolism

4.1. Astrocytes and fatty acid metabolism

Astrocytes are the main sites for fatty acid oxidation in the brain 
(Edmond et al., 1998). During energy deficits, fatty acid oxidation and 
ketone body production are essential in the brain as an alternate 
source of energy for maintaining normal brain functions (Figure 2; Le 
Foll and Levin, 2016). Fatty acids can help support the TCA cycle and 
oxidative phosphorylation in astrocytes (Panov et al., 2014). In the 
TCA cycle, α-ketoglutarate is converted into succinyl CoA through 
ketoglutarate dehydrogenase, after which the coenzyme is removed 
through succinyl CoA synthetase to form succinate. The formation of 
succinate and CoA allows for the phosphorylation of GDP to GTP.
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4.2. Astrocytes and ketogenic metabolism

Astrocytes have the capacity to take up, synthesize, and release 
β-hydroxybutyrate (BHB; Le Foll and Levin, 2016). Astrocytes are the 
only source of ketone body (KB) production in the brain (Figure 2; Le 
Foll and Levin, 2016). One way for the brain to obtain KBs is from the 
BBB through monocarboxylate transporter 1 (MCT1) in endothelial 
cells, oligodendrocytes, and astrocytes. The liver supplies most of the 
KBs in the BBB and are oxidized by the brain when circulating glucose 
becomes scarce. Particular conditions, including prolonged fasting, 
uncontrolled diabetes, and breastfed newborn babies, increase 
circulating BHB and acetoacetate (Jensen et al., 2020). In such cases, 
the brain slowly adapts to the use of KBs to preserve neuronal synaptic 
function and structural stability. In the ketogenic synthetic pathway 
of astrocytes, fatty acids are transported into the mitochondria and 
then converted into acetyl-CoA through the β-oxidation cycle. Two 
acetyl-CoAs are then converted into acetoacetyl-CoA through acetyl 
coenzyme A acetyltransferase (ACAT). Acetoacetyl-CoA is then 
converted to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), 
followed by acetoacetate, and finally, β-hydroxybutyrate (BHB) is 
supplied as a substrate for neuronal ATP synthesis. Astrocytes and, 
more recently, oligodendrocytes have been found to express MCT1 
(Lee et  al., 2012). MCT1 expression was found to be  higher in 
oligodendrocytes than in astrocytes (Lee et al., 2012). Neurons almost 
exclusively express the MCT2 isoform, which possesses a high affinity 
for BHB released from endothelial cells and astrocytes. Acetoacetate 
and BHB are two ketone bodies used for energy when glucose levels 
decrease in neurons. Upon entering neurons, BHB can be converted 
to acetoacetate via β-hydroxybutyrate dehydrogenase, which is then 
converted back to acetyl-CoA via β-ketoacyl-CoA transferase, which 
subsequently enters the TCA cycle (Dhillon and Gupta, 2022). An 
interesting study investigating substrate oxidative metabolism in brain 
cellular models showed that oxidation of KBs by neurons and 

oligodendrocytes is three times more efficient than that by astrocytes 
(Edmond et al., 1987).

In addition to serving as an energy supply, KBs also serve as 
substrates for the production of lipids in the brain, such as myelin 
(Cunnane and Crawford, 2014). A study reported that ketone bodies 
protect myelin-forming oligodendrocytes and reduce axonal damage 
(Mu et al., 2022). Moreover, KBs can also act as posttranslational 
modification proteins to activate intracellular signaling pathways 
(Koppel and Swerdlow, 2018). Research has found that MCT2 
expressed in neurons is mainly colocalized to mitochondria-rich 
postsynaptic density structures, suggesting that KBs play an important 
role in synaptic transmission (Pierre et al., 2002). Neurotransmitters 
released by neurons during enhanced synaptic activity may interact 
with astrocytes, stimulating the production of lactate and ketones for 
cellular activity (Guzman and Blazquez, 2001). Studies have shown 
that glutamate can enhance ketogenesis in cultured astrocytes, a 
process dependent on glutamate transporters (Guzman and Blazquez, 
2004). Further research has found that ketones can modulate neuronal 
firing by opening ATP-sensitive calcium channels (Ma et al., 2007). 
This indicates the significant role of ketones in regulating neuronal 
activity, which might explain why a ketogenic diet is an effective 
treatment for epilepsy and other neurological disorders.

4.3. Sphingolipid metabolism: astrocytic 
regulation of neuron metabolism

Sphingolipid metabolism, although occupying a relatively small 
part of metabolism, plays an essential role in the brain. These 
sphingolipids are critical components in the formation of myelin 
sheaths. The biosynthesis of sphingolipids entails the conversion of 
L-serine and palmitoyl-CoA into ceramide, which is a crucial substrate 
for the generation of other sphingolipids, such as 

FIGURE 2

Fatty acid metabolism in astrocytes. When energy is scarce, fatty acids are converted to fatty acyl-CoA and undergo β-oxidation (β-oxid) to produce 
β-hydroxybutyrate (BHB). BHB converts back to acetyl-CoA via β-ketoacyl-CoA transferase or enters the TCA cycle to generate ATP. It then enters the 
TCA cycle to generate ATP. FACS, fatty acyl-CoA synthetase; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; ACAC, acetoacetate.
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ceramide-1-phosphate (C1P) and sphingosine. Sphingosine can then 
be further converted into sphingosine-1-phosphate (S1P; Pralhada 
Rao et al., 2013). Both ceramide and sphingosine are vital regulators 
of stress responses, possessing the capability to inhibit cellular 
proliferation and mediate apoptosis, growth arrest, senescence, and 
differentiation (Pralhada Rao et al., 2013). On the other hand, S1P 
presents contrasting functionality to its unphosphorylated counterpart 
by promoting cell proliferation, migration, angiogenesis, and cell 
survival (Zeidan and Hannun, 2007). Early research has identified the 
critical role of sphingolipids in brain development and neuron survival 
(Hirabayashi and Furuya, 2008). Moreover, sphingolipid metabolism 
might also be instrumental in regulating astrocytic metabolic support 
for neurons (Lee et al., 2022). Given that these glycoproteins possess 
numerous essential functions for maintaining astrocyte and neuron 
stability within the brain, they represent an important factor to 
consider in the study and treatment of neurological disorders.

5. Amino acid metabolism in 
astrocytes

5.1. The glutamate/GABA-glutamine cycle

Similar to the energy metabolic pathways, the amino acid 
metabolic pathway in astrocytes plays an instrumental role in 
modulating brain functionality. Astrocyte metabolism is closely 
connected with the glutamate/GABA-glutamine cycle in neurons and 
helps regulate neurotransmitter homeostasis (Augusto-Oliveira et al., 
2020). Astrocytes can take up synaptically released neurotransmitters, 
such as glutamate and γ-aminobutyric acid (GABA), and metabolize 
them into glutamine, which returns to neurons (Albrecht et al., 2007). 
Glutamate is essential for synaptic functionality within the brain and 
is also identified as a precursor for GABA (Roberts and Frankel, 1950). 
The exchange of glutamate, GABA, and glutamine between neurons 
and astrocytes is known as the glutamate/GABA-glutamine cycle, 
which is crucial for maintaining excitatory and inhibitory 
neurotransmission (Andersen et al., 2022).

Importantly, efficient synaptic glutamate uptake, which is mainly 
transported by glutamate transporters of brain excitatory amino acid 
transporter 1 (EAAT1) and EAAT2  in astrocytes, is vital to avoid 
excitatory overstimulation and concurrent excitotoxic damage (Storck 
et al., 1992; Petr et al., 2015). Reports have found that astrocytes have 
a greater ability than neurons to take up glutamate, potentially because 
astrocytes can maintain a more stable membrane potential with high 
extracellular Na+ and low K+ compared to neurons, and neuronal 
firing makes neurons have a less stable Na+/K+ ratio (Mahmoud et al., 
2019). Some electrophysiological studies have shown that the inward 
transport of 3 Na+ and 1 H+ ions with each glutamate anion drives the 
outward transport of 2 K+ ions, relying on their concentration 
gradients (Levy et al., 1998). Moreover, the transport of many other 
ions, such as Cl− and H+, may not directly drive glutamate uptake but 
may cause changes in the ionic concentrations within astrocytes 
(Untiet et al., 2017). Upon transportation into astrocytes, glutamate 
either follows the glutamine synthase pathway, wherein it converts 
into glutamine, or enters the TCA cycle where it converts to 
α-ketoglutarate, a substrate for ATP production (Waniewski and 
Martin, 1986). The preference between these two pathways is 
contingent on the extracellular concentration of glutamate (Anderson 

and Swanson, 2000). If the concentration is less than 0.2 mM, 
glutamate is metabolized into glutamine for reuse, while oxidative 
metabolism is favored if the glutamate concentration surpasses 
0.2 mM (McKenna et al., 1996). Glutamine, which is released into the 
extracellular space by astrocytes, is imported into glutamatergic and 
GABAergic neurons to synthesize glutamate and GABA, respectively. 
When acting as a precursor for GABA synthesis, glutamine is 
converted to GABA via phosphate-activated glutaminase (PAG; 
Schousboe et al., 2013). In addition, some studies have shown that 
astrocytic release of glutamate to the surrounding neurons helps to 
synchronize their firing and modulate their excitatory transmission 
(Harada et al., 2015). Subsequent studies found that the elevation of 
intracellular Ca2+ in astrocytes induced glutamate release from 
astrocytes (Fellin et al., 2004), further expanding our understanding 
of astrocyte functionality (Figure 3).

Astrocytes are also involved in the uptake and metabolism of 
GABA synaptically through high-affinity GABA transporters (GATs; 
Scimemi, 2014), and GAT3 is mainly expressed in astrocytes among 
the GATs (Melone et al., 2015). Through coupling to the cotransport 
of 1 Cl− and 3 Na+, GABA can be transported into astrocytes but 
shows no stimulation of astrocyte metabolism (Chatton et al., 2003). 
GABA is then oxidized in astrocytes through the transfer of nitrogen 
to other amino acids via GABA transaminase (GABA-T), forming 
succinic semialdehyde. Subsequently, succinic semialdehyde is 
converted into succinate via succinic semialdehyde dehydrogenase 
(SSADH) and enters the TCA cycle (Andersen et al., 2020). Brain 
GABA metabolism is essential, and reports suggest that malfunctions 
of GABA-T and SSADH can cause severe encephalopathies 
(Malaspina et al., 2016; Koenig et al., 2017), and GABA metabolism 
in astrocytes plays an important role in supporting the synthesis of 
glutamine (Andersen and Jakobsen, 2020). In addition to being 
metabolized in astrocytes, GABA can also be synthesized and released 
from astrocytes. Studies on cultured astrocytes showed that astrocytes 
can synthesize GABA using glutamate decarboxylase (GAD67) or 
polyamine putrescine, and the results were also verified in vivo (Woo 
et al., 2018; Kwak et al., 2020). All studies have demonstrated that 
GABA concentrations are strongly modulated by astrocytes to 
maintain neurotransmitter balance (Kilb and Kirischuk, 2022).

Glutamine synthesis is very important for astrocyte energy 
metabolism, and the astrocytic glutamine supply is crucial for 
neuronal function in the brain. The inhibition of glutamine synthesis 
can lead to disturbances in both excitatory and inhibitory transmission 
(Ortinski et al., 2010; Tani et al., 2014). α-ketoglutarate in the TCA 
cycle is the precursor of glutamine, and impaired TCA cycle function 
and astrocyte glutamine transfer influence the supply of glutamine for 
glutamate and GABA synthesis, leading to functional disruption in 
the brain (Zhou Y. et al., 2019; Cheung and Bataveljic, 2022). This 
intricate interplay between glutamate, glutamine, and GABA 
underscores the critical role of astrocytes in modulating neuronal 
functionality (Figure 3).

5.2. Glutathione: an important intermediary 
in the maintenance of the intracellular 
redox balance

Glutathione (GSH) is a tripeptide that serves as a critical 
antioxidant in the brain and affects multiple cellular functions 
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(Iskusnykh et  al., 2022), especially in astrocytes (Pérez-Sala and 
Pajares, 2023). GSH consists of cysteine, glutamic acid, and glycine 
residues and is widely distributed throughout the CNS. The synthesis 
of GSH is consistent across different tissues (Dringen et al., 2015). 
Initially, glutamic acid and cysteine serve as substrates to generate 
glutamylcysteine (γGluCys) by γ-glutamylcysteine synthetase. GSH is 
then produced from glycine and γGluCys by glutathione synthetase 
(Segura-Aguilar et al., 2022). The GSH system contains exogenous 
GSH, GSH synthesis, and GSH recycling (Pérez-Sala and Pajares, 
2023). The maintenance of the GSH system is critical for the regulation 
and utilization of reactive oxygen and nitrogen species (Pérez-Sala and 
Pajares, 2023). GSH may affect many important signaling pathways in 
the CNS, including neurotransmission, enzyme activation, metal 
transport in cells, cellular differentiation and proliferation, and 
apoptosis (Aoyama and Nakaki, 2013). Impaired GSH synthesis leads 
to disrupted cell signaling and an increased risk of neurological 
diseases (Aoyama and Nakaki, 2013).

5.3. Serine metabolism: 
cross-communicating metabolism 
between astrocytes and neurons

L-serine and D-serine, the amino acids akin to glutamine, play a 
fundamental role in neuron–glia communication (Wolosker, 2011). 
These two amino acids are essential for excitatory neurotransmission 
within the central nervous system (CNS; Hashimoto et  al., 1992; 

Wolosker et al., 2008). L-serine is biosynthesized from the glycolytic 
intermediate 3-phosphoglycerate (Yamasaki et  al., 2001). 
3-Phosphoglycerate is oxidized by phosphoglycerate dehydrogenase 
(Phgdh) using NAD+ to form 3-phosphohydroxypyruvate, which is 
then converted to phosphoserine in a transamination reaction 
catalyzed by 3-phosphohydroxypyruvate aminotransferase (Psat). 
Phosphoserine is finally dephosphorylated by 3-phosphoserine 
phosphatase (Psph), generating L-serine. Both in vitro and in vivo 
experiments suggest that Phgdh mRNA is mainly expressed in 
astrocytes and minimally expressed in neurons (Furuya et al., 2000). 
These findings also strongly suggest that L-serine in the CNS is 
exclusively synthesized by astrocytes. After being synthesized from 
glucose in astrocytes, L-serine is shuttled to neurons to fuel the 
synthesis of D-serine, and the serine shuttle mechanism adds to other 
possible forms of metabolic interchange between astrocytes and 
neurons (Wolosker and Radzishevsky, 2013).

D-serine is synthesized from L-serine, and a constant supply of 
L-serine is critical for D-serine synthesis (Wolosker et  al., 2017). 
L-serine is supplied by astrocytes and transported into neurons 
through the serine shuttle mechanism (Wolosker et  al., 2016). 
Astrocytic L-serine is shuttled to neurons and is crucial for sustaining 
neuronal synthesis of D-serine. Once L-serine is inside the neurons, 
mainly in glutamatergic neurons, it is converted into D-serine through 
the action of the serine racemase (SR) enzyme (Neame et al., 2019). 
This D-serine is then released during membrane depolarization. 
Additionally, D-serine released by neurons can also be absorbed by 
astrocytes for storage and subsequent activity-dependent release. 

FIGURE 3

Glutamate and GABA metabolism. (A) Astrocytes regulate glutamate in the brain through glutamate transporters (GLTs). After being transported in 
astrocytes, glutamate undergoes the glutamine synthase pathway to produce glutamine or the TCA cycle to generate ATP. (B) The glutamate synthesis 
pathway in neurons. Glutamine in neurons is transported from astrocytes and is deaminized to generate glutamate by glutaminase. (C) GABA synthesis 
in neurons. Glutamine in neurons for GABA synthesis is transported from astrocytes or synthesized from glutamate, which is released from the 
excitatory synapse. Glutamine is then converted to GABA through phosphate-activated glutaminase (PAG). GS, glutamine synthetase; GDH, glutamate 
dehydrogenase; GABAT, GABA transaminase; GAT1, GABA transporter 1; SSA, succinyl semialdehyde; SSADH, semialdehyde dehydrogenase.
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Notably, D-serine plays a crucial role in pyruvate generation 
(Wolosker, 2011). Additionally, a study found that neuronal release of 
D-serine modulates N-methyl-D-aspartate receptor (NMDAR) 
function, and some of the D-serine produced by neurons might 
be transported into astrocytes and metabolized via the peroxisomal 
D-amino acid oxidase (DAO) enzyme (Wolosker and Radzishevsky, 
2013). Many studies have demonstrated the importance of endogenous 
D-serine in mediating NMDAR activation for contextual and working 
memory in rodents (Balu et al., 2016; Kaplan et al., 2018). The serine 
shuttle mechanism provides an important relationship between 
astrocytes and NMDAR function. Taken together, the serine pathway 
underscores the important role of astrocytes in neuronal functionality.

5.4. Kynurenine metabolism: the link 
between kynurenine metabolism and 
astrocytes

The kynurenine pathway (KP), responsible for the breakdown of 
tryptophan into kynurenine and its subsequent conversion into quinolinic 
acid, picolinic acid, acetyl-CoA, and NAD, plays a critical role in the 
production of cellular energy through NAD formation. The KP occurs in 
astrocytes, neurons, macrophages, glia, and so on (Savitz, 2020). The 
pathway in which tryptophan degrades into kynurenine is known as the 
kynurenine pathway (KP) and is one of the major regulatory mechanisms 
of the immune response (Lim et al., 2017). Some inflammatory mediators, 
such as IFN-γ, TNF-α, lipopolysaccharide (LPS), and viral proteins, can 
activate indoleamine 2,3 dioxygenase (IDO-1), subsequently activating 
the KP. The diverse products of kynurenine contribute to a range of 
functions related to neuron protection. Among kynurenic acids, 
L-kynurenine (L-KYN) is produced and plays a key role in the neurotoxic 
and neuroprotective directions of the pathway (Joisten et  al., 2021). 
4-Hydroxyquinoline-2-carboxylic acid (KYNA), which is a 
neuroprotective kynurenic acid, is formed directly from L-KYN in 
astrocytes. The production of KNYA is directly related to increased 
activity of kynurenine aminotransferases (KATs; Dezsi et al., 2015). A 
study found that KAT1/2 is mainly expressed in human astrocytes, 
converting KYN to KYNA, suggesting that astrocytes are the primary site 
for KYNA production in the brain.

Kynurenine conversion to kynurenic acid, for instance, can have 
neuroprotective effects by inhibiting ionotropic glutamate receptors at 
high concentrations and mitigating the activity of glycine on the 
NMDA receptor (Kessler et al., 1989). Research has shown that even 
at low concentrations, kynurenic acid can significantly impact 
glutamate levels (Carpenedo et al., 2001). Moreover, kynurenic acid 
can modulate cyclic adenosine monophosphate (cAMP) production 
by enhancing orphan G-protein-coupled receptor activity, thus 
suppressing several inflammatory pathways (Wirthgen et al., 2017). 
However, excessive concentrations of kynurenic acid may induce 
NMDA receptor hypofunction in cortical GABA interneurons, 
causing disinhibition of glutamate projections (Savitz, 2020). In 
contrast, quinolinic acid can induce cytotoxicity in neurons by 
hindering astrocyte glutamate reuptake (Stone and Perkins, 1981). 
Additionally, it can generate reactive oxygen species, disrupt the BBB, 
destabilize the cell cytoskeleton, promote tau phosphorylation, and 
disrupt autophagy (Savitz, 2020). Astrocytes, as noted in earlier 
reports, express most of the enzymes in the kynurenine pathway, 
except kynurenine-OHase, and can both produce and degrade 

quinolinic acid (Guillemin et  al., 1999). Moreover, astrocytes can 
trigger kynurenine pathway activation, leading to the production of 
L-kynurenine, which can then be used to produce kynurenic acid 
(Guillemin et al., 1999). These observations underscore the critical 
role of astrocytes in supporting neuronal survival. By managing these 
metabolic pathways, astrocytes may help prevent the onset of 
neurological disorders.

6. Astrocyte metabolic pathways in 
neurological disorders

Astrocytes play a central role in the brain’s metabolic homeostasis, 
regulating both energy and redox balances (Mulica et al., 2021). In the 
event of neurological injury, astrocytes can be activated in response to 
insult. Reactive astrogliosis is a common pathological feature in many 
neurological disorders and may play a role in neuropathological 
progression (Zhou B. et  al., 2019). Dysfunction of astrocytes and 
regulatory pathways, including proteins, ion channels, and protein 
synthesis, may lead to the development of neurological diseases 
(Pekny et al., 2016; Brandebura et al., 2023). For instance, impairment 
of astrocyte glutamate uptake and metabolic functions can lead to 
neuronal excitotoxicity and neurodegeneration (Sun et  al., 2021; 
Satarker et  al., 2022). Neurological disorders such as depression, 
dementia, AD, and epilepsy all show impaired astrocytic metabolism 
(McDonald et al., 2018; Tournissac et al., 2021). Furthermore, certain 
neurological imbalances have been associated with reduced glial 
densities in different brain regions (O'Leary et al., 2021). Changes in 
glial distributions may cause a shift in the brain’s metabolism. 
Accumulating evidence suggests that there is a strong correlation 
between changes in the brain’s metabolism functionality and 
neurological disorders (Procaccini et al., 2016). Earlier research has 
revealed a strong connection between astrocyte functionality and 
neurological diseases. Alterations in astrocytic function, particularly 
metabolic function, may be  a key reason for the worsening of 
neurological diseases (Figure 4).

6.1. Impairment of astrocyte metabolic 
function in depression

Major depressive disorder (MDD) is a neurological condition 
caused by chronic exposure to stress. Its characteristics include loss of 
motivation, impaired social interactions, communication, and 
pervasive sadness (Luo et al., 2021). Clinical patients with MDD were 
found to exhibit reduced blood flow and glucose metabolism in the 
brain (Videbech, 2000). Furthermore, MDD patients have also been 
found to have impaired TCA cycle functionality, which decreases 
energy production and may lead to exacerbation of depression-like 
symptoms (Chen et al., 2019). In MDD, a decrease in the number of 
astrocytes may lead to an imbalance in neurotransmission, synaptic 
connectivity, and metabolism (O'Leary and Mechawar, 2021). In 
postmortem brain tissues of MDD patients, astrocytes were found to 
have hypertrophic cell bodies and processes in the white matter of the 
anterior cingular cortex (ACC; Torres-Platas et  al., 2011). 
Experimental models of depression have demonstrated a reduction in 
the number and density of GFAP-positive astrocytes in the prefrontal 
cortex (PFC), locus coeruleus, hippocampus, and amygdala, alongside 
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changes in their morphology and functionality (Zhang et al., 2008; 
Cobb et al., 2016; Rubinow et al., 2016). The reduction in astrocyte 
density in MDD patients is more prominent than that in neurons 
(Rajkowska and Miguel-Hidalgo, 2007; Rajkowska and Stockmeier, 
2013). In depression, astrocytes undergo morphological alterations 
characterized by astrocyte atrophy throughout the brain (Zhao et al., 
2022). This morphological change may signify impaired functionality 
of astrocytes in MDD.

Astrocytes are regulators of metabolic energy in the brain. 
Changes to astrocytic functions in depression primarily revolve 
around the neuroimmune state, neuronal transmission, and synaptic 
plasticity. Astrocytes can become reactive when chronically exposed 
to stress, which can lead to impairment of their functionalities, 
including intracellular and extracellular ionic regulation, gap junction-
based cellular communication, and neurotransmitter metabolism 
(Guo et al., 2022; Miguel-Hidalgo, 2022). Many studies have indicated 
that astrocytes play a critical role in regulating various inflammatory 
signal transductors, such as gp130, transforming growth factor β 
receptor, interferon-γ receptor, and estrogen receptor α (Colombo and 
Farina, 2016; Zheng et  al., 2021). Astrocytic release of these 
inflammatory factors can contribute to the development of depressive-
like behaviors by causing impaired glutamate uptake (Haroon et al., 
2017; Felger, 2018). During depression, inflammation causes the 
upregulation and release of astrocytic cytokines, which can stimulate 
a cascade of inflammatory changes, including the activation of 

proteins such as mitogen-activated protein kinases (MAPK; Ji et al., 
2002; Gorina et  al., 2011). Activation of the MAPK pathway by 
inflammation or other stress factors can cause activation of MAPK 
phosphatase (MKP), which inhibits extracellular signal-regulated 
kinase (ERK) and elicits depressive-like behavior (Wang and Mao, 
2019). Research has revealed that acute inhibition of the ERK pathway 
has inconsistent results in inducing depressive-like behavior, and 
chronic pharmacological inhibition of ERK through repeated infusion 
of the specific MAPK kinase (MEK) inhibitor U0126 into the 
hippocampus and mPFC has been shown to cause depressive-like 
behavior (Einat et al., 2003; Duman et al., 2007; Tronson et al., 2008; 
Qi et al., 2009; Todorovic et al., 2009). Overactivation of ERK has been 
shown to have antidepressive effects and can alleviate depression 
(Tronson et al., 2008). Taken together, chronic inhibition of the ERK 
pathway may be a reason for the development of depression pathology. 
Depression is a chronic type of disease, and ERK has been shown to 
have an important link in the development of this pathology. Targeting 
ERK in astrocytes may elicit antidepressive effects. Astrocytes may 
also exert antidepressive effects through the release of neuron-
protective factors (Li et al., 2021). This shows a fundamental change 
in astrocytes and their functional changes in neurological disorders.

Astrocytes are connected with neuronal synapses and can 
influence neuronal excitability through the removal of 
neurotransmitters such as glutamate, GABA, and purines from the 
synaptic cleft (Semyanov and Verkhratsky, 2021). In a rat model of 

FIGURE 4

The impacts of astrocyte metabolic pathways on neurological disorders. (A) Targeting astrocyte metabolic pathways in depression. In depression, 
metabolic pathways are impaired in astrocytes, such as epoxyeicosatrienoic acid (EET) signaling, the PPP, the TCA cycle, and an increase in ROS. These 
changes in astrocytes lead to a decrease in dopamine, ATP, glutamate, astrocytes and 5-HT, while reactive oxygen species (ROS) are increased. 
(B) Targeting astrocyte metabolic pathways in Alzheimer’s disease (AD). Some metabolic signaling is impaired in astrocytes, such as the glutamate 
uptake pathway, glycolysis pathway, and TCA cycle, while ROS are increased, leading to high inflammation levels. (C) Targeting astrocyte metabolic 
pathways in epilepsy. The pathways involved in epilepsy in astrocytes, such as the metabolism of glutamate, the synthesis of GABA, glycolysis, lactate 
and glycogen metabolism, were impaired, leading to the accumulation of glutamate, lactate and glycogen and the loss of GABA and glucose.
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depression, the astrocytic potassium channel (Kir4.1) drives neuronal 
bursts in the lateral habenula (LHb), which suggests that it may serve 
an important function in astrocyte-neuron communication in 
depression (Cui et al., 2018; Yang et al., 2018). It has been suggested 
that due to the upregulation of Kir4.1, T-type voltage-sensitive Ca2+ 
channels (T-VSCCs) in neurons are activated and initiate NMDAR-
dependent neuronal bursts, causing the LHb to trigger depression 
(Zhao et al., 2022). Although recent research has suggested that the 
LHb is an important circuit in depression and that constant activation 
may be a contributing factor to the pathology of depression, it does 
not take into consideration the altered activation of GABA and Glu 
neurons in different brain regions.

Another factor that may contribute to the role of astrocytes in 
depression is the decrease in overall ATP generation and release to 
neighboring cells. In early research, Cao et  al. found that ATP 
concentrations were drastically lowered in chronic social defeat 
syndrome (CSDS) mouse models compared with control mice, 
particularly in the PFC and hippocampus regions of the brain (Cao 
et al., 2013; Wang et al., 2021). More recently, Xiong and his team 
found that impaired epoxyeicosatrienoic acid (EET) signaling can 
impede ATP release from astrocytes in the mPFC, inducing 
depressive-like behavior (Xiong et al., 2019). The dynamics of ATP 
release from astrocytes are crucial in preventing depressive-like 
behavior. ATP released from astrocytes can be used to modulate a 
plethora of functions, including various brain activities. ATP is 
released by astrocytes through Ca2+ flux, which has been found to 
regulate axon excitability (Lezmy et al., 2021). ATP can also influence 
the release of glutamate from astrocytes, thereby causing changes in 
neuronal modulation (Jeremic et al., 2001). Research has also found 
that impairment of the glutamate metabolic pathway can also lead to 
increased depression-like behavior (Lee et al., 2013). Impairment of 
the glutamate metabolic pathway can negatively affect dopaminergic 
neurons by insufficiently inhibiting kynurenine, causing decreased 
dopamine release (Kulagina et al., 2001). Furthermore, the decrease 
in neurotransmitters, including glutamate and dopamine, may result 
in decreased pyramidal neuron firing (Vitrac et al., 2014).

In addition to dopamine, serotonin is also reduced primarily due 
to the decrease in cholesterol levels in the body due to decreased 
appetite and body weight (Sun et al., 2015). This is important because 
cholesterol and blood lipids can decompose to form a substrate triose 
phosphate that can then be converted into pyruvate and enter the TCA 
cycle (Gu et al., 2021). In recent research, impairment of mitochondrial 
functionality was found in humans with MDD, such as lowered 
respiration and ATP-related oxygen consumption (Kuffner et  al., 
2020). In MDD mice, high levels of reactive oxygen species (ROS) 
were found, which may be due to NADPH deficiency due to impaired 
PPP. Notably, a decrease in glutathione in the PPP may also result in 
the accumulation of ROS that trigger oxidative stress, causing 
inflammation and possibly contributing to the worsening of 
depression (Ozaslan et al., 2019). This demonstrates the importance 
of astrocyte metabolism in neuronal functionality and depression.

6.2. Astrocyte metabolism and AD

Astrocytes’ metabolic pathways provide energy to neurons for 
various functions through neuron modulation, such as memory, 
motor, and cognitive functions (Padmashri et al., 2015; Santello et al., 

2019; Lines et al., 2020). AD is a neurogenerative disorder that is 
characterized by progressive cognitive decline, loss of memory, and 
dementia. There are many theorized causes of AD, one of the main 
causes being metabolic dysfunction (Cai et  al., 2012). Significant 
metabolic coupling is present between astrocytes and neurons, 
especially during synaptic activity (Magistretti, 2006). In the onset 
stages of the AD mouse model, there was progressive astrocytic 
atrophy with decreased GFAP staining in the cortex and hippocampus 
of the brain (Yeh et  al., 2011; Beauquis et  al., 2013). However, in 
postmortem tissue of AD patients, it was found that there was 
progressive astrocytic hypertrophy and upregulation of GFAP 
(Simpson et al., 2010). The change in astrocyte morphology and a 
switch from an atrophic phenotype to a hypertrophic phenotype may 
be associated with the accumulation of Aβ. It is well accepted that in 
late stages of AD, the functionality of astrogliosis mostly revolves 
around Aβ clearance (Guenette, 2003; Nicoll and Weller, 2003). 
Astrocytes also play an integral role in regulating vasoconstriction and 
vasodilatation (Iadecola and Nedergaard, 2007). Through these two 
functions, it may be possible for reactive astrocytes to contribute to 
damage to the neurovascular unit at the onset of AD.

One of the main factors contributing to AD is the genetic risk of 
apolipoprotein E (APOE), mainly expressed in astrocytes, which 
contributes to the accumulation of β-amyloid in the brain (Verghese 
et al., 2013; Arranz and De Strooper, 2019). Additionally, genes such as 
clusterin and fermitin family member 2, also expressed in astrocytes, 
are also closely related to AD (Preman et al., 2021). This emphasizes the 
importance of astrocytes in AD and the importance of considering their 
role in the disease. Earlier research showed that inhibition of astrogliosis 
exacerbated Aβ accumulation and pathology in AD mice (Kraft et al., 
2013). Reactive astrocytes in regions with plaque buildup showed 
impaired Ca2+ dynamics (Kuchibhotla et al., 2009; Agulhon et al., 2012). 
Astrocyte Ca2+ hyperactivity can promote the release of detrimental 
factors, alter neuronal-glial communication, and impair synaptic 
transmission (Frost and Li, 2017; Verkhratsky et al., 2017a). Recent 
hypotheses suggest that astrocytes could be involved in Aβ production, 
as they upregulate β-secretase 1 and amyloid precursor protein (APP) 
in AD brains (Frost and Li, 2017). However, there are currently no 
definitive data pointing to astrocytes as a major source of β-amyloid. 
Instead, astrocytes may mainly participate in β-amyloid clearance 
through various mechanisms, such as producing β-amyloid-degrading 
proteases, extracellular APOE, ApoJ/Clusterin, α1-antichymotrypsin 
(ACT) and α2-macroglobulin (α2-M; Ries and Sastre, 2016; Preman 
et al., 2021). Mutation and dysfunction of astrocytes in the expression 
or regulation of these proteins during AD may be a reason for the 
altered clearance processes of Aβ.

In AD, astrocytes may shift the excitation-inhibition balance 
through the secretion of GABA (Jo et al., 2014). Normally, astrocytes 
in the brain do not contribute to GABA production; however, in AD, 
GABA is synthesized through the astrocytic putrescine-monoamine 
oxidase B pathway (MAO-B; Jo et al., 2014). Hypothetically, astrocytic 
GABA release may be a defensive mechanism to protect neurons from 
further harm that may arise from excitotoxicity caused by AD (Ghatak 
et al., 2019). Although GABA synthesis may initially support neuron 
survival, the increase in MAO-B expression for GABA synthesis may 
result in elevated production of hydrogen peroxide, which may worsen 
the condition (Chun et al., 2020).

In AD patients, the expression of EAAT1 and EAAT2  in brain 
astrocytes was found to be  reduced, which can lead to impaired 
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neuronal functionality (Liang et al., 2002). Neurodegeneration was also 
found to involve this mechanism, in which astrocytes with impaired 
glutamate uptake possessed lower EAAT2 and GLAST expression 
(Hefendehl et al., 2016). Impairment of the glutamate metabolic system 
may be one of the reasons for continuous memory loss and confusion 
in AD patients. Another metabolic change is the decrease in the brain’s 
glucose uptake and glycolysis, which can be viewed as the early onset of 
AD (Ding et al., 2013; Tomi et al., 2013). It was found that metabolism-
related genes, such as those responsible for the regulation of the 
glycolytic pathway and TCA cycle, were significantly downregulated in 
both an AD mouse model and AD patients (Chen et al., 2012). The 
activity of glucose 6-phosphate dehydrogenase was found to 
be significantly decreased, while lactate dehydrogenase increased in the 
frontal and temporal cortexes in AD patients (Yun and Hoyer, 2000). 
Moreover, patients who have suffered from frontotemporal dementia 
exhibited glucose hypometabolism in the cortical regions of the brain 
(Garrett and Niccoli, 2022).

The hypometabolism of glucose may also be attributed to insulin 
resistance (Kang et al., 2017). Insulin was found to regulate glucose 
uptake and metabolism in astrocytes, and insulin resistance may be a 
contributing factor for AD (Fernandez et al., 2017). Overproduction 
of insulin can affect astrocytes and Aβ accumulation by saturating 
insulin-degrading enzyme (IDE), which was also found to degrade Aβ 
(Kang et al., 2017). Aβ accumulation is one of the hallmarks of AD 
and has been found to alter metabolic pathways in the brain (Fu and 
Jhamandas, 2014). It was found that Aβ aggregates and is internalized 
into astrocytes through scavenger receptors located on the plasma 
membrane, which alters glucose metabolism. The accumulation of Aβ 
in astrocytes is responsible for increased ROS production and 
decreased glutathione levels, leading to oxidative stress and neuronal 
vulnerability (Allaman et al., 2010). Aβ accumulation has been found 
to be a key player in activating microglia and downregulating CX3C 
motif chemokine receptor 1 (CX3CR1; Grubman et al., 2019; Muzio 
et al., 2021). This activation may trigger synaptic neurotoxicity and 
neurodegeneration (Hansen et  al., 2018; Dejanovic et  al., 2022). 
Notably, inhibition of this pathway has been found to alleviate synapse 
loss and neurodegeneration in murine models of AD (Wu et al., 2019; 
Dejanovic et  al., 2022). Recent research has found a bidirectional 
interaction between the nervous system and immune system, 
signifying that systemic inflammation could cause selective neuronal 
activation (Brea and Veiga-Fernandes, 2022). A pathological aspect of 
AD is that a breakdown of the BBB occurs, causing the infiltration of 
toxicants and immune cells into the brain (Sweeney et al., 2018). The 
degradation of the BBB in AD pathology is one of the causes of 
neuroinflammation and results in the activation of downstream 
cascades associated with neural injury and neurodegeneration 
(Sweeney et  al., 2018). Postmortem analysis of AD patient brains 
revealed an accumulation of metal ions such as iron (Fe) and zinc (Zn) 
due to dysregulation (Lovell et al., 1998). These metal ions are found 
to colocalize with Aβ aggregates, suggesting that Aβ may cause the 
accumulation of Fe and Zn, which in turn induces ferroptosis and 
AMPAR-mediated neurotoxicity (Weiss et  al., 1993; Cheng et  al., 
2021). In more recent studies, it has been suggested that elevated 
epoxide hydroxylases in the brain could contribute to 
neuroinflammation observed in AD (Ghosh et  al., 2020). These 
epoxide hydroxylases can bind to and inhibit anti-inflammatory 
arachidonic acid derivatives, thereby promoting inflammation (Ghosh 
et al., 2020; Pathak and Sriram, 2023a). It is interesting to note that Aβ 

accumulation can alter glucose metabolism as well as hydrogen 
peroxide production and glutathione release in cultured astrocytes, 
showing that ROS are produced through astrocytic metabolic 
dysfunction. The toxic effect of Aβ on astrocytes is mainly expressed 
through mitochondrial depolarization and loss of Ca2+ homeostasis 
(Abramov et  al., 2004). Astrocyte mitochondrial dysfunction can 
influence the homeostatic transport of Na+/K+-ATPase, thereby 
driving the accumulation of neurotransmitters such as glutamate and 
GABA (Genda et al., 2011; Jackson et al., 2014). ATP deficiency may 
affect glutamate clearance and thereby promote excitotoxicity (Preman 
et  al., 2021). Taken together, the alteration to astrocytic glucose 
metabolism due to Aβ accumulation and its effects on neighboring 
neurons points to metabolic alterations as being a key culprit in the 
development of AD.

6.3. Astrocyte metabolism and epilepsy

Astrocytic regulation of metabolic function is paramount in the 
role it plays in epilepsy. Epilepsy is caused by the imbalance of 
excitatory and inhibitory neurons in the brain, which may be a cause 
of metabolic dysfunction (Reddy and Saini, 2021; Qi et al., 2022). 
Astrocytes can participate in neurotransmission by regulating ion 
concentrations and neurotransmitters (Tritsch and Bergles, 2007). In 
epilepsy, astrocytes adopt a reactive morphology (Heinemann et al., 
2000; Binder and Steinhauser, 2021), become uncoupled (Bedner 
et al., 2015), and lose domain organization (Oberheim et al., 2008). 
These changes can have a variety of influences on functionality. These 
morphological changes may lead to dysfunctions in glutamate 
clearance (Coulter and Eid, 2012). Changes to astrocytic functionalities 
in epileptic conditions may exacerbate epileptic symptoms. During 
epilepsy, the increase in K+ flux may result from ion channel 
dysregulation. Research has found that in epilepsy, downregulation of 
Kir4.1 reduces astrocytes’ ability to take up glutamate and K+ from the 
extracellular environment, leading to increased seizures (Djukic et al., 
2007; Chever et al., 2010; Haj-Yasein et al., 2011). Structural analysis 
of astrocytes showed spatial overlap of the K+ channel Kir4.1 and 
aquaporin-4 (AQP4; Nielsen et al., 1997; Higashi et al., 2001). This 
research suggests that K+ uptake through Kir channels may depend on 
osmotic flux. This can indirectly affect the uptake and clearance of 
glutamate by astrocytes. The accumulation of glutamate in the brain 
due to the lack of uptake and clearance by astrocytes may be a key 
factor in epileptogenesis.

In temporal lobe epilepsy (TLE) patients, increased interictal 
glutamate levels and increased seizure-induced glutamate 
transients were found in the hippocampus (Cavus et al., 2005). 
This may be due to the impaired uptake of glutamate in the brain. 
A decrease in glutamine synthase was also discovered in epilepsy 
patients, suggesting that even after glutamate enters astrocytes, 
the clearance of glutamate may still be limited (Eid et al., 2019). 
Glutamate uptake into astrocytes can trigger astrocytic glycolysis 
(Bittner et  al., 2011). During excessive synaptic activity, a 
decrease in glucose and a rise in lactate were found, signifying 
that lactate becomes the primary energy source for neurons 
during energy-intensive activities (Boison and Steinhauser, 2018).

In clinical settings, patients with TLE were found to also have 
increased glucose uptake and metabolism during seizures, whereas it is 
severely reduced during the interictal period (Engel Jr. et al., 1983). In 
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addition to lactate being a viable fuel source for driving hippocampal 
epilepsy, glycogen stored in astrocytes can be transported into neurons 
through the lactate shuttle and converted into lactate for fuel (Boison and 
Steinhauser, 2018). It was found that in a methionine sulfoximine (MSO)-
induced epilepsy mouse model, glycogen was rapidly metabolized during 
seizures but returned to normal during the interictal phase (Bernard-
Helary et al., 2000). In MSO-induced epilepsy, the activity of the glutamate 
reuptake pathway was found to decrease, resulting in increased neuronal 
excitability (Eid et al., 2008). Decreased activity of glutamate reuptake can 
also lead to loss of inhibition by GABAergic neurons due to impaired 
GABA synthesis and release (Liang et al., 2006). Astrocytes are found to 
form coupled networks of cells for various functions (Wallraff et al., 2006). 
These networks allow for the exchange of ions, second messengers, 
metabolites, and amino acids from astrocytes to neurons. Glucose 
trafficking through coupled astrocytes is necessary for hyperactivity, while 
extracellular glucose deprivation causes loss of synaptic hyperactivity that 
can be rescued when astrocytes are filled with glucose or lactate, showing 
the importance of metabolism in epilepsy formation. Furthermore, 
astrocytes were found to be  involved in regulating neuronal 
synchronization and the spread of ictal activity through Ca2+ channels in 
the gap junction (Gomez-Gonzalo et  al., 2010). In contrast to their 
involvement in Ca2+ channel modulation, astrocytes are also thought to 
possess antiepileptic functions because reduced astrocytic coupling was 
found to cause extracellular K+ and glutamate build-up, resulting in 
depolarization and seizure generation (Pannasch et al., 2011; Boison and 
Steinhauser, 2018). Taken together, astrocytes possess both pro-epilepsy 
and anti-epilepsy properties. It has been shown to be  a regulator of 
glutamate homeostasis, while the glucose metabolic pathway is crucial for 
the development of epilepsy.

In contrast to dysfunction of astrocyte metabolism in epilepsy, 
inflammation has also been a contributing factor for the development 
of epileptogenesis (Hayatdavoudi et al., 2022). In response to neuronal 
injury caused by excitotoxicity, astrocytes can generate and release 
cytokines such as IL-1β, IL-6, tumor necrosis factor (TNF)-α, 
transforming growth factor (TGF)-β, monocyte chemoattractant 
protein-1 (MCP-1), and chemokine C-motif ligand 2 (CCL2; 
Giovannoni and Quintana, 2020; Kwon and Koh, 2020). These signals 
were found to be highly expressed in both experimental and human 
epileptogenic brain tissues, indicating that these inflammatory signals 
may be  tied to epilepsy pathology (Aronica and Crino, 2011; 
Giovannoni and Quintana, 2020). TNF-α secreted by microglia can 
induce astrocyte reactivity (Chen et al., 2021). Additionally, TNF-α 
has been shown to regulate neuronal activity and induce epilepsy by 
increasing glutamate neurotransmitter release (Shim et al., 2018). In 
earlier research, IL-1β release and activation through interleukin-
converting enzyme (ICE) and caspase-1 may contribute to acute 
seizures and drug-resistant chronic epilepsy in mice (Maroso et al., 
2011). Pharmacological inhibition of IL-1B synthesis using VX-765 
has been found to reduce epileptic activity (Maroso et  al., 2011). 
Astrocyte and microglial release of these cytokines may be a main 
contributing factor to epileptogenesis. Targeting inflammatory 
cytokines may be  another effective option in epilepsy treatment, 
particularly in patients who have developed refractory epilepsy.

7. Conclusion and outlook

Astrocytes are an integral element of neurobiology and have been 
rapidly revealing themselves as more than a mere supportive player in 

the complexity of the brain’s neural circuit. Their intricate roles extend 
far beyond the basics of metabolic regulation and hold the potential to 
unlock novel insights into the complex etiology and progression of 
various neurological disorders, including depression, Alzheimer’s 
disease, and epilepsy. This emerging perspective compels a 
comprehensive reconsideration of our understanding of astrocytes. In 
fact, their central role in neurological health and disease suggests that 
in-depth exploration of their function is not only important but 
necessary to develop effective treatments for these conditions. 
Projecting into the future of neuroscience, the trajectory of astrocytic 
research appears clear and promising. Deeper exploration into the 
nuanced interaction between astrocytes and neurons, their symbiotic 
metabolic relationship, and the potential to restore their function in 
pathological states can open new avenues for the treatment and 
prevention of diverse neurological disorders. In conditions such as 
depression and AD, emerging research suggests that dysfunctional 
energy metabolism in terms of glucose utilization in astrocytes may 
be a pivotal factor that warrants further research. Another aspect worth 
researching is the dual role of astrocytes in neurological disorders. 
Whether astrocyte activation is beneficial in AD is still unclear. 
Targeting astrocytic metabolism holds immense potential for the 
development of therapeutic interventions targeting metabolic 
abnormalities. Similarly, in epilepsy, the role of astrocytes in regulating 
ion balance by modulating ion channels and neuronal communication 
appears to be  compromised, implying that therapeutic strategies 
aiming to rectify these disruptions could be beneficial in controlling 
epileptic seizures. Interestingly, astrocytes seem to be a double-edged 
sword in regard to their behavior in epilepsy, acting both as protective 
agents and instigators. Thus, future research needs to focus on 
comprehending this dual role and how we can potentially manipulate 
it for use in therapeutic treatments. As we  continue to make 
technological strides in our exploration of astrocytes, the potential to 
elucidate their complex roles increases. Understanding their unique 
vulnerabilities and harnessing their innate potential could unveil novel 
treatments and significantly improve the prognosis for individuals 
afflicted with neurological disorders. To summarize, the future 
trajectory of astrocyte research is replete with promise and potential 
that warrants further research.
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