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The real-time sleep staging algorithm that can perform inference on mobile 
devices without burden is a prerequisite for closed-loop sleep modulation. 
However, current deep learning sleep staging models have poor real-time 
efficiency and redundant parameters. We  propose a lightweight and high-
performance sleep staging model named Micro SleepNet, which takes a 30-s 
electroencephalography (EEG) epoch as input, without relying on contextual 
signals. The model features a one-dimensional group convolution with a kernel 
size of 1 × 3 and an Efficient Channel and Spatial Attention (ECSA) module for 
feature extraction and adaptive recalibration. Moreover, the model efficiently 
performs feature fusion using dilated convolution module and replaces the 
conventional fully connected layer with Global Average Pooling (GAP). These 
design choices significantly reduce the total number of model parameters 
to 48,226, with only approximately 48.95 Million Floating-point Operations 
per Second (MFLOPs) computation. The proposed model is conducted 
subject-independent cross-validation on three publicly available datasets, 
achieving an overall accuracy of up to 83.3%, and the Cohen Kappa is 0.77. 
Additionally, we  introduce Class Activation Mapping (CAM) to visualize the 
model’s attention to EEG waveforms, which demonstrate the model’s ability 
to accurately capture feature waveforms of EEG at different sleep stages. 
This provides a strong interpretability foundation for practical applications. 
Furthermore, the Micro SleepNet model occupies approximately 100 KB of 
memory on the Android smartphone and takes only 2.8 ms to infer one EEG 
epoch, meeting the real-time requirements of sleep staging tasks on mobile 
devices. Consequently, our proposed model has the potential to serve as a 
foundation for accurate closed-loop sleep modulation.
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1. Introduction

Sleep is a crucial aspect of an adult’s life, occupying approximately one-third of their day, and 
playing a vital role in promoting bodily repair and energy restoration (Luyster et al., 2012). 
According to the survey, since the COVID-19 pandemic, many individuals experience varying 
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degrees of sleep problems (Jahrami et  al., 2021). Chronic sleep 
deprivation and sleep disorders have been linked to an elevated risk of 
multiple diseases (Medicine, 2006). Polysomnography (PSG), a multi-
channel sleep monitoring device, is the gold standard for accurately 
diagnosing and analyzing different sleep disorders in the clinic. The 
American Academy of Sleep Medicine (AASM) has classified each 30-s 
sleep record into five stages, including W, N1, N2, N3, and REM 
(Chriskos et  al., 2021). Professional physicians manually stage the 
whole-night EEG, EOG, EMG, and other electrophysiological signals 
recorded by PSG in accordance with AASM standards. However, 
manual sleep staging requires specialized knowledge and is a time-
intensive process. Additionally, personal scorers may have individual 
scoring preferences, leading to inter-scorer variability (Rosenberg and 
Van Hout, 2013). These unfavorable factors make manual sleep staging 
inefficient and expensive.

In recent years, the application of artificial intelligence (AI) 
technology to improve the efficiency of manual sleep staging has 
become a popular research topic. Previous research has focused on the 
development of automatic sleep staging algorithms based on machine 
learning and deep learning techniques (Sarkar et al., 2022). Traditional 
machine learning sleep staging methods typically involve two steps: 
manual feature extraction and classification using a machine learning 
classifier. However, manual feature extraction heavily relies on 
specialized knowledge, which can lead to missing critical features and 
limit the classification performance of the classifier, resulting in low 
staging accuracy. Additionally, the manual feature extraction  method 
limits the model to specific data distributions, resulting in poor 
transferability of the model. Recently, deep learning techniques, which 
emerged in the field of computer vision, have been widely used in 
various fields due to their powerful automatic feature extraction and 
nonlinear fitting capabilities. Some researchers have built deep 
learning models for sleep staging based on convolutional neural 
networks (CNN), long short-term memory (LSTM), Transformer, and 
others, achieving significantly better staging results than traditional 
machine learning (Supratak et al., 2017; Phan et al., 2019a, 2022b).

However, current deep learning sleep staging models also have some 
limitations. Since there is temporal information in the transitions 
between different sleep stages, most traditional sleep staging models use 
RNN-like structures to predict the staging category for a period of time 
based on the input signal sequence, resulting in reduced real-time 
efficiency (Phan et al., 2019b, 2022a; Liu et al., 2023). Therefore, these 
models are not suitable for high real-time sleep staging scenarios, such 
as real-time sleep modulation in home settings. Furthermore, RNN-like 
structures introduce a significant number of parameters into the model, 
for instance, the number of trainable parameters of DeepSleepNet is 
approximately 21 M (Supratak et al., 2017). It is totally unsuitable for 
deployment on mobile devices for wearable sleep monitoring due to 
limited memory and processing power. We attribute the above limitations 
to the fact that previous studies have not fully considered the practical 
application scenarios of when conducting model design, especially the 
practical demand for automated sleep staging based on a wide range of 
mobile devices, leading to the general unsuitability of the current models 
for mobile deployment. In addition, due to the inherent black-box 
characteristic of deep learning, the interpretability of the model is still an 
unsolved problem, which affects the trust of physicians and users in the 
models and severely restricts the practical clinical application.

In an attempt to improve the sleep quality of sleep-disordered 
individuals, real-time sleep-assist systems based on wearable devices 

rely on acoustic stimulation, electrical stimulation to dynamically 
modulate subjects during sleep in real time. Nguyen et  al. (2022) 
designed a wearable closed-loop auditory stimulation sleep-assist 
system based on multichannel EEG and reduced the sleep onset 
latency time by more than 24 min; Lu (2020) designed a low-power 
Soc for stage-specific optical stimulation based on bone-conduction 
acoustic stimulation to assist sleep and applied optical stimulation to 
achieve wakefulness; Liu and Richardson (2021) designed a low-power 
Soc for stage-specific optical stimulation. All the above systems 
require real-time inference of the current sleep staging. Therefore, 
there is an urgent need for a lightweight, real-time, and accurate sleep 
staging algorithm that can be deployed on various computing power-
constrained mobile hardware terminals. Obviously, most of the 
current deep learning sleep staging models do not fulfill the 
above conditions.

Based on the above limitations of previous studies, after we revisit 
the task requirements for wearable real-time sleep monitoring and 
modulation scenarios, we propose Micro SleepNet, a deep learning 
sleep staging model for real-time inference on mobile. Our 
contributions can be summarized as follows:

 1. We propose a lightweight sleep staging model that utilizes 
one-dimensional group convolution, as well as extremely 
lightweight ECSA module for feature extraction and adaptive 
feature recalibration, and efficient feature fusion using dilated 
convolution. Finally, we replace the fully connected layer with 
GAP. The above design greatly reduces the number of 
parameters and the computational effort of the model.

 2. We introduce CAM to visualize the model’s level of attention 
to EEG waveforms and provide the predicted posterior 
probabilities. The results show that the model accurately locates 
the feature waves of different EEG periods, revealing the 
interpretability of the model and validating the rationality of 
the model design. To the best of our knowledge, this is the first 
time that CAM has been applied to the EEG sleep staging field.

 3. The proposed model is evaluated on three publicly available 
healthy human datasets, and the results show that, with 
significantly lower parameters and computational complexity 
than traditional deep learning models, it still achieves 
competitive performance. In addition, we deploy the model on 
an Android smartphone, with a memory footprint of about 
100 KB and an inference time of about 2.8 ms per data, meeting 
the requirements of mobile device tasks.

The rest of this paper is organized as follows: Section 2 provides a 
detailed description of the design of the proposed lightweight model. 
The experiment design is described in the Section 3. Section 4 presents 
the experimental results, and Section 5 provides discussion.

2. Materials and methods

Figure 1 illustrates the overall workflow of Micro SleepNet model. 
The input to the model is a 30-s EEG epoch containing 3000 sampling 
points, corresponding to an EEG sampling rate of the common 
100 Hz. The EEG epoch undergoes 5 layers of feature extraction and 
adaptive recalibration module with dropout. The features are then 
efficiently fused using 3 layers of dilated convolution modules, 
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followed by classification using a Linear layer via GAP. The input and 
output dimensions of each layer of the model are shown in Table 1. 
The Block module consists of a group convolution and ECSA module. 
Each of these components is described in detail below.

2.1. Feature extraction and adaptive 
recalibration

The drawback of traditional convolutional operation is the 
redundancy in both parameters and computational requirements. The 
formulas for calculating the parameters and computational 
requirements, ignoring bias, are as follows:

Traditional convolutional operation parameters:

 k C Cin out∗ ∗( ) (1)

Computational requirements:

 k f C Cin in out∗ ∗ ∗( ) (2)

Where k represents the kernel size, Cin represents the number of 
input feature map channels, Cout represents the number of output 
feature map channels, and fin represents the length of the input 
feature map.

FIGURE 1

The overall structure of our proposed Micro SleepNet. Block denotes our proposed feature extraction and adaptive recalibration module, which is 
composed of group convolution and ECSA module, etc. The detailed structure is shown in the dashed box indicated by the arrow; Dconv Block 
denotes the dilated convolution module; GAP represents global average pooling. ECSA and the detailed structure of Dconv Block are shown below.

TABLE 1 Details of the input and output dimensions, convolution kernel, stride and padding of each layer of the model.

Layer name Input dim Output dim Kernel Stride Padding

Block (B, 1, 3000) (B, 64, 1000) 3 1 1

Block (B, 64, 1000) (B, 128, 333) 3 1 1

Block (B, 128, 333) (B, 128, 111) 3 1 1

Block (B, 128, 111) (B, 128, 37) 3 1 1

Block (B, 128, 37) (B, 128, 37) 3 1 1

Dropout (B, 128, 37) (B, 128, 37) – – –

Dconv (B 128, 37) (B, 32, 37) 3 1 1

Dconv (B, 32, 37) (B, 64, 37) 3 2 2

Dconv (B, 64, 37) (B, 128, 37) 3 4 4

GAP (B, 128, 37) (B, 128, 1) – – –

Linear (B, 128*1) (B, 5) – – –

B is the Batch size.
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Inspired by ShuffleNet, we  adapt one-dimensional group 
convolution for feature extraction (Zhang et  al., 2018). Group 
convolution reduces the number of channels in each convolution 
feature map by grouping the input feature map along the channel 
direction, thereby reducing the parameters and computational 
requirements of the convolution operation. The formulas for 
calculating the parameters and computational requirements, ignoring 
bias, are as follows:

Group convolutional operation parameters:

 
k C

g
Cin
out∗ ∗










 

(3)

Computational requirements:

 k f C C gin in out∗ ∗ ∗( )/  (4)

Where g represents the number of groups in group convolution. 
It can be observed that group convolution reduces both the parameters 
and computational requirements of traditional convolution by a factor 
of g. However, this approach leads to a problem known as “neighboring 
multiplication” in which the convolution kernel can only merge fixed 
channel features in each group convolution. As a result, this weakens 
the exchange of information between different channel features, 
limiting the effectiveness of the feature extraction process. To address 
this issue, ShuffleNet proposed the use of channel shuffle between 
every two group convolution operations. In our study, we insert three 
channel shuffle modules within five Blocks to improve the flow of 
features between different layers of group convolution.

Inspired by the VGG model design philosophy, all group 
convolutions in our study utilize a 1 × 3 kernel size with a stride and 
padding of 1. Except for the first group convolution with 64 channels 
and g = 1, all other group convolutions have 128 channels and g = 64. 
The feature map size remains the same before and after the group 
convolution operation. Despite the increase model depth, a small 
kernel size of 1 × 3 can still offer a large receptive field (Simonyan and 
Zisserman, 2014). Additionally, small kernels further reduce the 
parameters and computational requirements of the model.

After each group convolution operation, we  perform a batch 
normalization (BN) operation, which can accelerate model 
convergence and improve generalization (Ioffe and Szegedy, 2015). 
Subsequently, we apply the leaky rectified linear unit (Leaky ReLU) 
activation function.

 
Leaky ReLU

x x
x x
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(5)

The Leaky ReLU function introduces a leaky value in the negative 
half interval, which can solve the zero gradient vanishing problems 
for negative values (Xu et al., 2015). Subsequently, a one-dimensional 
max-pooling downsampling is performed with a stride of 3, which 
reduces the feature map size and expands the receptive field of the 
convolution operation. It is important to note that downsampling is 
only performed in the first four blocks to provide sufficient resolution 
for subsequent feature fusion. This downsampling reduces the 

original 3000 sampling points to 37 feature points, which is equivalent 
to a downsampling of approximately 100 times for the original 
EEG data.

The effectiveness of feature extraction using one-dimensional 
convolution alone is limited, as the model does not prioritize different 
features despite extracting a large number of them from the raw EEG 
signal. This contradicts the doctor’s approach of manually staging 
sleep stages based on the waveform features of EEG signals at 
different times.

To further enhance model performance, we propose the ECSA 
module, which we  insert at the end of each Block in the feature 
extraction and adaptive recalibration module. Figure 2 provides a 
detailed schematic of this module, which consists of the Efficient 
Channel Attention (ECA) module and the spatial attention 
sub-module of the Convolutional Block Attention Module (CBAM) 
in series. This module has few parameters and does not change the size 
or number of channels of the input feature map, allowing it to 
be inserted into any position of the model without burden and achieve 
performance gains.

The ECA module is a lightweight channel attention module that 
builds upon the Squeeze and Excitation (SE) module (Hu et al., 2018; 
Wang et al., 2020). It can perform local inter-channel interaction and 
generate attention coefficients for the feature map channels adaptively 
after activation.

Specifically, the interaction range of the one-dimensional 
convolution is proportional to the convolution kernel k and the 
channel dimension C. The adaptive convolution kernel k is determined 
as follows:

FIGURE 2

Detailed structure of the ECSA module.
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k C

C b

odd
= ( ) = ( )

+ϕ
γ γ

log2

 
(6)

where the parameters γ and b are set to 2 and 1, respectively. The 
ECA module as a whole can be expressed as follows:

 channel attention Sigmoid conv AvgPool Fd c = ( )( )( )1  (7)

 F F channel attentionc c= ∗   (8)

where Fc is the feature map after max-pooling.
To aggregate the downsampled feature maps, we employ GAP and 

replace the two fully connected layers in the SE module using a 
one-dimensional convolution with adaptive kernels. The sigmoid 
activation function yields attention coefficients for each channel in the 
feature map, which are used to recalibrate the original feature map.

Channel attention is concerned with the contribution of 
different channels in the feature map to the model classification 
performance. In our task, this represents the contribution of 
different frequency components of EEG features extracted by 
various convolutional kernels. However, channel attention has 
limitations since EEG feature waves may appear at any position in 
the feature map, causing the contribution of spatial information 
within the same channel to the model classification performance 
to vary. Therefore, we  introduce a spatial attention module by 
incorporating the spatial attention sub-module of the CBAM (Woo 
et  al., 2018) after the ECA module. This further improves the 
ability of model to capture and focus on significant EEG waveform 
features in the feature maps.

Initially, the spatial attention module computes the maximum and 
average values of each feature point along the channel dimension and 
concatenates them into a 2-channel feature map. We then replace the 
fully connected layers with convolutional layers and apply the sigmoid 
activation function to obtain the spatial attention coefficients. These 
coefficients are then used to recalibrate the feature maps that have 
already been recalibrated by channel attention. Specifically, this 
process can be represented as follows:

 
spatial attention conv F Fd c c Sigmoid AvgPool ; MaxPool= ( ) ( )( )( 1 ))  (9)

 F F spatial attentionc= ∗   (10)

where F is the feature map after the dual calibration of channel 
and spatial attention.

After undergoing dual recalibration of channel and spatial 
attention, the feature map F highlights the most relevant EEG 
signal features for classification while suppressing 
non-essential features.

2.2. Feature fusion

The feature extraction and adaptive recalibration module 
effectively extract features from the raw EEG signals. However, it is 
not enough to perform feature extraction alone. Feature fusion is a 
critical aspect of most machine learning models (Yang et al., 2003). To 
fuse the extracted features rapidly and efficiently, inspired by the Time 
Convolutional Network (TCN) (Bai et al., 2018), we incorporate the 
dilated convolution module. Unlike traditional convolution, which 
has a linear relationship between receptive field and convolutional 
layers, dilated convolution exponentially increases the receptive field 
with model depth (Yu and Koltun, 2015). To balance feature fusion 
with model depth, we design a three-layer dilated convolution module 
with a kernel size of 3. Each layer has dilation factor and stride of 1, 2, 
and 4, respectively, while the padding is set to 1. The number of 
channels is set to 32, 64, and 128, respectively. After each dilated 
convolution, we apply BN and Leaky ReLU activation. As illustrated 
in Figure 3, the output feature yi of the three-layer dilated convolution 
module fuses features from the adjacent 15 points on the initial feature 
map, significantly enhancing the expansion of the receptive field 
compared to standard convolution. The expansion of the receptive 
field enhances the ability to capture global contrast information, such 
as the location and duration of the occurrence of different sleep 
feature waves within one 30s EEG epoch, allowing the model to make 
staging decisions with a global view rather than based on local 
semantic information.

2.3. CAM

The current deep learning model is still a black box system. 
However, interpretability is a crucial aspect of deep learning models 
in the medical application. CAM is a well-established explainable 

FIGURE 3

Left: The process of expanding the receptive field by the dilated convolution; Right: The composition of the dilated convolution module.
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TABLE 2 Details of three datasets used in our experiments.

Datasets #Subjects Channel Sampling rate W N1 N2 N3 REM #Total

Sleep-EDF-20 20 Fpz-Cz 100 Hz 8285 2804 17799 5703 7717 42308

19.6% 6.6% 42.1% 13.5% 18.2%

Sleep-EDF-78 78 Fpz-Cz 100 Hz 65951 21522 69132 13039 25835 195479

33.7% 11.0% 35.4% 6.7% 13.2%

SHHS 329 C4-A1 125 Hz 46319 10304 142125 60153 65953 324854

14.3% 3.2% 43.7% 18.5% 20.3%

model in computer vision (Zhou et al., 2016). CAM operates on the 
principle that the weights of the fully connected layer pertaining to 
the output class demonstrate the contribution of the feature map to 
the target class. By channel-wise multiplication and summation of 
the weight with the feature map, followed by upsampling to the 
original signal sampling rate, we obtain the model’s attention level 
toward the original signal under the current predicted class. The 
calculation process is straightforward and can be  represented 
as follows:

 
CAM w f xC

k
k
C

x
k= ( )∑ ∑

 
(11)

Where f xk ( ) is the activation value of the xth feature point in the 
kth feature map obtained through feature fusion, and wk

C is the kth 
weight corresponding to the output class c of the fully connected 
layer. By normalizing the attention level to a range of 0 to 1 and 
visualizing the original signal as a heatmap, we  obtain the final 
visualization result.

3. Experiments

3.1. Data description

The proposed model is evaluated on three publicly available 
healthy human datasets.

The Sleep EDF dataset consists of two sub-datasets, Sleep EDF-20 
and the extended version Sleep EDF-78 (Goldberger et al., 2000). The 
Sleep EDF-20 dataset includes overnight PSG sleep recordings from 
20 healthy Caucasian individuals aged 21–35 years, with two nights of 
recordings for each subject except for subject 13, whose recordings 
are missing for one night. Therefore, this dataset includes a total of 39 
sleep recordings. The Sleep EDF-78 dataset further collects two nights 
of PSG sleep recordings from 78 healthy individuals aged 
25–101 years, except for three subjects whose recordings are missing 
for one night. Therefore, this dataset includes a total of 153 
sleep recordings.

Each record in the Sleep EDF dataset contains scalp EEG 
signals from two channels (Fpz-Cz and Pz-Cz), one horizontal 
EOG, one EMG, and one nasal-oral respiratory signal. All EEG and 
EOG signals have the same sampling rate of 100 Hz. These 
recordings are manually classified into one of eight classes (W, N1, 
N2, N3, N4, REM, MOVEMENT, UNKNOWN) by sleep experts 
based on the R&K standard (Himanen and Hasan, 2000). 
We exclude all MOVEMENT and UNKNOWN stages and combine 

N3 and N4 stages into one sleep stage (N3), to conform to the latest 
AASM standard. We  only use the EEG signal from the 
Fpz-Cz channel.

SHHS is a multi-center cohort study. Subjects have a variety of 
medical conditions, including pulmonary, cardiovascular, and 
coronary artery disease. To minimize the effects of these diseases, 
we follow the previous study and select subjects who are considered 
to have a regular sleep (e.g., Apnea Hypoventilation index or AHI less 
than 5) (Fonseca et al., 2017). A total of 329 individuals are screened 
as final experimental data. Notably, we select the C4-A1 channel with 
a sampling rate of 125 Hz and downsample it to 100 Hz.

To ensure a fair comparison with previous work (Eldele et al., 
2021; Yubo et al., 2022; Zhou et al., 2023), we only extract data from 
the wake periods within 30 min before and after sleep periods. 
We also perform cross-validation on a per-subject basis, where the 
testing set consisted of data from subjects that are not included in 
the training set. We conduct 10-fold cross-validation on the Sleep 
EDF-78 dataset and SHHS dataset, and leave-one-out cross-
validation on the Sleep EDF-20 dataset. Furthermore, we divide the 
training set into training and validation sets in each round of cross-
validation. Because there may be a bias in data distribution when 
dividing the training set based on subject, we  first shuffle the 
training set by epoch and then perform stratified sampling, with a 
ratio of 9:1 for the training set and validation set. It is worth 
emphasizing that the testing set is completely independent and do 
not participate in the stratified sampling process. Table 2 provides 
detailed information on the data distribution of each class in the 
three datasets.

3.2. Experiments setting and evaluation 
metrics

We build our model using PyTorch 1.11 and train it on a RTX 
3090 GPU. It is worth emphasizing that we  do not employ any 
preprocessing techniques, data augmentation or class balancing 
methods for Sleep-EDF-20 and Sleep-EDF-78 datasets. For the SHHS 
dataset, we apply a weighted cross-entropy loss to mitigate the serious 
class imbalance, with a weight matrix of [1, 2, 1, 1, 1]. We apply the 
Adam optimizer with a fixed learning rate and employ L2 
regularization to alleviate overfitting in all experiments. The multi-
class cross-entropy loss is adopted for the other two datasets. 
We implement early stopping if the validation loss does decrease for 
10 consecutive epochs and save the model with the best validation set 
performance for testing. The detailed hyperparameter configurations 
are described in Table 3.
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Four metrics are adopted to evaluate the performance of sleep 
staging models, namely, accuracy (ACC), macro-averaged F1-score 
(MF1), Cohen Kappa (κ) and per-class F1 score (F1). Given True 
Positives (TP), False Positives (FP), True Negatives (TN), and False 
Negatives (FN), the overall accuracy of ACC, F1, κ are defined 
as follows:

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +

×100
 

(12)

 
F Precision Recall

Precision Recall
1 2= ×

×
+  

(13)

 
κ =

−
−
p p

p
o e

e1  
(14)

Where Recall TP
TP FN

=
+

, Precision TP
TP FP

=
+

, the average 

of F1 corresponds to MF1, κ  indicates the agreement between the 
human expert and model predict.

4. Results

We extensively evaluate our model on three datasets and 
compare it with traditional deep learning models and similar 
works in the field. The specific experimental results are presented 
in Table 4.

Micro SleepNet achieves high overall sleep staging accuracies and 
Cohen Kappa agreements, as presented in Figure  4. However, 
we observe a relatively low performance of the model in identifying 

TABLE 3 Detailed hyperparameters for model training.

Hyperparameters Value Hyperparameters Value

Batch size 200 L2 regularization 10−3

Learning rate 10−3 Early stopping 10 (valid loss)

β1 and β2 0.9, 0.999 Train epoch 100

TABLE 4 Comparison among Micro SleepNet and baseline models.

Methods Dataset Parameters
Overall metrics Per-class F1-score (F1)

ACC MF1 κ W N1 N2 N3 REM

Our method Sleep-EDF-20 ~48.2 K 82.8 75.3 0.76 86.8 35.3 87.7 89.1 77.7

DeepSleepNet Sleep-EDF-20 ~25 M 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4

Multitask CNN (one to one) Sleep-EDF-20 – 79.8 72.0 0.72 – – – – –

BSN 19 (MIT) Sleep-EDF-20 – 83.5 – – 89.0 44.0 85.0 86.0 77.0

IITNet (one to one) Sleep-EDF-20 – 80.6 72.1 0.73 84.7 29.8 86.3 87.1 72.8

Our method Sleep-EDF-78 ~48.2 K 79.5 71.8 0.71 90.8 35.1 83.7 79.8 69.4

Sleep transformer Sleep-EDF-78 ~3.7 M 81.4 74.3 0.74 91.7 40.4 84.3 77.9 77.2

CM transformer (one to one) Sleep-EDF-78 ~320 K 78.3 – 0.70 91.4 37.7 81.6 75.3 69.3

CNN transformer Sleep-EDF-78 ~300 K 77.5 – – 90.0 32.0 82.0 75.0 69.0

Our method SHHS ~48.2 K 83.3 73.1 0.77 85.5 26.6 86.0 87.5 79.7

FIGURE 4

Left: Confusion matrix evaluated on the Sleep EDF-20 dataset; Middle: Confusion matrix evaluated on the Sleep EDF-78 dataset; Right: Confusion 
matrix evaluated on the SHHS dataset.
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FIGURE 5

Top: One full-night hypnograms of SC4001E0 subject. The solid blue line and red dashed line denote the hypnograms depicted by a physician and the 
proposed model, respectively; Bottom: the posterior probability distribution over different sleep stages.

the N1 sleep stage. This challenge may be attributed to the unclear 
waveform features of the N1 stage and the limited proportion of N1 
data in the dataset could have also affected learning of the model. 
Moreover, the low inter-rater agreement among physicians in 
manually staging it, reported to be only around 63% (Rosenberg and 
Van Hout, 2013).

Figure 5 illustrates the sleep staging results of Micro SleepNet for 
the entire night of SC4001E0 data. While the model accurately 
classifies most of the sleep stages, it exhibits a tendency to make errors 
during sleep stage transitions, particularly in confusing N1 with REM 
sleep stage. This is a common issue in deep learning-based sleep 
staging algorithms, as EEG signals during the transition period exhibit 
features of multiple stages, making it challenging for the model to 
accurately classify them. Specifically, the REM sleep stage typically 
transitions to the N1 stage, the EEG signals located in the transition 
stage have the typical waves of several different periods at the same 
time, therefore the model is very prone to misclassification. As shown 
in the posterior probability distribution of each sleep stage in Figure 5, 
the posterior probability of the corresponding category of sleep 
periods in the transition stage shows a very high uncertainty. It is 
worth noting that even physicians encounter difficulty in accurately 
staging during sleep transition periods (Rosenberg and Van 
Hout, 2013).

4.1. Comparison with baselines

DeepSleepNet utilizes time-domain and frequency-domain 
encoding to extract raw EEG features and performs sequence 
modeling using BiLSTM (Supratak et  al., 2017). In contrast, 
Micro SleepNet achieves higher overall accuracy with only 1/500 
of the parameters of DeepSleepNet. In addition, the disadvantage 
of introducing the BiLSTM structure is that it is difficult to 
optimize during the training process and prone to gradient 
disappearance and gradient explosion. However, the F1 values of 
Micro SleepNet in the N1 and REM stages differs significantly 
from them because DeepSleepNet is modeled with sequences of 

length 20 and is first pre-trained with a balanced oversampled 
dataset. It captures temporal information during sleep stage 
transitions. Compared to Multitask CNN (Phan et al., 2019a), 
which also employs a CNN and one-to-one structure, Micro 
SleepNet demonstrates significantly better overall performance. 
One of the reasons is that Multitask CNN performs time-
frequency feature extraction by performing a short-time Fourier 
transform on the original EEG signals, however, this may lose 
some useful information. Furthermore, compared to IITNet 
(one-to-one), which uses Resnet50 for feature encoding and two 
layers of BiLSTM for sequence modeling (Seo et al., 2020), Micro 
SleepNet outperforms IITNet in all metrics, indicating that the 
one-to-one LSTM structure does not provide a performance 
advantage and further increases parameters. BSN 19 (MIT) is the 
first real-time sleep staging model deployed on smartphones, 
using temporal convolutional neural networks for real-time 
inference (Koushik et al., 2019). Although the overall accuracy of 
Micro SleepNet is slightly lower than that of BSN 19 (MIT), yet 
Micro SleepNet is more lightweight and can be deployed not only 
on smartphones, but also directly into wearable EEG acquisition 
devices, making the sleep modulation system more integrated, 
eliminating the data transmission process and providing adequate 
protection of user physiological data privacy. Sleep Transformer 
extracts time-frequency graphs of raw EEG signals and performs 
sequence modeling using two layers of Transformer Encoder 
(Phan et al., 2022b). Consequently, Micro SleepNet still exhibits 
some performance gaps compared to it. However, the high 
parameter counts of 3.7 M and the long input sequences hinder 
deployment and real-time inference on mobile devices. Compared 
to two other relatively lightweight one-to-one CNN Transformer 
models (Pradeepkumar et al., 2022; Yao and Liu, 2022), Micro 
SleepNet achieves better staging performance with an order of 
magnitude fewer parameters. This result indicates that 
introducing Transformer structures does not significantly 
improve CNN model performance. Simple CNN structures, such 
as Micro SleepNet, can still achieve competitive results in 
one-to-one sleep staging tasks.
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4.2. Ablation experiments

In order to evaluate the contribution of each module in our 
proposed model, we  conduct ablation experiments on the 
SleepEDF-20 dataset. The data partition and training hyperparameters 
are the same as described in the previous section.

The ablation experiments are divided into five groups:

 1. Gconv: only including the group convolution module;
 2. Gconv + shuffle: including the group convolution module and 

channel shuffle;
 3. Gconv + shuffle + ECSA: including the group convolution 

module, channel shuffle, and ECSA;
 4. GSE + normal conv: using normal convolution instead of the 

dilated convolution module in Micro SleepNet;
 5. Micro SleepNet: including all modules, Micro SleepNet.

Based on the results of the ablation experiments depicted in 
Figure 6, we discover that multiple layers of group convolution limit 
the representation capacity of a pure group convolution network due 
to inadequate information exchange between groups. However, 
incorporating the channel shuffle technique improves the information 
flow of group convolution and slightly enhances representation 
capacity of the model. Furthermore, the addition of the ECSA module 
on top of group convolution and channel shuffle further boosts the 
accuracy of the model by 0.5%. It is attributed to introduction of dual 
attention for channel and spatial dimensions by the ECSA module, 
resulting in adaptive feature recalibration of the feature maps 
generated by group convolution. The EEG feature waves that 
contribute more to the classification are assigned higher weights. It is 
worth noting that after adding the ECSA module, the number of 
parameters of the model only increases by 93, and the FLOPs only 
increases by 30.7w, indicating the efficiency of the ECSA module in 
improving model performance. Moreover, the control experiment of 
feature fusion with dilated convolution and normal convolution 
modules reveals that dilated convolution significantly expands the 

receptive field, enabling sufficient fusion of high-dimensional features 
extracted from the EEG signals and significantly improving 
classification ability of the model. In conclusion, the above ablation 
experiments illustrate that each module of our model contributes.

4.3. Architecture analysis

To verify whether the proposed model architecture achieves an 
optimal balance between performance and complexity, a 
comprehensive architectural hyperparametric analysis is performed.

From Table 5, it is shown that replacing the standard convolution 
with group convolution and adding GAP operations significantly 
reduces the computational cost and effectively avoids overfitting since 
GAP operations fuse the average feature values of each channel. 
Second, by adjusting the maximum pooling stride and the number of 
blocks, we find that the optimal balance between computational cost 
and performance is achieved when the maximum pooling stride is 3 
and the number of Block layers is 5. Finally, the adjustment of the 
Conv kernel also indicates that a convolution kernel of size 1*3 is the 
most efficient. It is also consistent with the previous analysis in the 
paper (Simonyan and Zisserman, 2014).

In addition, we also observe the effect of model scale on performance. 
A hyperparameter α is set as the factors for the convolution channel of 
each layer of the model, and we set α for the proposed model to 1. 
We analyze the performance and computational resources for six sets of 
model scale with α in the range of 0.5–3. As shown in Figure 7, the 
optimal balance is achieved for the model scale when α is 1.

4.4. Analysis of the CAM visualization

In Figure  8, we  present heatmaps that visualize the correctly 
predicted classes for different sleep stages, along with the posterior 
probability of the predictions. It is evident that the model focuses on 
significantly different feature waveforms of EEG signals for different 

FIGURE 6

The results of ablation experiments.
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sleep stages. A detailed analysis is conducted according to AASM 
standards as follows.

When the EEG signal exhibits alpha rhythm for more than 
half of the time, sleep experts classify it as the wake stage. As 
shown in Figure 8, the model provides the same staging category 
as sleep experts. Furthermore, the majority of the alpha rhythm 
areas are highlighted, indicating that the model mainly identifies 
EEG signals as the wake stage based on alpha rhythm, which is 
highly consistent with the human expert. The characteristic 
waves of the N1 stage are theta waves (4-7 Hz) and vertex sharp 
waves. The model also captures theta waves and vertex sharp 
waves. In the N2 stage, the EEG signal usually contains one or 
more K-complexes and sleep spindles. It can be observed that the 
model emphasizes both K-complexes and sleep spindles. If more 
than 20% of the EEG signal shows slow-wave activity, it can 
be classified as the N3 stage. The model highlights the slow-wave 
activity area when making N3 stage predictions. The typical 
waveform of REM stage EEG is the sawtooth wave, which the 
model accurately identifies.

The analysis indicates that the model uses typical feature waves 
of different sleep stages to conduct sleep staging, which highly 
corresponds to the interpret process by human expert. Therefore, the 
model has learned the AASM staging criteria based on high-quality 
data annotated by experts and has a considerable degree of 
interpretability, providing strong evidence for the rationality of the 
model structure design. Furthermore, the combination of the model 
and CAM technology is expected to assist the sleep staging process 
by guiding doctors to quickly focus on sleep feature waves.

5. Discussion

Due to the lack of precise real-time sleep tracking, previous sleep 
modulation has been open-loop, unable to adjust the stimulation 
methods and parameters based on the real-time sleep stage (Marshall 
et al., 2004; Bellesi et al., 2014; Perl et al., 2016). This open-loop sleep 
modulation method has significant limitations. To achieve complete 
closed-loop sleep modulation, it is necessary to develop a real-time 

FIGURE 7

The effect of model scale on performance. The horizontal axis represents the factors of the convolution channels in each layer of the model, and the 
vertical axis indicates the accuracy and the parameters/FLOPs, respectively.

TABLE 5 Detailed experimental groups and results of architecture analysis.

Methods Parameters FLOPs ACC

Block*5(standard Conv) + Dconv*3 + FC ~192.2 K ~505.92 M 81.9

Block*5(MaxPool = 2) + Dconv*3 + GAP ~48.2 K ~132.17 M 81.8

Block*6(MaxPool = 2) + Dconv*3 + GAP ~49.3 K ~92.00 M 82.3

Block*6(MaxPool = 3) + Dconv*3 + GAP ~49.3 K ~38.09 M 81.6

Micro SleepNet ~48.2 K ~48.95 M 82.8

Block*4(MaxPool = 3) + Dconv*3 + GAP ~47.2 K ~81.08 M 81.9

Block*5(MaxPool = 3) + Dconv*3 + FC ~71.3 K ~49.18 M 81.6

Block*5 + Dconv*3 + GAP (kernel = 5) ~78.8 K ~68.42 M 81.3

Block*5 + Dconv*3 + GAP (kernel = 7) ~109.4 K ~87.89 M 81.9
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sleep staging algorithm that satisfies the deployment conditions of 
mobile devices.

In this paper, we  propose a lightweight deep learning model 
named Micro SleepNet, specifically designed for real-time sleep 
staging on mobile devices. Unlike most traditional deep learning 
sleep staging models, Micro SleepNet does not rely on contextual 
temporal signals and only uses the current input EEG signal for sleep 
staging. It uses one-dimensional group convolution and extremely 
lightweight ECSA module for efficient feature extraction, efficient 
feature fusion using dilated convolution, and greatly reduces 
parameters and computational complexity of the model. Thanks to 
the efficient model design, it achieves competitive performance with 
significantly fewer parameters than traditional deep learning models, 
with an overall accuracy of 83.3% and the Cohen Kappa is 0.77 on the 
SHHS dataset. Additionally, we introduce CAM for the first time to 
the EEG sleep staging field, and the visualization results show that the 
model performs sleep staging based on different EEG feature 
waveforms during different periods, highly consistent with the staging 
process of the human expert, providing a solid interpretability 
foundation for future clinical applications. In addition, the 
combination of the model and CAM is expected to assist junior 

physicians in artificial sleep staging. Finally, a series of architectural 
analyses and ablation experiments show that the architecture of the 
model achieves an optimal balance between performance and 
computational resources, and each component contributes to the 
performance improvement, supporting the rationality of the model 
design. We  also compile a plot of accuracy versus number of 
parameters for partial models on the Sleep-EDF-78 dataset (Sandler 
et al., 2018; Mousavi et al., 2019; Mehta and Rastegari, 2021). As 
shown in Figure  9, our model is optimal in the non-time-series 
model. It is owing to efficient model architecture design.

Furthermore, we  deploy the model on the Android platform 
based on NCNN framework of Tencent. The RAM and ROM of the 
Android platform are 8 GB and 256 GB, respectively. The results show 
that the model file occupies approximately 100 KB of memory, and the 
inference time for each data based on CPU on the Qualcomm 
Snapdragon 865 processor is only 2.8 ms, with the inference results 
identical to those on the PC side. This verifies the feasibility of edge 
computing implementation on mobile devices, and the model can 
perform real-time sleep staging tasks for wearable health monitoring 
scenarios, supporting the implementation of high-precision real-time 
assisted sleep and sleep closed-loop modulation systems. In total, our 

FIGURE 8

Results of CAM visualization for five different sleep stages. The labels of 0, 1, 2, 3, 4 represent W, N1, N2, N3, REM, respectively.
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work provides a new way of thoughts for mobile sleep staging 
model design.

Although the proposed method achieves competitive performance 
on three publicly available healthy subject datasets, the behavior of the 
model on other larger and more diversity datasets is still uncertain, 
thus the robustness on different datasets needs to be further validated. 
Considering the actual usage scenario of the model, in the future, a 
large-scale sleep dataset of people with mild sleep disorders should 
be collected to evaluate the performance of model more in line with 
the actual population. In addition, we do not choose the model design 
idea of temporal modeling because even though it has been widely 
demonstrated in the paper that doing so significantly improves model 
performance (Olesen et al., 2020, 2023; Phan et al., 2023), on some 
MCUs with limited storage resources, storing a large number of 
historical signals is not feasible and would additionally increase the 
computational burden. It is part of the limitation of our study that this 
model is not specifically designed for deployment on smartphones. 
However, for models designed to be  deployed on smartphones, it 
would be preferable to do so, as the performance of sleep staging is 
significantly improved by integrating the temporal information of the 
historical signal with that of the current moment, and the magnitude 
of the improvement will depend on the length of the integrated 
historical temporal signal. Also doing so subtly ensures real-time 
efficiency. U-time may be a potentially suitable model architecture 
(Perslev et  al., 2019). Moreover, 5-classification experiments are 
performed in this study, and yet in some sleep modulation scenarios 
four or even three classification can satisfy the requirements (Nguyen 
et al., 2022; Koyanagi et al., 2023), and different modulation methods 
focus on the real-time detection of different sleep stages (Ngo et al., 
2013; Lu, 2020; Nguyen et al., 2022), hence further customization of 
the algorithm for specific modulation methods will be the direction of 
future work. In addition, this study only verifies the model deployment 
on the Android smartphone. In the future, the model should be further 

deployed on wearable EEG acquisition devices to verify whether the 
performance indicators for inference at the acquisition end meet the 
requirements of actual usage scenarios. Finally, due to the significant 
differences in the distribution of actual EEG signals collected on mobile 
devices compared to publicly available healthy PSG data (Heremans 
et al., 2022) and the generally inconsistent acquisition channels with 
PSG acquisition channels, it is difficult for professional physicians to 
interpret wearable EEG data. We consider using unsupervised domain 
adaptation methods to overcome domain mismatch when collecting 
unlabeled actual EEG data on mobile devices.
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FIGURE 9

Plot of performance versus number of parameters for partial sleep 
staging models as well as lightweight models in computer vision on 
the Sleep-EDF-78 dataset. The green dots represent the time-series 
model, the dark blue dots represent the non-time-series model, and 
the pink dots represent the proposed model. The size of the dots is a 
linear relationship with the number of parameters of the model.
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