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Introduction: Sensory inference and top-down predictive processing, reflected in

human neural activity, play a critical role in higher-order cognitive processes, such

as language comprehension. However, the neurobiological bases of predictive

processing in higher-order cognitive processes are not well-understood.

Methods: This study used electroencephalography (EEG) to track participants’

cortical dynamics in response to Austrian Sign Language and reversed sign

language videos, measuring neural coherence to optical flow in the visual signal.

We then used machine learning to assess entropy-based relevance of specific

frequencies and regions of interest to brain state classification accuracy.

Results: EEG features highly relevant for classification were distributed across

language processing-related regions in Deaf signers (frontal cortex and left

hemisphere), while in non-signers such features were concentrated in visual and

spatial processing regions.

Discussion: The results highlight functional significance of predictive processing

time windows for sign language comprehension and biological motion

processing, and the role of long-term experience (learning) in minimizing

prediction error.

KEYWORDS
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1. Introduction

The understanding of the human brain as a source of cognition has historically focused

on the brain as generating a response to external stimuli. The rapidly-developing field of

neuroscience, however, has contributed to a paradigm shift, whereby the traditional concept

of the brain as a passive, bottom-up receiver of external information has been replaced by the

notion of the brain as an active predictor of the environment based on perceptual inference

(Rao and Ballard, 1999; Friston, 2008; Auksztulewicz and Friston, 2015).

In the last decade, the hierarchical generative framework for predictive processing1

has been applied to a variety of brain functions, including language production and

1 Predictive processing of a language-related signal is a neural encoding strategy for linguistic input,

which partially pre-generates the expected features of an input signal (thus, convergent input does not

need to be encoded/is ignored), and highlights the unexpected features (cf. Bornkessel-Schlesewsky et al.,

2022). This is an automatic (i.e., not consciously controlled) process (cf. Friston, 2008).
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comprehension (Malaia et al., 2021b; Radošević et al., 2022).

However, the neurobiological fundamentals of the bi-directional

interface between sensory inference and top-down predictive

processing, based on prior learning, remain poorly understood.

In this context, neural responses to stimuli can be understood

differently depending on the population’s experience. This provides

an opportunity to refine the understanding of the mechanistic

implementation of predictive processing and to identify functional

neural dynamics responsible for the computations that support

predictive processing. Neuroimaging research has previously

demonstrated that neural organization in humans is affected by

the structure of the native language (Malaia et al., 2012; Wei et al.,

2023). The question that motivated our study was to understand

how differing language modality experience may affect predictive

processing functions of the brain in the visual domain.

All humans, regardless of sign language experience, are

sensitive to visual biological motion stimuli (Bradley et al.,

2022; Shen et al., 2023). Human neural response to general

(non-linguistic) biological motion is highly robust—sensitivity to

it develops regardless of sign language experience (Baldassano

et al., 2018), and even in the absence of early visual input

(Bottari et al., 2015). Recent MEG work has identified selective

cortical tracking of biological motion information, with neural

oscillations of observers entraining to the hierarchical kinematic

structures of walking sequences at lower-frequency rhythmic

structures (Shen et al., 2023). Notably, neural activity of

observers in the Shen et al. (2023) study was characterized

by enhanced responses to upright stimuli, as compared with

neural response to inverted stimuli. Further, the amplitude of

the neural coherence response was highest around the temporo-

parietal regions of the right hemisphere, known to engage in

spatial processing. Thus, all humans possess a general cortical

mechanism that encodes low-frequency periodic features of

body movements.

However, there is a population that has a unique long-

term experience with human motion: users of sign languages.

Prior fMRI research into American Sign Language (ASL)

processing has indicated that signers rely on motion—i.e.,

dynamic changes to articulator shape—to understand a message

in sign language (Malaia et al., 2012, 2021a; Malaia and

Wilbur, 2019; Radošević et al., 2022; Brozdowski and Emmorey,

2023). Additionally, neuroimaging studies in ASL indicated

that signers process sign language-related motion differently

from non-signers in terms of the topography (distribution

among brain regions) of brain activations. While non-signers

relied on occipital regions and the temporoparietal junction

for motion processing (Malaia et al., 2012), signers processed

the same physical differences in the visual signal as containing

a meaningful message; engaging anterior and parietal regions

of the brain. Notably, the activation processes in signers

were highly efficient, indicating minimal cortical engagement

in terms of blood oxygen requirements (Malaia et al., 2012,

2014).

These findings complement a body of literature which has

established that sign language motion signals as being richer in

information content, than non-communicative motion (Malaia

et al., 2016, 2022; Borneman et al., 2018). Specifically, sign language

communication has higher Shannon entropy,2 as compared to

non-linguistic human motion (Gurbuz et al., 2020; Malaia et al.,

2022). By virtue of containing an information-dense signal, sign

language stimuli provide a unique test-bed for the identification

of neural bases of predictive processing. The neural dynamics

of sign language processing should proceed as biological motion

processing in non-signers, and as language processing in signers,

thereby revealing neural dynamics specific to each type of

computation.

In order to assess the relationship between the neural response

to a sign language signal and its time-reversed version in both

Deaf3 signers and hearing non-signers, we recorded EEG data

from participants while they were viewing stimuli videos, which

consisted of short sentences in Austrian Sign Language produced

by a Deaf fluent signer. The control condition consisted of the same

videos in time-reversed format, which preserved spatiotemporal

variability of the signal in terms of low-level visual and dynamic

features, while rendering the stimulus incomprehensible for sign

language users (equivalent to a time-reversed speech signal),

and also making it observably atypical in terms of biological

motion recognition for non-signing participants. We used cortical

coherence as a measure of neural entrainment to visual changes

in the videos. Building on the understanding of signers’ sensitivity

to entropy of the dynamic, information-bearing visual signal

(Ford et al., 2021; Malaia et al., 2021a), we tracked the cortical

dynamics of comprehension in the visual modality using optical

flow measures of the stimuli (Borneman et al., 2018). Elicitation of

overt behavioral judgments of stimuli from participants allowed us

to have a behavioral control for the higher cognitive task at hand.

Due to the presence of a large number of parameters (62

frequency bins each for amplitude and timing, four regions

of interest over the scalp, two populations, and two stimuli

conditions), and inherently non-normal distribution of EEG

frequency data (Kiebel et al., 2005), we used machine learning,

which served as pattern recognition algorithms, in order to assess

the salience of specific parameters for brain state classification

accuracy. These parameters in-turn, identified the parameters

on which population and task-related neural responses differed.

Machine learning approaches have been successfully used for brain

state classification tasks based on spectral EEG parameters elicited

during visual stimulation (Vanegas et al., 2018; Ford et al., 2021).

We used a supervised learning paradigm with timing, topography,

and amplitude of coherence between EEG and optical flow in visual

stimuli as input parameters. This allowed us to make defensible

predictions for predictive processing manifestations in higher

cognition (language comprehension) task vs. biological motion

2 Shannon (1948) entropy is a quantitative measure of the amount of

information contained in a communicative signal, which is related to its

predictability. For example, in a sequence of numbers that consists only of

1 and 0 s, the likelihood of each new number is (in the absence of other

patterns) 50%. In the visual domain, the metric can be used to quantify spatial

and temporal predictability of the signal.

3 Per convention Deaf with upper-case D refers to deaf or hard of hearing

humans who define themselves as members of a sign language community.

In contrast, deaf refers to audiological status.
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detection task, while controlling for multiple hypotheses testing.

Specifically, based on existing literature (cf. Malaia et al., 2012;

Borneman et al., 2018; Blumenthal-Drame and Malaia, 2019; Shen

et al., 2023), the following competing hypotheses regarding the

neural bases of predictive processing in the two populations can be

proposed:

Hypothesis 1: Deaf and hearing signers will exhibit similar

neural entrainment to the hierarchical (multi-frequency)

kinematic structures of sign language/biological motion

sequences. Similarity in feature salience across multiple

frequency ranges would indicate multi-level spatiotemporal

parsing of visual input in either population.

Hypothesis 2: Alternatively, increased salience of features in

low frequencies differing between populations would suggest

learning-based predictive processing patterns correlated with

the perceptual sensitivity to visual stimuli as communicative

vs. biological motion signals.

Hypothesis 3: Spatio-temporal distribution of salient

parameters across regions of interest is likely to differ

between Deaf signers and hearing non-signers, consistent

with the neural bases of language (distributed fronto-

temporal network4) vs. biological processing (right-lateralized

temporo-parietal network) observed in previous studies,

indicative of the underlying neural mechanisms.

The hypotheses are partially in conflict (e.g., both Hypotheses 1

and 2 cannot be correct at the same time). This study, thus, aims

to bridge the gap in the current literature regarding frequency-

specific temporal distribution of neural activity across the gross

regions of the scalp during processing of visual information.

Together, a combination of temporally-sensitive EEG data and

machine learning approaches for investigating cognitive processing

dynamics can provide valuable insights into the functional

significance of spatiotemporal parameters of brain activity in

populations that differ drastically in their visual experience: Deaf

signers and hearing non-signers.

2. Materials and methods

2.1. Participants

Twenty-four Deaf signers and twenty hearing participants (11

Deaf and 16 hearing females) took part in the study. The ages of

Deaf participants varied between 28 and 68 years (Deaf M = 42,

SD = 12); hearing participants were between 16 and 31 years old

(M = 23, SD = 4.6). Deaf signers were proficient, everyday users of

Austrian Sign Language, according to self-reports provided during

the intake interview. The non-signer control group consisted of

sign-naive participants who did not know any sign language. All

participants reported corrected-to-normal or normal vision, and

none had history of neurological disorders. All hearing participants

4 While the fronto-temporal language network’s association with language

is modality-independent, the use of signed stimuli which are not

comprehensible for non-signers means this population is not expected to

engage this network in the present study.

were right-handed (Oldfield, 1971). Five of the Deaf participants

were left-handed. All procedures in the study were undertaken with

the understanding and written consent of each participant. The

Institutional Review Board of the University of Salzburg approved

the design of the study as conforming to the Declaration of Helsinki

(World Medical Association, 2013).

2.2. Stimuli and procedures

Each participant was shown a pseudo-randomized set of videos

consisting of two primary conditions and filler videos. Condition

1 included 40 videos of short Austrian Sign Language (ÖGS)

sentences (each of which included subject, object, and verb signs),

produced by a Deaf signer. Condition 2 was comprised of the

same videos as Condition 1, but played in reverse. Other videos of

signed sentences (N = 200, all containing full signed sentences with

varying linguistic structures) were randomly presented among the

stimuli for the two conditions of interest. Pseudo-randomization

procedure was used to ensure that each condition of interest did

not occur more than three times in a row. Four different pseudo-

random orders of stimuli were balanced among participants.

Stimuli videos, 1280 × 720 pixels, were presented in the

middle of the screen 35.3 × 20 cm in size. The experiment

started with task instructions in participant’s native languages, and

a presentation of a training block of videos. Hearing L1 ÖGS

signers were present during the experimental session, and each

participant was encouraged to ask clarifying questions regarding

the task requirements. Every trial beganwith a 2-s long presentation

of a fixation cross, followed by 200 ms of empty black screen, and a

stimulus video (the videos varied in length between 5 and 7 s). After

the sentence video was presented, the participant had 3 s to provide

the rating, using a keyboard button-press. Deaf participants’ task

was to rate, on a scale from 1 to 7, whether the stimulus was

a good sign language sentence or not (1 stood for “that is not

sign language”; 7 stood for “that is good sign language”). Hearing

participants rated the video as to whether the video was presented

in direct or reverse mode; then, they rated the certainty of their

decision on a Likert scale from 1 to 7 (1: very unsure; 4: 50% sure;

7: very sure). Participants could take breaks between presentation

blocks (each consisted of 20 videos), but were requested to avoid

excessive motion during the presentation of the video material.

2.3. EEG acquisition

Data collection was carried out on a 26-channel active electrode

EEG system (Brain Products). The electrodes were placed on

the participant’s scalp according to the standards of the 10/20

system (Fz, Cz, Pz, Oz, F3/4, F7/8, FC1/2, FC5/6, T7/8, C3/4,

CP1/2, CP5/6, P3/7, P4/8, O1/2), and secured with an elastic

cap (Easy Cap, Herrsching-Breitbrunn, Germany). The system

included two mastoid channels, two Horizontal eye movements

(HEOG) electrodes at the lateral ocular muscles, and two vertical

eye movements (VEOG) electrodes fixed above and below the

left eye. All electrode impedances were kept below 5 k�. AFz

channel functioned as the ground during the recording, as all
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FIGURE 1

(A) Deaf participants’ EEG response to sign language videos (red), reversed videos (blue), and the di�erence wave indicating the timeline of response

di�erence (black). (B) Hearing participants’ EEG response to sign language videos (red), reversed videos (blue), and the di�erence wave (black).

other electrodes were referenced to the left mastoid. EEG data

was acquired at a rate of 500 Hz. Video stimuli onsets, with

individual codes for each video, were time-stamped within the EEG

recordings. Offline, EEG data were re-referenced to the average of

the left and right mastoid channels, filtered with a bandpass filter

(Butterworth Zero Phase Filters; high pass: 0.1 Hz, 48 dB/Oct; low

pass: 30Hz, 48 dB/Oct). The signal was corrected for ocular artifacts

by the Gratton and Coles method, and automatically reviewed for

other artifacts (such as minimal/maximal amplitude at −75/+75

µV). EEG data were segmented from onsets of video stimuli to 5 s

following the onsets. The full duration of video stimuli was between

5 and 7 s; the 5 s cutoff ensured that only neural activity produced

during an ongoing video stimuli was analyzed (see Figure 1 for 5 s

timescale EEG in both populations).

2.4. Optical flow and video-EEG coherence
analysis

Optical flow (OF) calculation, used widely in video processing,

is the distribution of apparent velocities of objects in an image.

To calculate optical flow, a velocity vector (in pixels per frame)

is calculated between two adjacent video frames for each pixel,

based on the speed of displacement of the image feature identified

in that pixel. MathWorks’ MATLAB (The MathWorks Inc., 2022)

computer vision toolbox optical flow function was used to process

stimuli videos by comparing each frame with the prior frame. The

output was a matrix of size equal to the input video frame, where

each element identified the magnitude of optical flow velocity

(pixels per frame) between the two frames for each corresponding

pixel in the video. An optical flow histogram (a velocity spectrum)

was then created per video frame. The amplitudes across all velocity

bins for each frame were summed to calculate global magnitude

of optical flow per frame, resulting in optical flow timeseries. For

each optical flow velocity timeseries (generated for each stimulus

video), coherence between the stimulus video and the neural

response in each electrode for each participant was calculated. To

compute coherence at a given frequency, both EEG and optical flow

timeseries were first filtered at that frequency (from 0.2 to 12.4 Hz,

as limited by the duration and Nyquist frequency of the video data)

using a second-order IIR bandpass filter. The timeseries correlation

was then calculated using canonical component analysis (CCA)

with MATLAB NoiseTools toolbox (de Cheveigné et al., 2018).

The peak amplitude of the correlation and the timepoint of that

correlation were extracted for each frequency, for each electrode,

participant, and video.

2.5. Data setup and machine learning
pipelines

To construct the data matrix, peak cross-correlation time

and amplitude values were used for each of the 62 frequency

ranges (binned from 0.2 to 12.4 Hz in 0.2 Hz bins). Sensor data

were averaged over regions of the scalp (Anterior, Posterior, Left,

Right) for each condition and participant. Anterior region included

electrodes F3, F4, Fz, FC1, and FC2; posterior region included

electrodes P7, P8, P3, P4, Pz; left hemisphere region included

electrodes C3, FC5, T7, CP1, CP5; and right hemisphere region

included electrode channels C4, FC6, T8, CP2, CP6. This procedure

produced a matrix with 496 features (4 regions× 62 frequency bins

for peak correlation parameters, and 4 regions× 62 bins for timing
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parameters) and 88 instances (24 Deaf + 20 control participants’

brain responses to two conditions: sign language and reversed

video). As differences in feature/instance data distribution, which

are especially prominent in human neural data, can negatively

impact the performance of machine learning algorithms by over-

weighting input parameters, we scaled the data such that each of

the parameters would have a mean value of zero and a standard

deviation of one (Starovoitov and Golub, 2021).

The processing proceeded in two steps. First, we evaluated the

predictive value (i.e., saliency) of input features for each group

of participants, and for the stimuli types (i.e., sign language and

time-reversed videos). As input features consisted of amplitude and

timing of coherence data separated by scalp topography (anterior,

posterior, left, right), we aimed to quantify the salience of specific

frequency ranges and brain regions for the motion comprehension

task in signers and non-signers. We then applied the 10-fold cross-

validation approach with the test harness pipeline configuration

to prevent data leakage between training and testing data in each

cross-validation harness to understand the differences in feature

salience for brain state classification across participant groups.

2.5.1. Classification algorithms
Six classifier algorithms were used to evaluate the performance:

two linear algorithms [Linear Regression (LR) and Linear

Discriminant Analysis (LDA)], and four non-linear algorithms

[k-nearest neighbors (kNN), classification and regression trees

(CART), Naïve Bayes (NB), and support vector machines (SVM)]

from Python sklearn library (Pedregosa et al., 2011). Machine

learning algorithms, in general, are data-greedy methods that

create complex representation models based on raw data. As the

algorithms vary in terms of weighting of different parameters of

the raw data, it is difficult to predict which types of algorithms

will perform well in each particular case, especially on human

data, which is highly variable within participant groups. The six

classifier algorithms used in the analysis included algorithms that

differed in baseline assumptions about the data. For example,

linear algorithms [Linear Regression (LR) and Linear Discriminant

Analysis (LDA)] assume Gaussian distribution of the data, but

differ in terms of performance onwell-separated classes (i.e., LR can

be less stable than LDA in such cases). Classification and regression

trees (CART) are simple pruning algorithms that perform much

better than linear algorithms in the presence of outliers. The Naïve

Bayes (NB) algorithm assumes conditionally independent (i.e.,

non-interacting) parameters; although this assumption is unlikely

to hold on human data, the algorithm performs well on data sets

where parameter dependence is noisy. The K-nearest neighbors

(kNN) algorithm performs well where training and testing data

sets are very similar (i.e., individual participants’ parameters are

alike across the population); poor performance on it indicates high

variability between participants in the group. The Support vector

machines (SVM) algorithm is the most flexible in the sense that it

makes no assumptions, but rather learns problem representation

from the data; however, it is also the most data-greedy approach.

Application of multiple algorithms to the data set, as well as

sub-sets (i.e., hearing and Deaf groups separately) can provide

valuable insights regarding data distribution, parameter noisiness,

and between-participant variability.

2.5.2. Ensemble classifiers
Due to the noisiness of the signal and consequent potential

for model overfitting (e.g., by CART and SVM algorithms), we

used four ensemble classifiers to reduce the likelihood of such

overfitting. The two bootstrap aggregation ensembles, Random

Forest (RF) with 100 estimators, and Extra Trees (ET) with

100 estimators, trained multiple models based on each sample,

outputting prediction as the average across the difference models.

This approach improves sensitivity of decision trees by limiting

the number of features used for optimizing each tree. The two

boosting ensembles, AdaBoost Classifier (AB) with 50 estimators,

and Gradient Boosting Machines (GBM) with 100 estimators,

generated multiple models of the data transformation function,

each of which attempted to fix the mistakes of the previous

models. During classification, the data of 20 percent of each group’s

participants was retained for validation as a hold-out set. We used

10-fold cross-validation with the test harness pipeline configuration

to prevent data leakage between training and testing data in each

cross-validation harness.

3. Results

3.1. Behavioral results

Behavioral data confirmed that Deaf participants’ did

not consider time-reversed videos of sign language sentences

linguistically acceptable (M = 1.72, SD = 0.76, where response

1 denoted stimuli that were not acceptable as Austrian Sign

Language, and 7 denoted clear communication in sign language on

a 7-point Likert scale). Austrian Sign language videos, on the other

hand, were rated as linguistically acceptable by Deaf participants

(M = 5.8, SD = 1.05). Behavioral data from hearing participants

indicated that they were able to identify the direction of the sign

language video (normal vs. reversed) with high accuracy (94%

for direct videos with mean certainty rating of 4.93, and 84% for

reversed videos also with mean certainty rating of 4.93). Thus, the

behavioral data confirmed that Deaf signers correctly identified

signed sentences as linguistically comprehensible and acceptable,

while non-signers were also able to identify the differences between

direct and reversed videos with high accuracy and certainty,

although they were not able to understand the sentences signed.

3.2. Deaf signer data: feature analysis

Information-based Univariate Feature Selection (UFS, see

Solorio-Fernández et al., 2020) was used to identify the relevance of

input parameters for classification. In general, USF uses a measure

of entropy of similarities between features, thus ranking them for

the information-theoretic contribution. Posterior, left, and frontal

posterior regions correlations between EEG and optical flow in

the video at 0.8-1 Hz, and right-hemisphere correlation at 1-1.2

Hz ranked highly, indicating distributed regional contributions
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TABLE 1 Top 4 features, as identified by UFS, from both time and

correlation amplitude data; correlation amplitude is significant, unless

time is noted.

Dataset Region of
interest

Frequency
bin (Hz)

Deaf Posterior 0.8–1.0

Deaf Left 0.8–1.0

Deaf Frontal 0.8–1.0

Deaf Right 1.0–1.2

Hearing Posterior 0.8–1.0

Hearing Frontal 0.8–1.0

Hearing Right 1.0–1.2

Hearing Left 0.8–1.0

Deaf and hearing Posterior 1.0–1.2

Deaf and hearing Frontal 0.8–1.0

Deaf and hearing Left 0.8–1.0

Deaf and hearing Left 1.0–1.2

Deaf and hearing (direct only) Posterior time 7.6–7.8

Deaf and hearing (direct only) Posterior 0.2–0.4

Deaf and hearing (direct only) Frontal time 9.4–9.6

Deaf and hearing (direct only) Posterior 1.8–2.0

to sign language comprehension over a ∼1 s time window (see

Table 1). Left-hemisphere feature salience was ranked higher than

that of the right hemisphere. This appeared to indicate that

linguistic processing (characterized by left-hemisphere activity),

rather than spatial processing (characterized, for visual stimuli, by

right-hemisphere processing) was relevant for signer identification

of natural vs. reversed sign language stimuli.

In classification of Deaf signer data based on both frequency

correlation and timeshift peaks, most algorithms (LR, KNN, CART,

NB, RF, and ET) yielded 100% accuracy (see Figure 2), with

SVM performing the worst at 52%. For time-parameter analysis,

Random Trees algorithm yielded 91.5% accuracy on time data

only; timeshifts for frequency coherence bins between 0.2 and

0.4 Hz (posterior, anterior, and left), as well as left-hemisphere

activity at 0.6–0.8 Hz frequency were ranked of high importance

to classification. Here, the presence of two salient feature bins over

the left hemisphere is of note, as it might indicate multi-scale

processing of sign language (cf. Blumenthal-Drame and Malaia,

2019).

3.3. Hearing non-signers data: feature
analysis

For hearing non-signer data, Univariate Feature Selection

(UFS) indicated that posterior, left, and frontal frequency

correlations at 0.8 and 1 Hz, as well as right frequency correlations

at 1–1.2 Hz were identified as highest-ranked features, highlighting

entropy-based contribution of these parameters to the classification

task. Notably, left hemisphere features (either time or frequency

correlation) did not rank highly for hearing participants. The order

of parameter salience, however, differed from that of Deaf-only

FIGURE 2

Classification accuracy across algorithms based on Deaf dataset.

FIGURE 3

Classification accuracy across algorithms based on hearing

participants’ data regarding the timing and amplitude of correlations

between optical flow and EEG.

data, in that right hemisphere correlation ranked higher than left

hemisphere. In classification of hearing non-signer data based on

both frequency correlation and timeshift peaks, most algorithms

(LR, LDA, KNN, NB, GBM, RF, and ET) yielded 100% accuracy,

where SVM performed the worst at 70% (see Figure 3). For time-

parameter analysis in non-signers, NB, ET, and GBM yielded

92.5% accuracy (see Figure 4). Timeshifts for 0.2–0.4 Hz left,

posterior, and anterior coherence was ranked of high importance

to classification, as well as 0.6–0.8 Hz coherence over the right

hemisphere.

3.4. Combined classification results

Using information-based Univariate Feature Selection (UFS),

we assessed the relevance of input parameters for classification
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FIGURE 4

Classification accuracy across algorithms based on hearing

participants’ data regarding the timing of correlations between

optical flow and EEG.

between the combined Deaf signer and hearing non-signer groups

for both conditions (direct and reversed videos). Information-

based UFS scores the contribution of each feature based on the

entropy of the features using a leave-one-out strategy. Thus, the

importance of a particular feature depends on the increase in the

value of the entropy of the dataset calculated without that particular

feature. In this way, features were ranked from the most relevant to

the least relevant. The largest feature-based difference between the

two groups was driven by the amplitude of 0.8–1Hz anterior and 1–

1.2Hz posterior correlations, as well as left-hemisphere correlations

between 0.8 and 1.2 Hz (encompassing two frequency bins). This,

combined with classification data from each individual population,

indicated that entrainment to the stimuli was very strong in both

populations, but the topography of entrainment differed between

groups.

Using both the frequency correlation and temporal parameters

on the two populations (with four classes; i.e., (1) comprehensible

sign language for Deaf signers, (2) meaningless signing for Deaf

signers, (3) direct video of sign language not comprehensible by

hearing non-signers, and (4) reversed video not comprehensible

to hearing non-signers), the highest average classification accuracy

was obtained by Naive Bayes algorithm (56%, compared to 25%

pure chance—see Figure 5).

We then focused on classifying the populations in one

condition only—when watching direct sign language videos

(comprehensible to signers, but not to non-signers). For both

correlation and timeshift data in the direct-video condition for

signers and non-signers, highest average classification accuracy

(see Figure 6) was obtained by CART (63%). For timeshift data

only, the accuracy of the KNN algorithm appeared the highest at

64% (see Figure 7). Interestingly, the features of relevance for this

classification were anterior bins at 9.2–9.46 Hz frequencies—i.e.,

those within the alpha-rhythm of the human brain (typically falling

between 8 and 12Hz). This appeared to indicate that the differences

FIGURE 5

Classification accuracy across algorithms based on both Deaf and

hearing participants’ data.

FIGURE 6

Classification accuracy across algorithms based on both Deaf and

hearing participants’ data in response to sign language stimuli only.

in comprehension vs. non-comprehension of language manifest in

the relatively different effort involved in executive processing by

signers and non-signers, as noted in the literature previously (cf.

Malaia and Wilbur, 2020).

3.4.1. Review of time-based feature analysis and
classification

In both populations, peak coherence between the stimuli and

neural activity was observed between 100 and 300ms post-stimulus

onset (this was in response to both time-direct and time-reversed

stimuli), which is a generally expected time window for visual

meaning extraction (Greene and Hansen, 2020).
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FIGURE 7

Classification accuracy across algorithms based on both Deaf and

hearing participants’ time parameters in response to sign language

stimuli only.

TABLE 2 Top 4 features, as identified by UFS, from the time data only (by

dataset).

Dataset Region of
interest

Frequency
bin (Hz)

Deaf Left 0.2–0.4

Deaf Right 0.2–0.4

Deaf Frontal 0.2–0.4

Deaf Left 0.6–0.8

Hearing Left 0.2–0.4

Hearing Right 0.6–0.8

Hearing Frontal 0.2–0.4

Hearing Posterior 0.2–0.4

Deaf and hearing Left 0.2–0.4

Deaf and hearing Right 0.2–0.4

Deaf and hearing Frontal 0.2–0.4

Deaf and hearing Posterior 0.2–0.4

Deaf and hearing (direct only) Left 10–10.2

Deaf and hearing (direct only) Frontal 9.4–9.6

Deaf and hearing (direct only) Posterior 2.0–2.2

Deaf and hearing (direct only) Frontal 9.2–9.4

As noted in Table 2, which presents the top 4 features identified

by UFS as salient for classification, both Deaf and hearing

participants’ data, when considered within each population,

indicated low-frequency (i.e., longer temporal window) relevance

for identifying direct vs. reversed videos. However, Deaf signers

appeared to use multi-scale response of left hemisphere, while

hearing participants demonstrated more distributed activity in

terms of time-response. When only neural responses to sign

language were considered in both populations (without the data

in response to reversed videos), the time of frontal responses in

the alpha frequency range (9.2–9.6 Hz), as well as left hemisphere

responses to 10–10.2 Hz stimuli appeared more critical, indicating

executive control engagement for language processing in Deaf

participants, but in not hearing controls.

4. Discussion

In the present study, we assessed the relationship between

neural responses and the visual stimuli eliciting those responses in

Deaf signers and hearing non-signers. The stimuli differed in their

likelihood of eliciting conscious processing: the Deaf signers group

could recognize and comprehend sign language, while the hearing

non-signers could not. The reversed videos, although equivalent

in low-level contrast and size (visual frequency) features, made

predictive processing impossible for either group—either on the

basis of sign language, or on the basis of human motion detection.

Behavioral data confirmed that Deaf participants engaged in online

comprehension of sign language videos, but did not consider

time-reversed videos understandable. Non-signers’ behavioral data

indicated that although they could differentiate between direct and

reversed videos, they could not comprehend either.

To characterize the frequency-following response in the neural

data to the sign language signal, we quantified motion-based

changes in the video signal using optical flow measured across

visual frequencies. This measure was linearly regressed against

individual EEG signals of each participant, such that peak cross-

correlation frequency, and the timing of the peak, was defined for

each channel in the EEG data. The channels were then grouped

by topography on the scalp (encompassing anterior, posterior, left,

and right brain areas). We used entropy-based feature ranking and

a variety of machine learning pipelines to evaluate EEG response

parameters that characterized visual comprehension (in signers

and non-signers). Independent and joint analyses of frequency-

binned entrainment amplitude and timing across the four distinct

scalp regions in both populations indicated that brain responses

to direct vs. reversed videos were distinguishable based primarily

on low-frequency data, suggesting that both the comprehension

of sign language and the identification of natural motion relied

on convergence of sensory input (bottom-up) and predictive (top-

down) processing.

UFS algorithm analyses indicated increased salience of

low-frequency parameters within each population separately.

These findings supported the proposed Hypothesis 2 over

Hypothesis 1. While Hypothesis 1 proposed similar feature

salience between the two populations due to biological motion

sensitivity, Hypothesis 2 suggested that visual experience with

a sign language in Deaf signers would result in different

spatiotemporal predictive patterns. The results supported the

model of predictive processing, which suggest that experience-

based patterns correlated with the perceptual sensitivity to

visual stimuli as communicative vs. biological motion signals in

Deaf signers and hearing non-signers, respectively. Additionally,

classification of two-population data yielded feature salience

patterns that differed substantially from single-population analyses,

supporting Hypothesis 3: the distribution of features relevant
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for between-population classification highlighted the differences

between neural bases of sign language processes (distributed

fronto-temporal network) vs. biological motion processing (right-

lateralized temporo-parietal network).

Another important finding was that both populations showed

predictive processing of the motion in the stimuli, in agreement

with prior research on biological motion (Shen et al., 2023) and

on American Sign Language (ASL) (Brozdowski and Emmorey,

2023). While the prevalence of low-frequency (longer time

window) prediction was reasonably expected for signers, who use

visual modality as primary means of communication, non-signer

familiarity with human gesturing in a non-verbal component of

everyday communication also allowed them to also be reasonably

accurate in predicting/modeling hand and head motion in video

in the stimuli, although at somewhat higher frequencies (i.e.,

for shorter time windows). The differences between the two

populations in the processing of motion were also evident

in the topographic distribution of high-ranking features. Deaf

signers demonstrated a more equitable distribution of feature

relevance across brain regions typically engaged in sign language

processing: occipital cortex (visual processing), frontal cortex

(executive processing), and left hemisphere (syntactic/semantic

processing (cf. Malaia et al., 2021a). Feature relevance distribution

in non-signers, on the other hand, indicated relevance of occipital

(visual processing) and right-hemisphere (spatial processing)

regions for response to visual stimuli. Prevalence of lower

frequencies among features of relevance in non-signer data

also indicates that processing of visual information on human

motion is based on convergence, at the neural level, of

predictions and observations. The fact that brain state classification

was highly (97%) successful among non-signers also indicated

that non-signers engaged in predictive processing, albeit for

shorter time intervals than signers, as might be expected for

motor vs. linguistic processing (Blumenthal-Drame and Malaia,

2019).

The findings can also be interpreted in the context of

Friston (2018) free energy framework, which suggests that, once

the learning has taken place, the neuronal dynamics of both

sensing and prediction would be optimized for the same cost

function. Both the proficient Deaf signers and hearing non-

signers engaged in predictive processing, with strong frequency

correlations to the optical flow in the stimuli. However, the features

of high relevance to classification differed in both topographic

and frequency distribution, indicative of predictive processing

for different purposes: sign language comprehension for Deaf

signers, and prediction/interpretation of natural human motion,

for hearing non-signers. This suggests that both populations are

optimizing the neuronal dynamics and functional connectivity

to enhance neural representations of salient sensory parameters

in time and space. The prevalence of lower frequencies among

features of relevance in both groups may reflect the brain’s

ability to select newsworthy prediction errors. The study also

highlights the importance of experience-dependent learning for

the purposes of predictive processing: the substantial processing

differences between the groups were grounded in life-long

experience with sign language communication for Deaf signers,

and human motion (both gesture and goal-directed motion) for

hearing non-signers.

4.1. Limitations and further research

Although both populations appeared to use the bottom-up

(sensory) and top-down (predictive) processing, the frequencies

that were most salient for classification, as well as the topographic

distribution of relevant parameters, differed substantially between

Deaf signers and hearing non-signers—this is what allowed for

the detection of sign language comprehension with high fidelity

in a small number of participants. The participants were not

matched for age, since the question concerned, primarily, the

variability due to sign language ability. The older age of the

Deaf signers group might have led to attenuated amplitude of

response to the stimuli in the time domain (cf. Moran et al.,

2014); however the present analysis focused on the spectral domain.

Conducting an equivalent study on the populations in measurable

transitional states, such as children acquiring sign language, or

adults learning sign language, can provide a more comprehensive

understanding of the neural mechanisms underlying the feedback-

and feed-forward loops between sensory perception, or inference,

and top-down prediction grounded in learning, and changes in

the neural bases of these mechanisms over time. For example, in

young children, the study can examine how the neural response

to sign language stimuli evolves as they learn and acquire the

language, and help trace the developmental trajectory for the neural

networks involved in language processing as grounded in sensory

and cognitive experiences. Since experience plays a significant

role in shaping neural networks for language processing, similar

analyses of neural data from adult learners of sign language may

help characterize the changes in organization of functional neural

responses to sign language visual stimuli as learners progress in

their proficiency from novice to proficient signers. This can provide

insights into the neural plasticity, and the changes in relative

weighting of sensory vs. predictive streams as processing shifts from

motion recognition to language comprehension. Additionally,

studies examining the effects of individual differences (such as

sign language proficiency or age of sign language acquisition) on

the neural bases of predictive processing may help further specify

language- and modality-specific effects of brain organization on

predictive processing mechanisms.

5. Conclusion

The results for Deaf signers and hearing non-signers show

that both populations exhibited coherence to visual stimuli with

spectrotemporal parameters of sign language/human motion,

indicating engagement in predictive processing. Feature analysis

in Deaf signers’ data showed a distributed topography of relevant

features weighted toward low frequency bins; the same analysis

in non-signer data indicated relevance of visual and right-

hemisphere regions in processing of the visual-spatial human

motion; somewhat higher frequencies of relevance indicated a

shorter prediction window for human motion prediction as

compared to Deaf signers. The prevalence of lower frequencies

among features of relevance suggests that comprehension of visual

information is based on convergence, at the neural level, between

bottom-up observations and top-down predictions, the latter being

the result of prior experience, or learning.
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