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Introduction: Major depressive disorder (MDD) is the most common mental 
disorder worldwide, leading to impairment in quality and independence of life. 
Electroencephalography (EEG) biomarkers processed with machine learning 
(ML) algorithms have been explored for objective diagnoses with promising 
results. However, the generalizability of those models, a prerequisite for clinical 
application, is restricted by small datasets. One approach to train ML models 
with good generalizability is complementing the original with synthetic data 
produced by generative algorithms. Another advantage of synthetic data is the 
possibility of publishing the data for other researchers without risking patient data 
privacy. Synthetic EEG time-series have not yet been generated for two clinical 
populations like MDD patients and healthy controls.

Methods: We first reviewed 27 studies presenting EEG data augmentation with 
generative algorithms for classification tasks, like diagnosis, for the possibilities 
and shortcomings of recent methods. The subsequent empirical study generated 
EEG time-series based on two public datasets with 30/28 and 24/29 subjects 
(MDD/controls). To obtain baseline diagnostic accuracies, convolutional neural 
networks (CNN) were trained with time-series from each dataset. The data were 
synthesized with generative adversarial networks (GAN) consisting of CNNs. 
We evaluated the synthetic data qualitatively and quantitatively and finally used it 
for re-training the diagnostic model.

Results: The reviewed studies improved their classification accuracies by between 
1 and 40% with the synthetic data. Our own diagnostic accuracy improved up to 
10% for one dataset but not significantly for the other. We found a rich repertoire 
of generative models in the reviewed literature, solving various technical issues. 
A major shortcoming in the field is the lack of meaningful evaluation metrics 
for synthetic data. The few studies analyzing the data in the frequency domain, 
including our own, show that only some features can be produced truthfully.

Discussion: The systematic review combined with our own investigation provides 
an overview of the available methods for generating EEG data for a classification 
task, their possibilities, and shortcomings. The approach is promising and the 
technical basis is set. For a broad application of these techniques in neuroscience 
research or clinical application, the methods need fine-tuning facilitated by 
domain expertise in (clinical) EEG research.
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1. Introduction

Major depressive disorder (MDD) is the most common mental 
disorder worldwide (World Health Organization, 2017) and 
characterized by episodes of mild to severe loss of motivation in 
various areas of life and cognitive deficits, leading to impairment 
in quality and independence of life (Otte et al., 2016). Even though 
systematic alterations in the affected organ, the brain, can 
be assessed quantitatively (Dev et al., 2022), MDD is routinely still 
diagnosed using interviews and questionnaires based on DSM-5 
criteria (Bundesärztekammer (BÄK) et al., 2022). This approach 
is based on the patients’ symptoms, leading to diagnosis only after 
severe symptoms have already manifested and usually at least one 
acute phase has already been suffered (Zhang X. et al., 2022). Early 
diagnosis, however, can help the patient to receive prevention and 
early treatment to soften the disorder’s impact on the patient’s life 
(Habert et al., 2016). Clinicians have started complementing their 
diagnostic repertoire with electroencephalography (EEG) 
recordings, but to date, they still need the expertise and time to 
judge these recordings visually (Mahato and Paul, 2019). Therapy 
success is monitored using the same methods, leading to delayed 
detection of ineffective treatment (Zhang X. et al., 2022). In order 
to increase the sensitivity and objectivity of an MDD diagnosis, 
biomarkers based on neuroimaging have been explored in the last 
decade (Yasin et al., 2021; Dev et al., 2022).

The development of biomarkers based on machine learning 
(ML) methods applied to EEG data is a promising approach with 
diagnostic accuracies ranging from 70 to 99% (Yasin et al., 2021). 
The task of diagnosing a patient is here usually formulated as a 
classification problem, separating patients from healthy control 
(HC) subjects based on the EEG data. However, the generalizability 
of the results, as a basic requirement for clinical application, is 
often restricted by small datasets, leading to overfitting and, 
therewith, overestimating the diagnostic capability (Rakić et al., 
2020). This is a common problem in the application of ML to 
clinical use cases since ML algorithms need large and diverse 
datasets to produce generalizable results with high fidelity. In 
particular, the latest generation of algorithms with deep learning 
(DL) that are well suited for complex problems like detecting 
small and distributed disease-induced changes in high-
dimensional data like EEG are very data-greedy (Cho et al., 2015). 
The collection of clinical data, especially with recordings that are 
not routinely produced such as EEG in MDD patients, is time 
consuming and expensive. Furthermore, strict privacy policies in 
most countries protect patient data and prevent data sharing. 
Therefore, clinical datasets tend to be rather small from an ML 
perspective and/or only accessible to few researchers. One 
approach to train machine learning models with small datasets 
but still attain good generalizability is complementing the original 
data with artificially produced data (Nikolenko, 2019), a process 
termed data augmentation (DA). Data can be  augmented by 
simple methods, such as the addition of noise or domain specific 
distortions, or more complex methods, like generating synthetic 
data with generative ML algorithms (Talavera et al., 2022). An 
additional advantage of synthetic data obtained with generative 
models is the possibility of publishing the data for other 
researchers to use to train their diagnostic models without the risk 
of violating patient data privacy.

Algorithms suitable for generating synthetic data that have been 
applied successfully to the creation of EEG data are generative 
adversarial networks (GAN), generative pre-trained transformers 
(GPT), and variational autoencoders (VAE) (Lashgari et al., 2020; He 
et  al., 2021). GANs comprise two neural networks, a generator 
producing synthetic data from random noise and a discriminator 
judging whether the presented data is real or synthetic (Goodfellow 
et al., 2014). The training process gradually shifts the distribution of 
data produced by the generator toward the distribution of the real 
data. GPTs are models adapted from language understanding and 
production that learn the structure of arbitrary sequences and then 
synthesize the next data point in this sequence, therewith generating 
increasingly longer continuous data step-by-step (Radford et  al., 
2018). VAEs consist of an encoder network compressing the data into 
a low dimensional distribution from which the decoder network 
draws samples and expands them into the original data space, 
therewith generating data preserving the structure of the original data 
(Kingma and Welling, 2014). Even though the generation of synthetic 
time-series EEG data has been demonstrated successfully (Hartmann 
et al., 2018), the application for the clinical use case of augmenting 
EEG data for two clinical populations, patients and HC subjects, with 
synthetic data in order to train a “diagnosis classifier” is still sparse. 
Song et  al. (2021) synthesized features derived from EEG for 
Alzheimer’s disease diagnosis with a GAN and demonstrated that they 
successfully generated data resembling patients and HC data 
distributions. Sobahi et  al. (2022) constructed images from EEG 
features and created synthetic images with an extreme learning 
machine based autoencoder (ELM-AE). Augmenting the data with 
these images increased classification accuracy for schizophrenia 
diagnosis. Synthesizing time-series data from EEG directly has not yet 
been demonstrated for the clinical use case of a diagnosis classifier. 
However, this approach of generating the original data format from 
EEG for two clinical populations preserves most degrees of freedom 
for later data processing, e.g., for testing new biomarkers or publishing 
the data for further biomarker research.

In order to provide a comprehensive overview of current 
approaches for generating synthetic EEG data used for a classification 
task and an in-depth analysis of their advantages and potential pitfalls 
in a clinical use case, we  first conducted a systematic review. In 
contrast to three previous reviews (Lashgari et al., 2020; He et al., 
2021; Habashi et al., 2023), we focused on the clinical application of 
these methods rather than on the technical aspects. Therefore, 
we  included studies that used all kinds of ML algorithms for 
classification instead of restricting the search to deep learning only. 
Most importantly, we focused on studies using generative methods 
only, i.e., creating truly synthetic data. This allowed for much deeper 
analyses of the methods specific to generative models and carves out 
the current shortcomings and next steps necessary specifically for the 
clinical use case of generating data for two or more clinical populations.

We conclude our work with an empirical study generating time-
series EEG data for two clinical populations based on two publicly 
available datasets containing EEG data from MDD patients and HC 
(Mumtaz, 2016; Cai et al., 2020). For the generator and discriminator, 
we  used convolutional neural networks (CNN) because of the 
complexity of the data. In order to improve the training stability of the 
discriminator, we adapted the Wasserstein GAN (WGAN) architecture 
(Arjovsky et al., 2017), frequently used for EEG data generation. In a 
WGAN, a critic minimizing the Wasserstein distance between real and 
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synthetic data replaces the discriminator. For the generation of two 
datasets, MDD patients and HC, we  adopted the frequently used 
conditional approach (Mirza and Osindero, 2014). For this approach, 
both the generator and critic get the label of the data, i.e., whether the 
data originated from a patient or HC, and the critic makes its 
judgment conditioned on this label. In order to judge the quality of 
the data, we first evaluated the signal qualities of the synthetic data 
qualitatively and quantitatively. Subsequently, we  evaluated its 
usefulness by augmenting the real data for a diagnosis classifier. 
We compared the performance of the classifiers trained on the real 
data alone with the performance when trained on different ratios 
between real and synthetic data. Directly comparing the results based 
on two publicly available datasets allowed us to make conclusions 
about the generalizability of the findings and enables reproducibility.

2. Materials and methods

2.1. Systematic review

2.1.1. Search strategy
We conducted a systematic review according to PRISMA 

guidelines (Liberati et al., 2009) in the databases PubMed and IEEE 
Xplore on 12 August 2022 (Figure 1). The two databases were chosen 
to cover medical as well as technical literature. Originally, we were 
only interested in the clinical use case of generating synthetic EEG 
data for patients and their healthy counterparts in order to train a 
“diagnosis classifier” on the data. However, such clinical use cases were 
too rare, with only two studies found in the first search round. 
Therefore, we  included any study that synthesized EEG data for a 
classification task. This included within-subjects studies with healthy 
volunteers performing some kind of cognitive task as well. We adapted 
the syntax of the two search strings for the respective databases and 
joined the results. Search strings: (1) “data augmentation” AND EEG 
AND diagnosis AND (ADHD OR Alzheimer OR dementia OR 
depression); (2) “data augmentation” AND EEG – only in abstract. 
We included the other diagnoses in the first search string because 
EEG-based biomarkers are suggested for these diseases as well (Leiser 
et al., 2011). After the removal of duplicates and papers after abstract 
screening, we added further papers based on cross-referencing. For 
full text assessment, three inclusion criteria were used: (1) EEG data 
were used for a classification task, (2) EEG data or features derived 
from EEG data were subjected to data augmentation, and (3) the 
studies were original research papers; and three exclusion criteria were 
used: (1) the data augmentation method was not specified, (2) there 
was no generative method for data augmentation, or other data than 
EEG data was generated, and (3) papers not published in the 
English language.

2.1.2. Analysis
We aimed for a quantitative analysis of the aspects important for 

generating synthetic EEG data in a clinical use case. The use case per 
se informs whether the classification is conducted for a clinical 
purpose, about the paradigm used for data recording, and whether the 
experimental design was a within- or between-subjects design. A 
diagnosis classifier is always based on a between-subjects design. 
Regarding the input data, we needed to focus on the information 
specific for generating synthetic data. The input/output of the 

generator, i.e., whether it produces time-series or features and in 
which format, is reported in detail. However, the plethora of 
methodological details for EEG data recording and preprocessing is a 
general methodological issue when analyzing EEG data and would 
inflate the review. We, therefore, only comment on the breadth of 
methods here. The generative model, with its possible variants and 
their advantages and pitfalls, constitutes the core of the analysis. The 
next important item was the evaluation of the synthetic data with 
qualitative and quantitative methods. Finally, we  investigated the 
effect of data augmentation on the original classification task with a 
special focus on the impact of the quantity of data generated.

2.2. Data augmentation

2.2.1. Data
Two publicly available datasets were used for the empirical study 

(Mumtaz, 2016; Cai et al., 2020). Separately processing the datasets 
provided the possibility of direct replication of the results and 
therewith an account on the robustness of the methods. Both datasets 
contained 5-min resting-state EEG time-series from HC and MDD 
patients with eyes closed (Table 1). All patients were diagnosed based 
on the DSM-IV manual.

For cleaning and preprocessing the EEG data, we used the Python 
toolbox MNE (Gramfort et al., 2014). To match the two datasets more 
closely, only the intersections of electrodes from both datasets were 
chosen, resulting in 13 channels: the frontal electrodes Fp1/2, F3/4, 
F7/8, and Fz, the central electrodes C3/4, parietal P3/4, and occipital 
O1/2. Both datasets were re-referenced to average (Yao et al., 2019). 
Preprocessing proceeded with band pass filtering (1 to 40 Hz) and 
automatic artifact removal with ICLabel (Li et al., 2022). One patient 
from dataset 2 was excluded because EEG was only recorded for 
3 min. Both datasets were subsampled to the smaller class, with 24 and 
28 subjects for each class, respectively.

Data were z-normalized per subject and channel separately. The 
time-series were then split into 8 s windows and outlier windows were 
removed. Any window with minimum or maximum values below or 
above 2* standard deviation of the average minimum or maximum 
values, respectively, was regarded as an outlier. The data of each 
window were then normalized between −1 and 1. The data resulting 
from the preprocessing are termed real data in the remainder of 
the article.

For dataset 1, the data frames used for both the classification and 
as input for the generative model were 2D matrices consisting of 13 
(channels) rows and 250 (Hz) * 8 (s) = 2,000 columns. For dataset 2, 
respectively, the matrices had the shape (13, 256*8). For data 
generation, we  used all available windows from the subjects to 
maximize the sample data. For the classification, we subsampled the 
number of windows to the respective smallest numbers of windows 
available, resulting in 18 windows per subject for dataset 1 and 16 
windows for dataset 2. The channels were ordered based on head 
topology with the left hemisphere electrodes first (Fp1, F3, C3, P3, O1, 
and F7), then the central (Fz), and finally the corresponding right ones 
(Fp2, F4, C4, P4, O2, and F8).

2.2.2. Data generation
The baseline for data augmentation not using generative methods 

was obtained with noise addition (Yang et al., 2023), the simplest and 
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most frequently used method for generating artificial EEG data 
without a generative approach (Lashgari et  al., 2020). We  added 
uniform noise between −0.1 and + 0.1, corresponding to 10% of the 
normalized original signal amplitude, to the preprocessed time-series 
signal. After noise addition, the data was again normalized between 
−1 and 1. The data resulting from this procedure are termed noise data 
in the remainder of the paper.

The generative method for creating the synthetic data was a 
conditional Wasserstein GAN with a generator and critic consisting 
of CNNs loosely adapted from the work of Panwar et al. (2019, 2020) 
and optimized for our use case (for the detailed architectures, cf. 
Appendix Tables A1, A2). The generator input was a latent vector of 
size 100 initialized from a standard normal distribution. The input was 
reshaped to represent the channels in one and discrete sample times 
in the other dimension. The generator had four transposed 
convolutional layers that upsample and resize and one convolutional 

layer that only resizes the input. In between those layers, Leaky 
Rectified Linear Unit (ReLU) activation and batch normalization were 
used. The final output had the same shape as the real data. The 
activation function in the last layer was the hyperbolic tangent to 
obtain values ranging from −1 to 1 analog to the real data.

The input layer of the critic had the same shape as the real data 
and the generator output. Before it was downsampled, a Gaussian 
noise layer augmented the real and synthetic data to prevent the 
critic from memorizing the real data, which is likely to happen for 
small datasets (Zhao et al., 2020). Afterward, the critic reduced the 
dimension of the input data with two convolutional layers featuring 
strides of (2, 2) and a third convolutional layer featuring a stride of 
(1, 2). In between those layers, Leaky ReLU activation was used. 
The final two layers were a dropout layer to prevent overfitting (Lee 
and Lee, 2020) and a dense layer with linear activation returning 
the critic score. The Wasserstein distance was used as a loss 

FIGURE 1

PRISMA flowchart for the paper search and selection process.
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function (Rüschendorf, 1985) with weight clipping. For the 
optimizer, the Adam algorithm (Kingma and Ba, 2014) was chosen 
with a learning rate of 0.0005, β1 = 0.0, β2 = 0.999, and ε = 10–7 
(Hartmann et  al., 2018). During training of the generator and 
critic, the latter was trained for five iterations for each iteration of 
the generator, as proposed in the original Wasserstein paper 
(Arjovsky et  al., 2017). This helps the critic to detect poorly 
augmented data more easily.

2.2.3. Diagnosis/classification
For classification of the real data and evaluation of the 

augmented data, the preprocessed and/or generated EEG time-series 
windows were subjected to a CNN with an architecture adapted 
from DeprNet (Seal et  al., 2021). The network consists of five 
convolutional, max-pooling, and batch normalization layers each, 
followed by three fully connected layers. DeprNet was optimized for 
the diagnosis of MDD from time-series EEG data and can therefore 
be  utilized with only small modifications to accommodate the 
difference in number of channels, window size, and sample 
frequency. For the last fully connected layer, we  implemented a 
sigmoid activation function because pretests yielded better results 
than the original softmax function. The initial parameters for 
DeprNet were chosen based on the values from the original study: 
binary cross entropy as loss function; Adam optimizer (Kingma and 
Ba, 2014) with learning rate 0.0005, β1 = 0.9, β2 = 0.999, and ε = 10–7; 
classification accuracy as evaluation metric. The classification 
accuracies with their confidence estimated were obtained with leave-
two-subjects-out cross-validation, i.e., each test fold included one 
HC and one MDD. This procedure resulted in subject-wise cross-
validation (Saeb et al., 2017).

2.2.4. Evaluation of the synthetic data
First, generated time-series data samples and their spectra were 

inspected visually. We  chose the frontal electrodes as examples 
because abnormalities in frontal electrodes are frequently reported for 
MDD (Stewart et al., 2010). The exemplary single time-series from 
electrodes F3 and F4 served as the visual impression of the smoothness 
and form of the signal, while the mean time-series signals and their 

95% confidence interval across subjects gave an impression of the 
general distribution of the continuous data over time. For the mean 
signals, we randomly chose one window from ten randomly chosen 
subjects and ten random synthetic data windows.

The frequency spectra based on the periodograms of the synthetic 
data reveal how well the generated signals resemble the real data in the 
frequency domain. Here, we only present mean and 95% confidence 
intervals across subjects because this data can be  averaged 
meaningfully, resulting in an estimate of the population’s spectrum. 
For each subject, we calculated the mean across all windows as a 
robust individual estimate and then matched the number of synthetic 
data frames with the number of subjects from each clinical group and 
dataset. For a quantitative assessment of commonalities and 
differences between spectra of real and synthetic data, we also present 
the averages of the commonly used frequency bands delta (0.3–4 Hz), 
theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz). Analyses of 
variance (ANOVA) within datasets and frequency bands with 
between-subjects factors data type (real/synthetic) and diagnosis (HC/
MDD) further qualify whether differences between real and synthetic 
data predominate or whether differences between diagnostic groups 
outweigh these.

Finally, the most important metric for the synthetic data was the 
performance of the classifier diagnosing either based on the synthetic 
data only or on combinations of real and synthetic data. Four 
classifiers were trained for both types of data augmentation, and all 
were tested on real data only (Table  2). Note that the first two 
classifiers with augmented data were trained on the same amount of 
data as the classifier trained on the real data only (Table 2, first row). 
The two remaining classifiers were trained on two or three times as 
much data, respectively.

The performance of the classifiers was compared using one-sided 
t-tests with p = 0.05, not corrected for multiple comparisons, 
considered significant. The classifiers trained on the synthetic data and 
the ones trained on the combination of real and synthetic data were 
expected to perform better than the classifiers based on the real data 
alone and better than the respective classifier trained on noise data. 
All reported results are mean values with 95% confidence intervals 
unless stated otherwise.

TABLE 1 Characteristics of the two publicly available datasets used for 
data augmentation.

Dataset 1 (Cai et al., 
2020)

Dataset 2 
(Mumtaz, 2016)

# Subjects in dataset

/ after preprocessing

HC: 29/24

MDD: 24

HC: 28

MDD: 30/28

Medication No Unknown

Age [years]

mean ± std

HC: 31.5 ± 9.2

MDD: 30.9 ± 10.4

HC: 38.2 ± 15.6

MDD: 40.3 ± 12.9

Location Gansu Provincial Key 

Laboratory of Wearable 

Computing

Lanzhou University, China

Hospital Universiti 

Sains Malaysia (HUSM)

Malaysia

# Electrodes 128 19

Electrode referencing Cz-referenced Linked-ear-referenced

Sample frequency 250 Hz 256 Hz

TABLE 2 Number of data frames used for each fold of the classifiers.

Dataset 1 Dataset 2

Train 
data

Test 
data

Train 
data

Test 
data

Real data 13 × 46 × 18 13 × 2 × 18 13 × 54 × 16 13 × 2 × 16

Noise data or 

synthetic data
13 × 46 × 18 13 × 2 × 18 13 × 54 × 16 13 × 2 × 16

50% real +

50% noise/synt

13 × (23 + 23) 

× 18
13 × 2 × 18

13 × (27 + 27) 

× 16
13 × 2 × 16

100% real +100% 

noise/synt

13 × (46 + 46) 

× 18
13 × 2 × 18

13 × (54 + 54) 

× 16
13 × 2 × 16

100% real +200% 

noise/synt
13 × (46 + 92) 

× 18
13 × 2 × 18

13 × 

(54 + 108) × 

16

13 × 2 × 16

The numbers result from number of electrodes (13) × 2*number of “subjects” × number of 
windows per “subject”.
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3. Results

3.1. Systematic review

The database search yielded 27 papers eligible for this review 
(Figure 1). The first paper appeared in 2018 (Hartmann et al., 2018).

3.1.1. Use case for classification and EEG 
paradigm

Only two studies reported the clinical use case of supporting the 
diagnosis of a psychiatric or neurodegenerative disease: diagnosing 
Alzheimer’s disease (Song et al., 2021) or schizophrenia (Sobahi et al., 
2022) (cf. Figure 2, violet and red segment in the outer ring). Five 
more studies in the clinical field (cf. Figure 2, red segment in the 
middle ring) revolved around epilepsy (cf. Figure 2, orange segments 
in the outer ring). Two studies aimed to detect an ongoing seizure or 
its onset (Haradal et al., 2018; Wei et al., 2019), two studies aimed to 
predict an upcoming seizure (Niu et al., 2021; Rasheed et al., 2021), 
and the last one aimed at detecting spikes occurring between seizures 
(Geng and Chen, 2021). Note that all five epilepsy studies had a 
within-subjects design, i.e., all patients contributed data for all classes.

The third and last between-subjects study used EEG data for 
identifying a person, i.e., biometric identification (Piplani et al., 2018) 
(cf. Figure  2, gray segment in the outer ring). This study and the 
remaining ones, using behavioral paradigms to elicit different 
cognitive states that were then classified, collected data from healthy 
subjects only (cf. Figure 2, dark blue segment in the middle ring).

The nature of the EEG time-series in the four studies utilizing the 
rapid serial visual presentation (RSVP) paradigm (Panwar et al., 2019, 

2020; Xu et al., 2022; Zhang R. et al., 2022) (cf. Figure 2, light green 
segment in the outer ring) differed to most other EEG recordings in 
the reviewed studies with respect to the continuity in the signal. This 
was a time locked paradigm (cf. Figure 2, light green segment in the 
inner ring) assessing the P300 component of visual evoked potentials. 
The only other studies with time locked data were the epilepsy study 
for spike detection and two of the motor task studies (Abdelfattah 
et al., 2018; Fahimi et al., 2021) (cf. Figure 2, dark blue segment in the 
outer ring). The remaining study with a motor task recorded 
continuous EEG data during left hand movement vs. rest (Hartmann 
et al., 2018).

The remaining 12 studies generated data based on continuous 
EEG data (cf. Figure 2, dark green segment in the inner ring) during 
cognitive tasks. Bird et  al. (2021) elicited the three mental states 
relaxed, neutral, and concentrated, which they later classified (cf. 
Figure 2, brown segment in the outer ring). The five studies in the field 
of motor imagery (Ko et al., 2019; Yang et al., 2019; Zhang et al., 2020, 
2021; cf. Figure 2, light blue segment in the outer ring) all used public 
data provided for the brain–computer-interface (BCI) competitions 
(Sajda et al., 2003): BCI competition II dataset 3 with left and right 
hand movements (Schlögl et  al., 1997) and BCI competition IV 
datasets 1 with two out of left hand, right hand, or foot movements 
(Blankertz et al., 2007), 2a with left and right hand, feet, and tongue 
movements (Naeem et al., 2006), and 2b with left and right hand 
movements (Leeb et al., 2007). From the six studies in the field of 
emotion recognition (cf. Figure 2, dark green segment in the outer 
ring), one recorded their own data with positive and negative 
emotions (Chang and Jun, 2019), while the remaining five (Luo and 
Lu, 2018; Luo et al., 2019, 2020; Pan and Zheng, 2021; Kalashami et al., 
2022) used the publicly available datasets Database for Emotion 
Analysis using Physiological Signals (DEAP) with the two orthogonal 
dimensions valence and arousal, allowing for two different two-class 
classifiers or a four-class classifier (Koelstra et  al., 2011), SJTU 
Emotion EEG Dataset (SEED) with positive, neutral, and negative 
emotions (Zheng and Lu, 2015), and SEED-V with the five emotions 
happiness, sadness, disgust, neutral, and fear (Liu et al., 2021).

Altogether, 18 studies used publicly available datasets and did not 
record their own data.

3.1.2. Input/output data
For recording and preprocessing EEG data, a wide variety of 

methods exists (Robbins et  al., 2020). Since these differences are 
common to all EEG analyses and not just data synthetization, we only 
comment on the variety but refrain from analyzing them in depth in 
order to keep the review concise. Data were recorded from three to 
roughly 100 subjects using one to 256 EEG channels in different 
sampling frequencies. Common preprocessing steps included 
re-sampling, filtering, artifact removal, normalization, and splitting 
the EEG time-series into overlapping or non-overlapping windows.

The data format finally fed into the generative model equals 
the format of the generated data. The majority of studies (n = 15) 
used time-series data. Generating raw time-series provides the 
highest degree of freedom for processing the synthetic data 
afterward. Six studies used 2D matrices with time (samples) in the 
one dimension and location (channels) in the other dimension, 
similar to our study. Five further studies used 1D vectors in the 
time dimension: two studies used data from only one channel 
overall, two studies based on intracranial EEG used the time-series 

FIGURE 2

Distribution of use cases across studies. The inner circle denotes 
whether the EEG time-series is locked to an event or continuous. 
The middle ring denotes whether the classification serves a clinical 
purpose. The outer ring details the specific use cases with the 
between-subjects class designs emphasized with bold outlines and 
font. Note that the shades of orange further differentiate the epilepsy 
use cases into three types of classification goals. RSVP: rapid serial 
visual presentation; SCZ: schizophrenia; AD: Alzheimer’s disease; ID: 
identification.
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independent of the recording electrode, and the last study modeled 
each channel independently. In the remaining four studies, 
we were not able to determine the detailed format of the input 
data. All seven studies with a time locked paradigm used time-
series data; the remaining eight used continuous EEG like 
our study.

From the remaining studies, seven calculated features from the 
time-series used as 1D input vectors for data generation. The most 
common features were differential entropy (DE) and/or power 
spectral density (PSD) for delta (if possible), theta, alpha, beta, and 
gamma bands (n = 4). One study used the raw power spectrum and 
the remaining two utilized more complex sets of features that had 
been developed for previous studies. The study on Alzheimer’s 
diagnosis (Song et al., 2021) belongs to the latter.

From the five studies that converted their time-series to images, 
the majority (n = 4) used time frequency representation (TFR), either 
one image per channel or channels stacked in the frequency domain. 
The remaining study was the one conducting the Schizophrenia 
diagnosis (Sobahi et  al., 2022) and constructed an image from 
frequency features.

Due to conflicting information in the papers, there is some 
uncertainty in the assignment of two studies.

3.1.3. Generative model
The most popular model for generating synthetic EEG data for 

a classification task was by far the GAN (n = 24, Table 3). Only two 
studies adapted the GPT principle from language processing, and 
we found one autoencoder that was used in its own right and not 
just as comparison for a GAN-based approach. When several 
generative algorithms were compared in a study, we only extracted 
the one with the best result. For generating labeled data, i.e., 
distinct data for each class, five approaches were applied. The 
most popular was the conditioning of generator and discriminator 
with the class label (n = 10). The intuitive approach of simply 
generating the data of each class separately was adopted in seven 
studies. In six studies, the GAN was used for boosting the 
minority class, hence only the minority class was generated. The 
auxiliary discriminator that feeds the result of the data 
classification in generator and discriminator learning as well was 
used in three studies. The last study generated one distribution 

from all data and assigned class labels posthoc based on a classifier 
trained on the real data.

3.1.3.1. Generative adversarial network
The first proposed architecture of a GAN (Goodfellow et  al., 

2014), often referred to as Vanilla GAN, comprises two multi-layer 
perceptrons (MLP), the generator and discriminator, competing 
against each other (cf. Figure 3). The generator transforms values z 
randomly drawn from a standard normal distribution into synthetic 
data G(z). The goal of the generator is to generate data the 
discriminator cannot distinguish from the real data x. With training, 
the discriminator maximizes its loss while the generator minimizes its 
loss using the Jensen–Shannon divergence between real and synthetic 
data distributions in the case of the Vanilla GAN.

Common variations of a GAN feature another network 
architecture for the generator and/or discriminator (cf. Table 3 and 
Figure 3 green rounded boxes). CNNs are a popular choice due to 
their hierarchical structure, successively combining groups of local 
data points, which resembles neural organization principles and 
makes them well suited for processing biological data (LeCun et al., 
2015). When a CNN architecture is used, the input is often organized 
in two dimensions, and all studies feeding images into the GAN use 
CNNs (Figure 4). Note that the spatial neighborhood plays a critical 
role in CNN architectures since neighboring data points are combined 
via the convolution layers. The Vanilla GAN uses an MLP, and this 
architecture is still a popular choice. However, especially for this 
category, the detailed network architecture was often hard to 
determine, and we  included a study in this category when the 
architecture was called a neural network or deep neural network 
(DNN), but the description did not sound like a CNN or recurrent 
neural network (RNN). Therefore, networks with one or more hidden 
layers were subsumed in this category. Most studies using MLP feed a 
1D vector as input (Figure 4). Using an RNN as generator is motivated 
by the inherent properties of RNNs to deal with time dependencies, 
and the EEG signal has that property (Abdelfattah et  al., 2018). 
Consequently, all studies utilizing an RNN fed time-series data into 
the GAN (Figure 4).

The next variations address the instabilities in training (cf. Figure 3 
green ellipse) sometimes encountered with the Vanilla GAN. Mode 
collapse occurs when the generator produces very small variations of 

TABLE 3 Overview of generative models and their frequency of use.

Class 
differentiation:

Only 
minority

1 Generator/
class

Conditional Auxiliary Posthoc 
selection

Total

GAN CNN total

(WD, GP, select)

4

(2, 2, 1)

1 5

(2, 2, 0)

1

(1, 1, 0)

1

(1, 1, 1)

12

(6, 6, 2)

MLP total

(WD, GP, select)

2

(1, 0, 0)

1 5

(4, 2, 3)

8

(5, 2, 3)

RNN 2 2 4

GPT 2 2

AE 1 1

Total 6 7 10 3 1 27

The GAN models are further differentiated by the network making up the generator and discriminator. The five ways to generate class-specific data (columns) are explained further in the text. 
The number of studies improving their training with the Wasserstein distance and/or gradient-penalty are added, as well as the number of studies using selective augmentation. GAN: 
generative adversarial network; GPT: generative pre-trained transformer; AE: autoencoder; CNN: convolutional neural network; MLP: multi-layer perceptron; RNN: recurrent neural network; 
WD: Wasserstein distance; GP: gradient penalty.
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the data because only those are recognized as real data by the 
discriminator (Saatci and Wilson, 2017). This problem is overcome by 
using a different loss function; the most popular choice here is the 
Wasserstein distance (WD, Table 3) (Arjovsky et al., 2017), sometimes 
combined with gradient penalty (GP) (Gulrajani et al., 2017) to enforce 
Lipschitz continuity instead of weight clipping. In a Wasserstein GAN, 
the discriminator is called the critic. Along with using the WD, 
Arjovsky et al. (2017) also proposed a training regimen in which the 
critic iterates several times before the generator runs again, leading to 
even more stability in training. This adaptation can be observed in 
some of the studies as well. Other modifications observed are (1) 
gradually increasing data resolution with training (Hartmann et al., 
2018), (2) augmenting the synthetic and real data with a Gaussian noise 
layer before feeding them into the discriminator (Zhao et al., 2020), or 
(3) initializing the weights of the generator and discriminator with the 
weights of the decoder and encoder of a VAE (Xu et al., 2022).

Most often, the generator is initialized with random uniform 
noise, but we also found variations using, for example, Gaussian noise 
(cf. Figure 3 green parallelogram) (Yang et al., 2019). For the last step 
in the process, there is an optional addition selecting only good 
quality data for the synthetic dataset (Table  3, Figure  3 top 
right rhombus).

Finally, two approaches extend the GAN architecture to generate 
more than one class of data (Table 3, Figure 3). The most popular 
method is conditioning the generator and discriminator with the class 
label (Mirza and Osindero, 2014). In contrast, the auxiliary approach 
feeds the result of a data-label classification into the training process 
in addition to the results from the real vs. synthetic classification. The 
reviewed studies achieved the data-label classification by extending 
the architecture of the existing discriminator (cf. Figure 3 dashed 
elements) (Panwar et al., 2020; Geng and Chen, 2021). Note that other 
methods exist, e.g., utilizing an extra classifier that gets only the 
generated data as input (Liao and Dong, 2022).

Some authors give the variation of their GAN acronyms according 
to the aspect that is important to them. However, the acronyms often 
do not fully describe the architecture. E.g., a GAN with a CNN using 
the Wasserstein distance may be referred to as DCGAN, emphasizing 
the deep convolutional architecture of the generator and discriminator. 
Alternatively, it may be called WGAN, emphasizing the training based 
on the Wasserstein distance. Other common acronyms are RGAN for 
using RNN in the generator, WGAN-GP for the Wasserstein GAN 
using gradient penalty, cGAN for conditional GANs, or AC-GAN for 
GANs with auxiliary classifiers.

3.1.3.2. Generative pre-trained transformer
The two studies using GPT models (Bird et al., 2021; Niu et al., 

2021) based their architecture on GPT-2 (Radford et al., 2018) trained 
on natural language from millions of websites. Both used continuous 
time-series data (data format not otherwise specified) as input.

3.1.3.3. Autoencoders
Only one study utilized a variant of the autoencoder as only 

generative model (Sobahi et al., 2022). They used an extreme learning 
machine based autoencoder (ELM-AE) on an image constructed from 

FIGURE 3

Overview of GAN architectures with variants (green) and optional elements (gray). The dashed elements belong to the GAN with auxiliary classification. 
Please refer to the text for details. CNN: convolutional neural network; MLP: multi-layer perceptron; RNN: recurrent neural network.

FIGURE 4

Frequency of generator/discriminator networks split by input/output 
formats. CNN: convolutional neural network; MLP: multi-layer 
perceptron; RNN: recurrent neural network.
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frequency features. Four more studies (Luo et al., 2020; Zhang et al., 
2020; Fahimi et al., 2021; Song et al., 2021) compared their GAN 
architectures against the performance of data generated with a VAE 
but found the GAN results superior.

3.1.4. Evaluation metrics and methods
The purpose of the synthetic data of all reviewed papers was 

to improve the training of a classifier. However, the good quality 
of the generated data is a prerequisite for a meaningful 
improvement of the classification. Furthermore, the stability of the 
training process might be  of interest in some cases as well. 
Nonetheless, seven papers did not perform any kind of evaluation. 
Seven papers evaluated only training stability quantitatively to 
demonstrate the presence or absence of convergence failure 
(Zhang et al., 2018) or mode collapse by showing or describing 
generator and/or discriminator loss curves or discriminator 
accuracy. For two of those studies, this was the only 
evaluation at all.

The quantitative evaluation metrics for the generated data were 
rather sparse and scattered. They fall into roughly two categories: the 
first judges the similarity between time-series, or their respective 
diversity, based on cross-correlation (n = 1) or Euclidian distance 
(n = 1), or, in the case of time locked data, with dynamic time warping 
(DTW) with Manhattan distance (n = 1). The second provides metrics 
for describing the distances between the data distributions either 
using an inception classifier and reporting Fréchet inception distance 
(FID) (Heusel et al., 2017) (n = 2) or inception score (IS) (Salimans 
et  al., 2016) (n = 1), or the Gaussian mixture model (GMM) 
log-likelihood distance (n = 2), maximum mean discrepancy (MMD) 
(n = 1), Kullback–Leibler (KL) divergence (n = 1), or sliced Wasserstein 
distance (Peyré and Cuturi, 2017) (n = 1). One paper reported the 
reconstruction accuracy of the signal.

Thirteen out of 18 papers, presenting qualitative evaluation of the 
generated data, provided them in addition to quantitative metrics. The 
most common visual representation for qualitative assessment of the 
synthetic data were figures of exemplary single time-series data 
(Figure 5). Presenting the mean of the time-series serves two purposes, 
dependent on the type of data: for time locked paradigms, the mean 
time-series reveals whether the expected response shape is present in 
the synthetic data. For continuous paradigms, the mean time-series 
shows the distribution at each time point of the arbitrary frames, and 
one might detect systematic differences between the time-series. 
Transforming data from time to frequency space and showing 
frequency spectra reveals whether the frequency content of the 
original signal is captured properly. The power spectral density (PSD) 
was shown in three studies. Three more studies illustrated the data in 
time frequency representation (TFR), with two of them generating the 
data already in this format and the third performing the 
transformation for visual inspection only. Topographic maps are a 
common way of depicting EEG data and were used for visual 
inspection by four studies. A 2D mapping of the generated data by 
various algorithms (cf. Figure 5) provides an overview of whether the 
distribution of the synthetic data matches the real data and was 
conducted by seven studies overall. Three studies had individual visual 
representations for their data (cf. Figure 5 “other”).

From the eight studies using continuous EEG time-series as input/
output like our study, three did not perform any kind of evaluation, 
and one study presented only generator and discriminator loss. The 

remaining four studies all showed single exemplary time-series, and 
two transformed the data to frequency space for a visual comparison 
(Hartmann et al., 2018; Bird et al., 2021). Only one study provided 
quantitative metrics with FID, IS, Euclidean, and sliced Wasserstein 
distances (Hartmann et al., 2018).

3.1.5. Effect on classification
Since the data was generated to improve a classification task, most 

studies trained one or several classification algorithms with the 
augmented data to demonstrate the effect of the augmentation on the 
classification. The manifold of ML algorithms used for classifying EEG 
data is not the focus of this review, therefore, we only provide a brief 
summary here. Eighteen studies used some kind of DL algorithm 
directly on the data generated, with the CNN being the most popular 
by far. Ten studies used classical ML approaches, mainly support 
vector machine (SVM) but also a variety of decision trees or 
occasionally other algorithms. Five of those studies applied the 
classifiers on the features that originated directly from the generative 
model. The remaining five studies generated time-series and two of 
them used the time-series data for classification as well. The other 
three studies calculated statistical, event-related potential (ERP), or 
connectivity features just for the classification.

3.1.5.1. Overview of effects
For an overview of the effect of augmenting data with synthetic 

data, we first extracted the highest effect in terms of absolute accuracy 
increase from each study and classification task (Table 4, Figure 6). 

FIGURE 5

Categorization of the qualitative evaluation methods. PSD: power 
spectral density; TFR: time frequency representation; t-SNE: t-
distributed Stochastic Neighbor Embedding; PCA: principal 
component analysis; UMAP: uniform manifold approximation and 
projection. For further description, see text.
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When accuracies were only depicted in figures in the original paper, 
we estimated them visually.

A high baseline classification accuracy, i.e., classification 
performance for training with real data only, provides limited 
possibilities for improvement; therefore, we  expected the highest 
increase for studies with low baseline accuracies. This is not immediately 
obvious from Figure 6 but we did indeed find a small negative correlation 
between baseline accuracy and the amount of accuracy increase when 
training on augmented data (r = −0.37; t31 = −2.249; p = 0.032).

3.1.5.2. Effect dependent on the amount of generated 
data

Some studies provide data on the accuracy development 
dependent on the amount of generated data for training the classifier 
(Figure 7). On an intuitive notion, the classification accuracy should 
increase with increasing size of training data and eventually level out 
when the generated data cannot provide additional information. 
However, we saw in several studies that there seems to be an optimal 
amount of additional synthetic data, and the accuracies drop with 
even more data.

3.1.6. Publication
Fourteen studies from this review were journal articles, mainly 

published via IEEE Xplore (IEEE, New  York, NY, United  States) 
(n = 7), otherwise from Hindawi (Hindawi Limited, London, 
United  Kingdom) with two articles, and one each from Elsevier 
(Elsevier B.V., Amsterdam, Netherlands), IOPscience (IOP Publishing, 
Bristol, United Kingdom), MDPI (MDPI AG, Basel, Switzerland),  
and Taylor & Francis (Taylor & Francis Groups, Abingdon, 

TABLE 4 Mean baseline accuracies and their improvements with 
augmented data for classifiers with two to five classes.

Number of 
classes

2 3 4 5

n 24 4 4 1

Baseline accuracy [%] 76.91 ± 5.41 85.26 ± 4.45 51.22 ± 5.78 54.34

Accuracy 

improvement [%]

5.51 ± 1.65 5.41 ± 3.46 15.62 ± 16.03 8.53

FIGURE 6

Effect of augmentation with synthetic data on classification performance. The circles denote the classification accuracies with training on real data 
only, and the diamonds denote the highest increase in accuracy with training on augmented data. Results are sorted first by number of classes in the 
classification task, then by use case (cf. color coding), and finally from the highest to lowest increase in accuracy. When more than one classification 
task was tested in a study, the results were split up. The colors are adopted from Figure 2; a dashed line differentiates two classification tasks for the 
same number of classes within a study.
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United Kingdom). Eight of these articles were published in journals 
that are dedicated to methods in biology, medicine, or neuroscience 
or interdisciplinary journals comprising one of these disciplines and 
computation or engineering on the other side. One article was 
published in a journal specialized for architecture and building 
engineering. The remaining five articles were published in journals in 
the fields of computer science or engineering.

Eleven articles were full conference papers, also mainly published 
via IEEE Xplore (n = 9), as well as one each from ACM Digital Library 
(ACM, New York, NY, United States) and Springer (Springer-Verlag 
GmbH, Berlin, Germany). Five articles were presented at conferences 
dedicated to methods in biology, medicine, or neuroscience, with the 
remaining six at computer science or engineering conferences.

Two of the articles included in the review were preprints accessed 
from arXiv.

Ten articles had gaps in the methods that make them 
non-reproducible. These include missing information on the data 
source, preprocessing, data synthetization, and/or data evaluation.

3.2. Data augmentation

3.2.1. Synthetic data
Visual inspection of exemplary single time-series (Figure 8 top 

rows) and means across time-series from electrodes F3 and F4 
(Figure 8 bottom row) revealed no conspicuous differences between 
real and synthetic data. The forms and distributions of the generated 
time-series are well within the range expected from the real data.

Transforming the time-series to power spectra revealed that the 
synthetic data capture some aspects of the frequency content well but 
some aspects less well (cf. Figure 9 for electrodes F7 and F8). Well 
represented was the finding that most of the signal power is contained 
in frequencies roughly below 15 Hz. The characteristics in the 

low-frequency bands with peaks in delta and alpha but a dip in theta 
(except for some HC subject in dataset 2) bands seemed to 
be smoothed in the synthetic signals. Averaging the spectral power 
within frequency bands (cf. insets in Figure 9) revealed for dataset 1 
significant main effects of data type, i.e., real vs. synthetic data, in 
delta, theta, and alpha bands (all F1,92 > 5.041; p < 0.027) but neither 
main effects of diagnosis nor interactions (Figure 9A inset). Dataset 2 
presented the opposite pattern, with significant main effects of 
diagnosis in delta and theta bands (all F1,108 > 7.389; p < 0.008) but 
neither main effects of data type nor interactions (Figure 9B inset). In 
the alpha band, we found no significant effects in the latter dataset.

In contrast to the synthetic data, we did not find any differences 
between real and noise data in the frequency bands. All main effects 
of data type failed to reach significance for dataset 1 (all F1,92 < 2.948; 
p > 0.089) and dataset 2 (all F1,108 < 2.251; p > 0.137).

3.2.2. Classification results
The diagnosis classifiers trained on the real data performed 

around chance level (accuracy: 50.9 ± 6.4%) for dataset 1 and well 
above chance level (accuracy: 79.8 ± 6.7%) for dataset 2 (Figure 10 
pink lines). The classifiers trained on the noise data performed in 
the same range, independent of the augmentation ratio. The 
classifiers trained only on the synthetic data performed either 
similar in the case of the chance classifier for dataset 1, or worse 
in the case of the performant classifier for dataset 2. In the latter 
case, however, it performed still significantly above chance level 
(t27 = 16.168; p < 0.001). Substituting half of the real data by 
synthetic data brought back the performance of the original 
classifier for both datasets. Padding the real data with the same 
amount of synthetic data and therewith doubling the amount of 
training data yielded a significant accuracy increase of 9.96% in 
the case of dataset 1 (t46 = 1.771; p = 0.042) but no significant 
improvement for dataset 2. Further adding synthetic data did not 

FIGURE 7

Development of classification accuracy with the ratio of real and synthetic data. The amount of synthetic data in the augmented dataset was either 
provided in multiples of the size of the real training dataset (A) or in the absolute amount of synthetic data frames (B). Two studies also provide a 
comparison with the equal amount of training data, either with a fully synthetic dataset or a mixed set with half real and half synthetic data. The color 
scheme is loosely adopted from Figure 2.
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lead to additional improvements in classification accuracy. Note 
that the classifiers were all tested on real data.

Investigating the other classification performance metrics 
(Figure A1 in Supplementary material) indicated for dataset 1 that the 
classification was rather balanced for the real data. The increase in 
classification accuracy was first driven by the precision, but with the 
amount of real data being maximal again, the classification was 
balanced once more. The classification for dataset 2 was already tipped 
toward recall, i.e., sensitivity, for the real data and this imbalance was 
particularly pronounced when the classifier was exclusively trained by 

the synthetic data. However, augmenting the real data with twice the 
synthetic or noise data, balanced this classification as well.

4. Discussion

The current study presents the status of the field of generative 
methods for EEG data focusing on the generation of synthetic data 
later used for a classification task, such as a clinical diagnosis, based 
on a systematic review. An in-depth analysis of the methods, 

FIGURE 8

Comparison of time-series windows of 8  s in length for real and synthetic data for electrode F3 from dataset 1 (A) and electrode F4 from dataset 2 (B). 
The top panels show exemplary single time-series for a random subject. Middle panels show exemplary single time-series for a random synthetic data 
frame. Bottom panels show the mean over 10 time-series from real subjects selected randomly and 10 time-series of synthetic data. The shaded areas 
depict 95% confidence intervals. Data is normalized from −1 to 1, therefore the amplitude has arbitrary units but y-axes match across graphs. The color 
scheme introduced in this figure is adopted in all subsequent figures showing real data (dark blue and red for HC and MDD, respectively) and synthetic 
data (light blue and orange for HC and MDD, respectively).

FIGURE 9

Comparison of mean spectra for real and synthetic data for electrode F7 from dataset 1 (A) and electrode F8 from dataset 2 (B). The insets show the 
same data averaged within frequency bands. The shaded areas and error bars depict 95% confidence intervals. Data is normalized from −1 to 1, 
therefore, the amplitude has arbitrary units, but y-axes match across graphs.
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opportunities, and pitfalls, as well as the interdependence between the 
sub-steps of the data generation and evaluation process, provides an 
overview of the possibilities and current weaknesses of the research 
field. Based on two EEG datasets, we  then demonstrated the 
generation of synthetic data from random noise for the two clinical 
groups MDD and HC with a WGAN incorporating CNNs as the 
generator and critic. The data were used to train a “diagnosis classifier” 
based on a CNN separating HC from MDD and were partially able to 
improve classification accuracy. This is to our knowledge the first 
study generating EEG time-series data directly for two clinical 
populations. The evaluation of our synthetic data reveals strengths and 
weaknesses of the generated data that are well within the parameters 
of comparable studies presented in the review part. The methods may 
not be ripe yet to be applied in neuroscience or medical research at a 
large scale to produce data for methodological developments. 
However, the field will now benefit greatly from domain experts 
working with EEG on understanding psychiatric or 
neurodegenerative diseases.

Evaluation of our synthetic data first demonstrates the face 
validity of the generated signal. The synthetic time-series cannot 
be  distinguished from the real time-series with the bare eye. 
Transforming the data into the frequency space, a common 
transformation for extracting features from EEG signals (Poil et al., 
2013), e.g., in order to extract biomarkers for MDD (Greco et al., 
2021), revealed some weaknesses of our synthetic data. The generated 
data maps some frequency characteristics of the real data well but also 
smooths frequency peaks and dips. This effect can also be observed in 
the two other studies generating continuous time-series EEG data and 
subsequently showing frequency spectra. A close look at Figure 6 in 
the study of Hartmann et al. (2018) shows that, e.g., the beta peaks in 
the Rest condition are smoothed over in the synthetic data generated 
with a WGAN-GP with CNN architecture. Similarly, Figure 5 in the 
study of Bird et al. (2021) demonstrates highly smoothed versions of 
the 50 Hz line noise artifact as well as the absence of alpha peaks in the 
synthetic data produced with a GPT model. Given the importance of 
the frequency content in EEG signals, especially in clinical use cases 
(Poil et  al., 2013), this constitutes a serious weakness in current 

generative models that needs to be  addressed in further studies. 
Categorizing our power spectra in the frequency bands used in clinical 
research provides contradictory results. The analyses for dataset 1 
showed that the real and synthetic data were significantly different in 
all frequency bands. However, for dataset 2, we  found significant 
differences for the MDD vs. HC groups in the low frequency bands 
without significant differences between real and synthetic data. This 
finding demonstrates a successful differentiated reconstruction of this 
frequency content for the two clinical groups. This holds at least true 
for the granularity the frequency content is often analyzed, i.e. 
condensed in commonly used frequency bands. Note that for this 
dataset, the classification accuracy based on the real data is with nearly 
80% already well above chance level. This suggests that the conditional 
GAN might also have a better chance of generating separable classes 
for a dataset in which the classes are already better separable. Finally, 
yet importantly, we improved our diagnosis classifier by nearly 10% 
for dataset 1 when augmenting the real data with the same amount of 
synthetic data. This is well within the range of improvement we saw in 
the other studies analyzed for the review. This improvement is mainly 
driven by precision, i.e., an increase in the ratio of correctly classified 
patients among all data classified as patients. It might be  that the 
diversity of the augmented training data was helpful in this case. 
However, we could not replicate this improvement with dataset 2, 
which already had a marked higher baseline classification accuracy 
than dataset 1. Here, training only on synthetic data steeply increased 
the imbalance biased toward recall, i.e., the sensitivity or the ratio of 
correctly classified patients, at the cost of precision and specificity. 
Augmenting the data with synthetic or noise data, however, lead to a 
more balanced classification without increasing the classification 
accuracy. Because the CNN used for classification behaves like a black 
box, we are blind as to whether the algorithm bases its decision on 
clinical meaningful features or not. The direct comparison of the 
synthetic data as well as the classification results for the two datasets 
demonstrates that these methods do not yet produce stable results and 
therefore cannot be readily applied in a clinical context.

Our clinical use case of generating data for two clinical 
populations has only been studied twice, but both times with 

FIGURE 10

Classification accuracies for HC vs. MDD based on different ratios of real and synthetic or noise data for training (Table 2) from dataset 1 (A) and dataset 
2 (B). The classification with training on real data serves as baseline for comparison and is therefore spread across the x-axis. The shaded areas and 
error bars depict 95% confidence intervals. * p  <  0.05 for the t-test in comparison to training on real data only.

https://doi.org/10.3389/fnins.2023.1219133
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Carrle et al. 10.3389/fnins.2023.1219133

Frontiers in Neuroscience 14 frontiersin.org

generating features from EEG instead of generating time-series data 
directly. An additional clinical study published after our search 
generated data for the minority class only (Sadegh-Zadeh et al., 
2023). In contrast to within-subjects studies, like most other studies 
in the review, the differences between the classes arise here from 
disease-dependent changes to the resting state EEG signal and not 
from different mental states within the same subject. The inherent 
challenges of generating data resembling the original data persist, 
but the differentiation between classes is more subtle. In contrast 
to continuous EEG data, time locked signals are much more 
ordered in the time domain. Therefore, transferring methods 
between those two modes of EEG recordings should be considered 
with caution.

The type of generated data determines the degree of freedom for 
further processing the data. The less the EEG data is processed or 
condensed, the more options remain. The original EEG time-series can 
be reconstructed from a complex power spectrum, i.e., the amplitude 
and phase of the frequencies; therefore, this representation can also 
be used for obtaining data with the same possibilities as generating 
time-series data directly. Only one study used the real part of the power 
spectrum as input/output feature (Piplani et al., 2018), and four studies 
used images with TFR, i.e., spectral power amplitude over time. These 
representations do not allow for a full reconstruction of the signal since 
phase shifts between frequencies are lost, but the frequency content is 
still captured. Two of these studies presented exemplary synthetic TFR 
images (Zhang and Liu, 2018; Zhao et al., 2020) that seem to capture 
the frequencies rather well, but the overall quality of the generated data 
cannot be fully judged based on these images alone. Apart from data 
type, the structure of the input data is of relevance, at least for the 
generators using convolutional layers. Here, the neighborhood 
relations in the data structure are of essence. For time and frequency 
dimensions, these relationships are given but the spatial domain, i.e., 
the channels, were handled differently across studies. Choosing only 
one channel (Hartmann et al., 2018) or separately generating data for 
each channel (Zhang and Liu, 2018) bypasses this issue. However, the 
signal correlation between channels is discarded in the synthetic data 
in the latter case. Zhang et al. (2020) stacked the TFR images in the 
same dimension as the frequency while maintaining the neighboring 
relationships between their three channels. Several studies organized 
the channels in an additional dimension but did not report their order. 
Finally, the type of normalization of the EEG time-series is important 
to consider, especially when the synthetic dataset is supposed to 
be used for a clinical use case. Normalization from zero to one or 
minus one to one is a common preprocessing step for machine learning 
(Singh and Singh, 2020), i.e., also for the generator models. For many 
(clinical) applications, however, the relative signal strength across 
electrodes is meaningful as demonstrated by the common 
representation of EEG data in a topographic map. These differences 
should therefore not be factored out by, e.g., normalizing the channels 
individually. The same holds true for other common preprocessing 
steps which are out of scope for this review but can heavily influence 
further processing and should therefore be carefully chosen based on 
domain expertise. Domain knowledge of the use case and the data also 
aids in extracting features from the EEG data and generating those 
instead of time-series data. This is a viable option when the data is used 
directly to augment the training data for a specific classification task. 
However, this approach limits the use of the synthetic data beyond this 
immediate application.

For GANs, various architectural choices have already been tested 
for generating EEG data (cf. Figure 3). This toolbox provides a solid 
foundation for refining the models for generating EEG data usable for 
a clinical use case. Especially for time-series transformed into TFR 
images, CNN variants of the GAN provide the advantage of a large 
community working on image generation and with it the quick 
advances in methodological development (Wang et  al., 2021). 
However, the issue of a potential spatial dimension with the EEG 
channels still needs to be addressed. Given the sequential nature of 
EEG signals, GAN architectures using RNN and GPT models seem 
to be a natural choice. However, these approaches have been studied 
less frequently, and their potential for the clinical use case needs more 
exploration. In light of the rapidly advancing fields of language and 
image generation (Zhang et al., 2023), researchers synthetizing EEG 
data should keep track of GPT and possible future classes of generative 
algorithms. Except for one study, VAE were only used for comparison 
with a GAN architecture and always performed worse than the GAN.

A third of the studies provided neither a qualitative nor a 
quantitative evaluation of the quality of the generated data. Given that 
data quality is of essence for any data-driven decision process, selective 
and meaningful metrics for assessing data quality, and in the case of 
synthetic data, faithfulness to the real data, are essential. Evaluation 
metrics for synthetic data are still a topic of ongoing research and 
debate (Theis et al., 2015; Borji, 2019). Face validity is a first important 
step. However, in the case of EEG time-series data, which cannot 
be judged as easily as, e.g., natural images by the naked eye, showing 
time-series data is not sufficient. Transformation into frequency space 
or visual representations like topographic maps aids visual judgment 
tremendously and does in fact reveal weaknesses of the synthetic data 
in the few studies that provided this information as well as in our own. 
Finding two- or three-dimensional mappings of the data that represent 
its distribution are popular methods that were also applied in some of 
the reviewed studies. However, the three studies that did show 
convincing 2D distributions of the time-series data (Fahimi et al., 2021; 
Geng and Chen, 2021; Xu et al., 2022) all worked with time locked data, 
e.g., the form of the ERP was represented in 2D space and not a 
continuous EEG signal. The only study showing a 2D representation of 
continuous time-series data with a principal component analysis 
(PCA) (Kalashami et al., 2022) could neither demonstrate a class nor 
dataset separation in this representation. We  also tried to find a 
meaningful 2D representation with three popular dimension reduction 
approaches—PCA, locally linear embedding [LLE (Roweis and Saul, 
2000)], and t-Distributed Stochastic Neighbor Embedding [t-SNE (Van 
der Maaten and Hinton, 2008)]—but failed to find one. Explaining only 
8 to 9% of the variance in our data with the first two components of the 
PCA suggests that two dimensions might simply not suffice for 
meaningfully condensing continuous time-series EEG data. 
Quantitative metrics were provided by seven studies only and the 
details of the evaluation vary widely. For time locked paradigms, 
similarity between signals can be  assessed more easily, e.g., DTW 
(Bellman and Kalaba, 1959) is a distance metric applied in one study 
that is well suited for a comparison between two time-series with 
defined beginning and ending. For continuous data, however, 
quantitative evaluation of the data quality might greatly benefit from 
domain expertise about the use case. In our study, we extracted the 
bandpower of the available frequency bands for a quantitative 
evaluation. These features, however, are only one example of the many 
biomarkers used in EEG research for MDD (Greco et al., 2021).
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The gold standard evaluation of the synthetic data for most studies 
was improving a classifier’s performance with training it on augmented 
data including the synthetic data. All studies succeeded in improving 
their classification accuracy. However, 18 studies used some kind of deep 
learning classifier and did not assess whether the synthetic data genuinely 
provided relevant information for the task or whether accuracy 
improvement was simply an artifact (Nguyen et al., 2015). An explanation 
for the pattern of only a transient accuracy increase with increasing 
amount of synthetic data observed in a few studies might be that the first 
couple of data frames counteract the effect of overtraining but further 
synthetic data tunes the classifier too far away from using task-relevant 
information. This hypothesis, however, is of a theoretical nature so far 
and needs further investigation. In our work, we  compared the 
performance of a classifier trained on data augmented with synthetic 
data to one trained on data augmented with noise data. While adding 
noise data did not improve the classification performance significantly, 
adding synthetic data did in the case of dataset 1. However, we classified 
the data with a CNN used as a black box starting at the chance level. For 
the classifier starting well above chance level with dataset 2, we could not 
replicate this improvement.

The articles reviewed were mainly directed at a technical or 
methodologically interested and adept audience. Algorithms were 
developed or adapted from another data domain, and the main goal was 
to demonstrate the technical feasibility. In order to proceed to the 
generation of synthetic data with clinical relevance, i.e., faithfully 
representing clinically relevant features in the data, domain experts on 
EEG data analysis in a clinical area or in basic neuroscience research 
need to add their expertise to the research field. This review has 
identified two key issues where domain expertise is essential: the format 
of the input/output data and evaluation of the generated data. On a 
related note, the explainability of DL models processing EEG data needs 
to be enhanced, another task where domain expertise is most useful. 
This becomes relevant to the field when the DL model is used to evaluate 
the generated data. Finally, yet importantly, architectures specifically 
designed for continuous data such as GANs with RNN and GPT models 
should be further explored for their suitability for EEG data generation.

Our work carves out the opportunities and current weaknesses of 
generating synthetic EEG data for two clinical groups, such as MDD 
patients and HC, based on a systematic literature review in combination 
with an empirical study on two publicly available datasets. The generation 
of synthetic data constitutes a promising approach for (medical) fields in 
which large datasets are sparse. Still, biomarker research, especially 
methods based on (deep) machine learning, requires large datasets to 
produce generalizable models able to support clinical routine. A sound 
technical basis is set with the algorithms developed over the last decade, 
but the shortcomings of the data generated so far require further research 
before their broad application in clinical use cases. In order to address 
these shortcomings, more domain expertise from researchers specialized 
in EEG processing and EEG biomarkers for clinical applications needs 
to be incorporated into further developments in the field.
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