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Implication of tau propagation on 
neurodegeneration in Alzheimer’s 
disease
Daniel Lamontagne-Kam , Anosha Kiran Ulfat , Vincent Hervé , 
Tra-My Vu  and Jonathan Brouillette *

Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada

Propagation of tau fibrils correlate closely with neurodegeneration and memory 
deficits seen during the progression of Alzheimer’s disease (AD). Although it 
is not well-established what drives or attenuates tau spreading, new studies 
on human brain using positron emission tomography (PET) have shed light 
on how tau phosphorylation, genetic factors, and the initial epicenter of tau 
accumulation influence tau accumulation and propagation throughout the brain. 
Here, we review the latest PET studies performed across the entire AD continuum 
looking at the impact of amyloid load on tau pathology. We  also explore the 
effects of structural, functional, and proximity connectivity on tau spreading in a 
stereotypical manner in the brain of AD patients. Since tau propagation can be quite 
heterogenous between individuals, we then consider how the speed and pattern 
of propagation are influenced by the starting localization of tau accumulation 
in connected brain regions. We  provide an overview of some genetic variants 
that were shown to accelerate or slow down tau spreading. Finally, we discuss 
how phosphorylation of certain tau epitopes affect the spreading of tau fibrils. 
Since tau pathology is an early event in AD pathogenesis and is one of the best 
predictors of neurodegeneration and memory impairments, understanding the 
process by which tau spread from one brain region to another could pave the 
way to novel therapeutic avenues that are efficient during the early stages of the 
disease, before neurodegeneration induces permanent brain damage and severe 
memory loss.
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Introduction

Tau propagation across the brain has been shown to follow a stereotypical pattern in AD 
using histopathological staining at autopsy more than 30 years ago (Braak and Braak, 1991). It 
was first reported that fibrillar tau start to accumulate in the trans-entorhinal cortex and then 
spread to the anterior hippocampus, followed by adjacent temporal and limbic cortex, 
association isocortex, and ultimately to primary sensory cortex (Braak and Braak, 1991; Braak 
and Del Tredici, 2015; Cho et al., 2016).

Novel technologies allowing for the first time the visualization and quantification of 
aggregated, paired helical filament (PHF) tau in the brain of living people using positron 
emission tomography (PET) (Moscoso et al., 2022). Early increase in tau PET uptake was 
validated in the entorhinal cortex but was also found in many other regions such as the inferior 
temporal lobe, amygdala, banks of the superior temporal sulcus, fusiform gyrus, inferior parietal 
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lobe, middle temporal lobe and the precuneus (Insel et  al., 2020, 
2023). Using novel 3D neuroimaging techniques, the noradrenergic 
locus coeruleus has also been shown as a very early accumulation site 
for trans-neuronal spreading of hyperphosphorylated tau (Gilvesy 
et al., 2022). Moreover, there is a growing body of evidence suggesting 
that substantial inter-individual variabilities in the pattern and 
intensity of tau signal may be more common than previously expected 
in affected AD brain regions (Murray et al., 2011; Scholl et al., 2017; 
Hanseeuw et al., 2019; Jack et al., 2019; Lowe et al., 2019; Betthauser 
et al., 2020; Vogel et al., 2021).

It is now widely recognized that tau can propagate, at least partly, 
by being secreted in an activity-dependent manner into the synaptic 
cleft from donor pre-synaptic neurons, and then recapture by recipient 
post-synaptic neurons localized in another brain region (Mohamed 
et al., 2013; Pooler et al., 2013; Calafate et al., 2015; Wu et al., 2016; 
Mudher et  al., 2017; Vogel et  al., 2020) (Figure  1). Tau can also 
be  released as a result of leakage from neurodegeneration of the 
pre-synaptic neuron and diffuse in its close environment. Using high-
resolution array tomography on post-mortem temporal and occipital 
cortices of AD patients, it was found recently that phosphorylated or 
misfolded tau, but mostly oligomeric tau accumulates in both pre- and 
post-synaptic terminals of the same synapses (Colom-Cadena et al., 
2023), suggesting that oligomeric tau could be the main species of tau 
that spreads trans-synaptically. These results are in accordance with 
another in vitro study showing that low molecular weight tau 
aggregates and short fibrils (but not monomers, long fibrils, nor long 
tau filaments), are internalized through endocytosis and transported 
anterogradely and retrogradely (Wu et al., 2013). Moreover, trans-
synaptic tau spreading has also been shown in various animal models 

overexpressing human tau or using adeno-associated virus-mediate 
expression of tau (de Calignon et al., 2012; Harris et al., 2012; Liu 
et al., 2012; Pickett et al., 2017; Wegmann et al., 2019).

Propagation of tau pathology is one of the strongest predictors of 
progressive neurodegeneration and cognitive decline in AD (La Joie 
et al., 2020; Biel et al., 2021; Ossenkoppele et al., 2021b). Furthermore, 
elevated tau burden has been strongly associated with higher risk of 
progression from a clinically unimpaired to a mild cognitive 
impairment (MCI) status (Strikwerda-Brown et  al., 2022). Thus, 
determining the factors that influence tau accumulation and 
propagation could help develop new treatments to prevent or halt the 
neurodegenerative process and ensuing cognitive decline that takes 
place in the early stages of AD. Here, we will review the latest research 
performed in the field of tau propagation in the human brain using 
neuroimaging techniques such as PET, magnetoencephalography 
(MEG), and functional magnetic resonance imaging (fMRI).

Impact of amyloid-beta (Aꞵ) on tau 
propagation

Many PET studies have consistently emphasized the critical role 
of Aꞵ pathology on the accumulation and spreading of tau (Wang 
et al., 2016; Jacobs et al., 2018; Franzmeier et al., 2020; Vogel et al., 
2020; Jiang et al., 2022; Lee et al., 2022). Since Aꞵ starts to accumulate 
before tau in the preclinical stage of AD (Sperling et al., 2011), it is 
often difficult to disentangle the phenomena that are solely and 
specifically attributed to tau pathology. Although the interaction 
between Aꞵ and tau still needs to be fully determined, many studies 

FIGURE 1

Proposed mechanisms for tau propagation. Highlighted are the findings that tau propagates predominantly in its oligomeric and short-fibril forms, with 
misfolded and hyperphosphorylated forms propagating in smaller proportions (Colom-Cadena et al., 2023). Tau monomers and long fibrils do not 
appear to propagate from cell to cell (Wu et al., 2013).
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have shown that Aꞵ greatly contribute to the deleterious effects of tau 
in AD brain. It was found that AD patients and cognitively normal 
people who tested positive for Aꞵ42 into the cerebrospinal fluid (CSF) 
had higher tau PET signal in the cortex and neurodegeneration in the 
hippocampus (Wang et al., 2016).

Higher neocortical accumulation of Aꞵ also predicted 
hippocampal volume loss, abnormalities in the white-matter tract that 
projects from the hippocampus to the posterior cingulate cortex 
(PCC), larger tau deposition in PCC, and faster memory decline in 
healthy older individuals (Jacobs et al., 2018). Other studies also found 
that detection of higher amyloid PET signal also extended tau PET 
uptake in cortical brain regions beyond the entorhinal cortex and 
correlates with cognitive decline (Jack et al., 2018; Pontecorvo et al., 
2019; Sanchez et al., 2021). These findings in humans are consistent 
with animal studies showing that Aꞵ is an instigator of trans-synaptic 
spread of tau across the brain (de Calignon et al., 2012; Ahmed et al., 
2014; Pooler et al., 2015; He et al., 2018).

Using an epidemic spreading model of tau along the AD 
continuum, Vogel and colleagues found that brain areas with higher 
Aβ burden had more tau accumulation than predicted by connectivity 
patterns (Vogel et al., 2020). This role of Aβ in accelerating tau spread 
was also observed in another study showing that individuals without 
amyloid plaque had almost no tangles in their brain, whereas those 
with Aꞵ PET uptake had more tangles at baseline and during 
follow-up trials (Franzmeier et al., 2020). Moreover, Aꞵ was found to 
interact with tau within the inferior temporal gyrus and accelerate 
widespread neocortical tau propagation (Lee et al., 2022). Altogether, 
these data indicate that temporal and spatial patterns of tau pathology 
depend on prior Aꞵ deposition. Although the exact mechanisms by 
which Aꞵ affects the accumulation and propagation of tau in distant 
brain regions still need to be elucidated, novel PET studies in human 
are giving new insights on how Aꞵ and tau pathologies are linked and 
influence each other in AD pathogenesis.

Effect of structural, functional, and 
proximity connectivity on tau spreading

Three models have been proposed as predictors for tau 
propagation. The functional connectivity model suggests that tau 
propagation is more likely to be detected in connected brain regions 
that fire together, whereas the structural and proximity connectivity 
models, respectively, propose that tau propagation relies more on 
direct synaptic connections or physical distance between brain regions 
(Schoonhoven et al., 2022).

Many cross-sectional studies have reported that the level of tau 
accumulation strongly correlates among regions that are functionally 
connected (Hoenig et al., 2018; Jacobs et al., 2018; Franzmeier et al., 
2019b; Vogel et al., 2020). By combining magnetoencephalography 
(MEG) to measure electrical activity in the brain with positron 
emission tomography (PET) to evaluate tau depositions at several 
stages of AD, a recent study by Schoonhoven and colleagues has 
shown that the functional connectivity model was most accurate 
(r = 0.58) compared to the structural (r = 0.45) and proximity model 
(r = 0.44) at predicting tau propagation in the preclinical stage of AD 
(Schoonhoven et  al., 2022). Since the prediction accuracy of the 
functional networks declined with AD progression, this suggests that 
exacerbated neuronal communication might be especially important 

for tau spreading in the earlier stages of the disease, before initial 
neuronal hyperactivity progressively switch to hypoactivity in AD 
(Busche and Konnerth, 2016; Hector and Brouillette, 2020).

In another study using resting-state fMRI scans to evaluate 
connectivity between 400 brain regions throughout the AD 
continuum, a strong correlation was found between functional 
connectivity and an increase in tangles, whereas spatial proximity was 
not a robust predictor of tau accumulation unless the nearby brain 
areas were functionally connected (Franzmeier et  al., 2020). 
Connectivity, rather than proximity, was also identified as the primary 
source of tau spreading in an in vivo model of tau propagation using 
human P301S tau transgenic mice injected with brain extract 
containing tau aggregates (Ahmed et al., 2014).

These results are in line with an in vivo microdialysis study 
showing that higher neuronal activity induced by presynaptic 
glutamate release increased the level of extracellular tau in the 
hippocampus of wild-type mice (Yamada et al., 2014). Moreover, it 
was reported that higher neuronal activity induced by glutamate, (S)-
AMPA or KCl depolarization increased tau release from primary 
mature cortical cultures, whereas inhibition of neuronal activity with 
tetrodotoxin impairs AMPA-mediated tau release (Pooler et al., 2013).

Although synaptic activity has been established as an important 
predictor of tau propagation, other studies have also highlighted the 
importance of the structural connectivity model to determine the 
pattern of tangles within the brain. In a study using resting-state fMRI, 
DTI, and tau PET, it was reported that anatomical connections could 
predict 70% of the tau PET pattern observed in the brain of MCI and 
AD patients, whereas the functional and proximity connectivity 
models, respectively, explained 58 and 48% of the tangle pattern 
(Vogel et  al., 2020). Even though it is not clear at the moment if 
methodological differences between this study and others like the one 
by Schoonhoven et al. can explain the primary role for structural over 
functional connections, it seems nonetheless that both models 
influence tau propagation in a way that is consistent with the idea that 
tau spread through long-range axonal connections.

The observation that tau can propagate in both retrograde and 
anterograde directions of neural networks also argue in favor of an 
anatomical propagation of tau (Ahmed et  al., 2014; Takeda et  al., 
2015), independent of neuronal activity that occurs unilaterally from 
the pre- to the post-synaptic neurons. However, it cannot be excluded 
that at least part of the retrograde pattern of tau propagation could 
be the result of residual tau that was released during synaptic activity 
and then taken up retroactively.

In addition to this cell-to-cell tau transmission, simple diffusion of 
tau release by neurons might also explain its local spread. Given that 
the clearing rate of tau from the extracellular space is relatively slow 
with a half-life of about 11 days (Yamada et al., 2014), this favors its 
diffusion into the interstitial fluid (ISF) within nearby brain regions. 
This is even more marked when neurodegeneration becomes more 
prominent in the late phase of the disease, when higher levels of tau 
leak from dying cells, and breakdowns in the glymphatic and immune 
system slow tau clearance (Haage and De Jager, 2022; Ishida et al., 
2022). Altogether, these results suggest that tau spreading in a 
stereotypical manner in the brain of AD patients depends on trans-
synaptic propagation especially among active neurons that fire together, 
and that local diffusion of tau also participate in the dispersion pattern 
of tau that closely correlates with progressive neurodegeneration and 
memory impairment seen during AD pathogenesis.
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Role of starting localization of tau 
accumulation

Another aspect that can dictate the speed and pattern of tau 
propagation is the brain regions where tau starts to accumulate during 
AD. Although tau pathology spreads in a stereotypical pattern in AD 
(Braak and Braak, 1991), many studies have reported substantial 
individual variations in tau PET pattern, particularly in preclinical AD 
(Murray et al., 2011; Scholl et al., 2017; Ossenkoppele et al., 2020; 
Vogel et al., 2020; La Joie et al., 2021; Vogel et al., 2021; Frontzkowski 
et al., 2022; Young et al., 2022). By combining tau PET scans with 
resting-state fMRI to map brain connectivity, it was reported that tau 
spreads more rapidly when it is located in highly connected hub 
regions of the fronto-parietal association cortex compared to less 
connected regions in the temporo-limbic and visual cortices 
(Frontzkowski et al., 2022). Interestingly, AD patients with symptoms 
at a younger age were more likely to have tau deposition in hub 
regions, while participants who developed symptomatic AD at an 
older age had more tangles in limbic areas (Frontzkowski et al., 2022). 
Since hubs in the fronto-parietal network are essential for complex 
cognitive function (Cole et al., 2013; Zanto and Gazzaley, 2013), this 
could explain why stronger tau pathology in these hub regions was 
also associated with faster cognitive decline (Frontzkowski et al., 2022).

Different patterns of tau propagation were also observed in 
different subtypes of AD. Using PET scans from 1,612 participants 
covering the full clinical AD spectrum, tau was found to spread in four 
distinct spatiotemporal trajectories, including the limbic-predominant 
and medial temporal lobe (MTL)-sparing patterns as well as the 
posterior and lateral temporal patterns (Murray et al., 2011; Whitwell 
et al., 2012; Ferreira et al., 2020; Ossenkoppele et al., 2020; Vogel et al., 
2021) (Figure 2). In early-onset AD (< 65 years), tau also tended to 
accumulate more in the prefrontal, premotor, and inferior parietal 
cortices than in late-onset AD (Scholl et  al., 2017). Moreover, 
systematic spatiotemporal variations in tau spreading that deviate 
from the Braak staging system have been observed in clinical variants 
of AD, such as posterior cortical atrophy and logopenic primary 

progressive aphasia (Gorno-Tempini et al., 2011; Ossenkoppele et al., 
2016; Crutch et al., 2017).

Tangles were also found to spread asymmetrically in vivo, with 
more tau pathology in the right entorhinal cortex for most 
participants (Vogel et  al., 2020). This right-side epicenter was 
associated with more tau-tracer uptake on PET scans in frontal 
region and was mainly observed in older AD patients. Although 
we do not know at the moment why tau accumulation begins in 
distinct brain areas and follows variable spatiotemporal patterns in 
different people, it will be  important to incorporate this 
heterogeneity into tau spreading models to hopefully one day 
be able to predict tau propagation at the individual level. Since tau 
pathology is the key driver of neurodegeneration and cognitive 
decline in AD (La Joie et al., 2020; Biel et al., 2021; Ossenkoppele 
et  al., 2021b), understanding the cellular and molecular 
mechanisms underlying the different spatial patterns of tau 
distribution that sustained the diverse clinical manifestation of the 
disease could pave the way to develop new therapies that prevent 
cell death and memory deficits.

Genetic variants involved in tau 
propagation

Genetic variants could be, at least partly, a factor underpinning 
the variability of tangle spread in AD. Genome wide-association 
studies (GWAS) performed over the last few decades have underlined 
several genes such as APOE and BIN1 that increase the probability 
of developing AD (Jansen et  al., 2019; Wightman et  al., 2021). 
Although it is well-established that APOE4 is the strongest genetic 
predictor of sporadic AD and is associated with early amyloid 
deposition rate and burden (Corder et al., 1993; Ossenkoppele et al., 
2015; Ridge et al., 2016; Lim et al., 2017; Ge et al., 2018; Mishra et al., 
2018; Toledo et  al., 2019; Insel et  al., 2021), a growing body of 
evidences suggests that APOE4 is also involved in tau pathology 
(Table 1).

FIGURE 2

Representation of four distinct tau propagation patterns as determined by PET in a cross-sectional analysis (n = 2,324) (Vogel et al., 2021), with AD 
progression presented from left to right. The prevalence of each pattern in the analysis is indicated below the pattern names. Only the left side of the 
brain is shown, with the interior faces of sagittal cuts above their respective arrows. Different points of origin are highlighted in each of the defined 
patterns. Limbic propagation most closely resembles patterns reported by Braak and Braak (1991). Figure adapted from Vogel et al. (2021).
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In a study using preclinical AD individuals that are cognitively 
healthy but have abnormal amyloid level, it was found that APOE4 
directly increased tau PET burden in medial temporal lobe (entorhinal 
cortex and amygdala) beyond effects attributable to amyloid 
accumulation (Young et  al., 2023). APOE4 also had a deleterious 
influence on tau deposition in the early neocortical regions (inferior 
temporal, inferior parietal, precuneus), but these effects were mostly 
mediated by amyloid load. Conversely, APOE2 was associated directly 
with reduced tau accumulation in medial temporal lobe and early 
neocortical regions, which highlights APOE2 as a key protective 
variant (Young et al., 2023).

These results are consistent with previous PET reports showing 
that APOE4 carriers across the entire AD continuum have a more 
medial temporal lobe-dominant pattern of tau burden even after 
controlling for amyloid accumulation (Livingston et  al., 2017; 
Mattsson et  al., 2018; Therriault et  al., 2020; La Joie et  al., 2021; 
Ossenkoppele et al., 2021a). These findings are also in line with studies 
performed in iPSC-derived human brain cells and mouse models 
showing that APOE4 worsens tau deposition and neurodegeneration 
(Shi et al., 2017; Lin et al., 2018; Wang et al., 2018), and may have a 
role in reducing tau clearance through meningeal lymphosclerosis 

(Mentis et al., 2021; Ishida et al., 2022). However, it should be noted 
that other reports have not observed a significant impact of APOE4 
on tau burden in clinically unimpaired individuals after adjusting for 
amyloid load (Lowe et  al., 2018; Ramanan et  al., 2019). These 
contrasting observations showcase that APOE4 may be an underlying 
factor for the accumulation of tau but not the only factor.

Another AD risk variant found in many GWAS is the gene BIN1 
(i.e., bridging integrator 1), which encodes for a nucleoplasmic 
adaptor protein involved in many processes such as the regulation of 
neuronal excitability (Voskobiynyk et al., 2020), presynaptic vesicle 
release (De Rossi et al., 2020), and clathrin-mediated endocytosis 
(Calafate et al., 2016; Crotti et al., 2019). Higher gene expression of 
BIN1 found in AD brain has been found to increase trans-neuronal 
tau spreading (Chapuis et al., 2013; Calafate et al., 2016; Crotti et al., 
2019), and to be associated with more pronounced tau pathology but 
not higher Aꞵ burden (Holler et al., 2014; Taga et al., 2020). Moreover, 
BIN1 rs744373 risk allele carriers were reported to have a higher tau 
PET signal, faster cognitive decline, and accelerated tau PET 
accumulation rate when Aꞵ is found at higher levels (Franzmeier 
et al., 2019a, 2022). Conversely, a protective variant of the klotho gene 
(KL-VShet) that occurs in 20–25% of the population (Dubal et al., 

TABLE 1 The main genetic factors involved in the propagation of tau in AD.

Gene name Abbreviation Functions Impact on tau References

Apolipoprotein E APOE - Lipid transport, metabolism, and 

homeostasis

- Innate and adaptive immune 

responses

- A major genetic factor for sporadic 

AD

- APOE4 directly increased tau PET 

burden in medial temporal lobe 

beyond effects attributable to amyloid 

accumulation

- APOE4 increased tau accumulation 

and reduced its clearance

- APOE2 was associated directly with 

reduced tau accumulation

Lin et al. (2018), Young et al. 

(2023), Shi et al. (2017), and 

Mentis et al. (2021)

Bridging integrator 1 BIN1 - Organization and control of 

myelination

- Major AD risk variant found in 

many GWAS

- Increase probability of developing 

AD by modulating tau toxicity

- BIN1 isoform is reduced in AD brain 

and a lower level of BIN1 is known to 

induce tau propagation in cultured 

neurons

Calafate et al. (2015), Jansen 

et al. (2019), and Wightman 

et al. (2021)

Clusterin CLU - Involved in lipid transport and is 

released in response to cell stress

- Upregulation of Clusterin can 

enhance tau seeding and possibly 

accelerate the spreading of tau 

pathology

Yuste-checa et al. (2021)

Klotho KL - Regulation of oxidative stress, 

growth factor signaling, and ion 

homeostasis

- A variant of KL (KL-VS 

heterozygosity) was correlated with 

lower tau accumulation

Neitzel et al. (2021)

Phosphatidylinositol binding 

clathrin assembly protein

PICALM - Involved in clathrin-mediated 

endocytosis, regulates APP 

internalization and subsequent Aβ 

generation

- PICALM co-localizes with tau 

inclusion in AD and other tauopathies

Ando et al. (2013, 2016)

Protein tyrosine kinase 2 beta PTK2B - Involved in a cell adhesion pathway - PTK2B was identified as a modulator 

of tau pathology

Dourlen et al. (2017)

Triggering receptor expressed 

on myeloid cells 2

TREM2 - Involve in immune response and 

chronic inflammation

- Role in microglial proliferation, 

survival, clustering, and phagocytosis

- The R47H variant of TREM2 

increased the level of total tau protein 

in the CSF without affecting Aβ42

Guerreiro et al. (2013) and Lill 

et al. (2015)
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2014), was correlated with lower amyloid-associated tau accumulation 
(Neitzel et al., 2021), better cognitive performance (Deary et al., 2005; 
Dubal et al., 2014; Neitzel et al., 2021), and longer life expectancy 
(Arking et al., 2005; de Vries et al., 2017).

To have a broader view of the impact of genetic risk factors on tau 
pathology, Rubinski and colleagues have generated a polygenic score 
(PGS) from 85 GWAS single-nucleotide polymorphisms SNPs linked 
to AD, excluding APOE (Rubinski et al., 2023). They observed that an 
elevated PGS was associated with a faster rate of fibrillar tau 
progression and cognitive impairment, especially when amyloid 
plaque levels were more intense. Altogether, these results indicate that 
many gene risk factors have additional influences on the progression 
of tau pathology. Investigating the cellular and molecular pathways 
underpinning these effects could lead to novel therapeutic strategies 
to at least delay tau-dependent neurodegeneration and cognitive 
deficits in AD.

Tau hyperphosphorylation and spreading

Human tau protein has 85 potential phosphorylation sites, 9 
of which are phosphorylated in nonpathological, soluble tau, and 
45 of which have been identified as being phosphorylated in 
insoluble tau from AD patients (Hanger et al., 2007). The levels 
of phosphorylation at certain epitopes of tau also seems to have 
an impact on the spreading of tau fibrils. In a recent study by 
Pichet Binette and colleagues, it was observed that amyloid-
related increases in soluble phosphorylated tau (p-tau) at epitope 
217  in CSF was associated with cognitive decline and faster 
accumulation of tau aggregates in the early stages of AD, 
especially in regions that are functionally connected to areas 
where tau pathology started (Pichet Binette et al., 2022). However, 
when amyloid plaques and soluble p-tau had plateaued in later 
stages of the disease, soluble p-tau217 lost its effect on tangle 
accumulation, and cognitive deficits were more associated with 
the accumulation rate of insoluble tau aggregates. Thus, these 
results suggest that targeting soluble p-tau could be an interesting 
therapeutics strategy in early AD to prevent or slow down 
cognitive decline, the formation of insoluble tau aggregates and 
ensuing neurodegeneration.

To determine how amyloid plaques increase p-tau levels in the 
early stages of AD, Biel and colleagues (Biel et al., 2023) evaluated if 
tau phosphorylation was affected by the soluble fragment of triggering 
receptor expressed on myeloid cell 2 (sTREM2), a microglial activation 
marker increased in the CSF of mild AD patients that also correlates 
with CSF tau (Heslegrave et al., 2016; Piccio et al., 2016). They found 
that higher level of fibrillar Aꞵ was associated with increased CSF 
concentrations of sTREM2, and that sTREM2 mediated the 
association between fibrillar Aꞵ and the increase of CSF p-tau181 in 
early Aꞵ-accumulator individuals, which have high levels of Aꞵ1-42 in 
the CSF but subthreshold levels of Aꞵ when measured by 
PET. Conversely, in late Aꞵ-accumulators with high levels of Aꞵ found 

in both CSF and PET, higher level of sTREM2 was no longer correlated 
with fibrillar Aꞵ but paralleled CSF p-tau181 increases, indicating that 
sTREM2 is more tightly linked to soluble p-tau181 when high 
amounts of Aꞵ fibrils are detected in the brain.

These results are in line with a previous study showing that 
sTREM2 levels correlated with total and phosphorylated tau in the 
CSF in dominantly inherited AD approximately 5 years before the 
onset of symptoms (Suarez-Calvet et al., 2016). It also agrees with 
another report showing that amyloid-associated microglial activation 
correlates with both tau pathology and cognitive decline (Pascoal 
et al., 2021). Since plasma p-tau231 has been shown recently to be the 
earliest marker of amyloid aggregation (Mila-Aloma et al., 2022), it 
will be interesting to determine if p-tau231 affects tau phosphorylation 
and propagation across the entire AD spectrum.

Conclusion

Neuroimaging techniques indicate that the connectomic 
architecture of the brain dictates tau accumulation and spreading, 
which are critical for neurodegeneration and memory decline that 
begin in the early stages of AD. PET studies also highlight the close 
relationship between Aꞵ and tau, and how they drive 
neuropathological phenotypes observed in the entire AD continuum. 
Further studies are needed to decipher why tangle propagation is so 
heterogenous between brain regions and individuals. Finding 
protective factors that prevent or decrease the rate of tau deposition 
and spreading could also pave the way to develop therapeutic 
strategies against neurodegeneration and cognitive impairment in AD.
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