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Adaptive multi-agent cooperation with especially unseen partners is becoming

more challenging inmulti-agent reinforcement learning (MARL) research, whereby

conventional deep-learning-based algorithms su�er from the poor new-player-

generalization problem, possibly caused by not considering theory-of-mind

theory (ToM). Inspired by the ToM personality in cognitive psychology, where a

human can easily resolve this problem by predicting others’ intuitive personality

first before complex actions, we propose a biologically-plausible algorithm named

the mixture of personality (MoP) improved spiking actor network (SAN). The MoP

module contains a determinantal point process to simulate the formation and

integration of di�erent personality types, and the SAN module contains spiking

neurons for e�cient reinforcement learning. The experimental results on the

benchmark cooperative overcooked task showed that the proposed MoP-SAN

algorithm could achieve higher performance for the paradigms with (learning)

and without (generalization) unseen partners. Furthermore, ablation experiments

highlighted the contribution of MoP in SAN learning, and some visualization

analysis explained why the proposed algorithm is superior to some counterpart

deep actor networks.

KEYWORDS

multi-agent cooperation, personality theory, spiking actor networks, multi-agent

reinforcement learning, theory of mind

1. Introduction

With the rapid development and great progress of deep reinforcement learning (RL) in

recent years (Silver et al., 2017; Vaswani et al., 2017; Vinyals et al., 2019; Yu et al., 2021;

Meng et al., 2023), more and more researchers have shown an increased interest in multi-

agent cooperation or human-in-the-loop cooperation (Carroll et al., 2019; Shih et al., 2021,

2022; Strouse et al., 2021; Zhao et al., 2021; Ruan et al., 2022; Lou et al., 2023). However,

cooperation with unseen partners usually requires continuous collection of expert data,

which is expensive and delayed (Carroll et al., 2019; Shih et al., 2022). Other methods
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attempt to achieve better generalization without expert data by

constructing a population pool for simulating diverse candidate

partners. However, these studies try to improve the generalization

cooperation score by relying on being trained with a large number

of well-designed partners but ignore the cultivation of the agent’s

real thinking and empathy ability.

The less consideration of the psychological characteristics of

partner agents might be the key reason why these artificial agents

fail, compared to their counterpart biological agents. In our daily

life, humans can cooperate well with others whom we have never

seen before (Boyd and Richerson, 2009; Rand and Nowak, 2013).

This phenomenon is interesting but not hard to guess. We can

infer others’ personalities quickly, and then we can well handle

the following cooperation behaviors with the help of this guessed

personality. The personality theory is under the framework of

theory of mind (ToM) (Gallagher and Frith, 2003; Frith and Frith,

2005; Roth et al., 2022; Aru et al., 2023), which refers to our

ability to speculate on the intentions, behaviors, and goals of other

people, which explains why humans can collaborate with unseen

partners from a cognitive perspective. In fact, instead of being

classified into a specific personality, the unseen human can be

viewed as some combination of several “personalities.” Therefore,

it is significantly helpful to find as few representative personalities

as possible and make them orthogonal to each other for a more

efficient combination. The personality theory (McCrae and Costa,

2008; Ryckman, 2012; Schultz and Schultz, 2016) from cognitive

psychology has provided an opportunity to model the partners

more clearly and concretely, including the big five personalities

(De Raad, 2000) and the sixteen personality factors (16PF) (Cattell

and Mead, 2008). These theories are useful in describing unique

and diverse people (Anglim and Horwood, 2021) and can instruct

many cognitive tasks, such as personality trait tests (O’Connor and

Paunonen, 2007) to analyze people’s suitable careers.

Unlike the personality theory in cognitive science, which is

often used as the discrete classification, we propose the base

personality similar to the base vector in the personality space,

which can be used for inferring personality. To further ensure the

difference between multiple base personalities, determinantal point

process (DPP) constraints are adopted as an intrinsic reward. Based

on the personality model with these base personalities, the agent

can naturally predict and understand any unseen partner to better

make responses and obtain cooperation.

Hence, inspired by the above personality theory, we propose the

mixture of personality (MoP), along with our previously proposed

spiking agent network (SAN), which has been verified efficiently

in single-agent reinforcement learning (Zhang et al., 2022). The

SAN is biologically reasonable, containing more dynamic neurons,

which have shown advantages in dynamic RL tasks with lower

energy consumption and better generalization. In this study, we

further applied SAN to MARL cooperation scenarios. Our main

contributions can be concluded as follows:

1. We are the first to propose the concept of the MoP, which

is inspired by the personality theory in psychology, describing

a two-step prediction, where the personality estimator (PE) is

designed to receive context for estimating the personality of

partner under the DPP constraints first, and then behavior

prediction is given by the multi-personality network.

2. We incorporate efficient SAN and MoP models to reach

multi-scale biological plausibility, where spiking neurons with

neural dynamics have been verified efficient in RL-like tasks

(Zhang et al., 2022), and we run further to combine neuronal

scale dynamics and partner scale cooperations together, to

increase the generalization ability of the agent in multi-agent

collaboration.

3. The proposed MoP-SAN is then tested in the Overcooked

benchmark environment, and the experimental results show

a marked better generalization, especially when cooperating

with other unseen partners compared to other DNN baselines,

which means our proposed algorithm can successfully infer the

personality of the unseen partner in the zero-shot collaboration

test.We conducted analysis experiments to analyze why the SAN

method has better generalization results than DNN baselines.

2. Related works

RL is an essential paradigm in machine learning, which is

also suitable for many sequential decision-making tasks. The RL

methods have recently achieved good results in many tasks (Silver

et al., 2017, 2018; Vinyals et al., 2019). Existing traditional RL

methods can be divided into value-based methods (Mnih et al.,

2013) and policy-based methods (Schulman et al., 2015). The

proposal of the actor-critic method is of milestone significance

in RL which combines the advantages of value-based and policy-

based methods. Proximal policy optimization (PPO) (Schulman

et al., 2017) is one of the most classic methods in this framework,

which has achieved compelling performance in many tasks, such as

control tasks (Schulman et al., 2017) and StarCraft (Yu et al., 2021).

MARL describes the process of multi-agent learning strategies

from scratch to maximize the global rewards in the process of

interacting with the environment sequentially or simultaneously.

For example, in the two-player cooperative task Overcooked, the

ego agent and the partner agent need to cooperate to maximize

the team reward from the Overcooked environment. In MARL,

cooperative MARL tasks are a very challenging direction. Although

there are some studies exploring how to solve challenging problems

in cooperative MARL tasks such as credit assignment (Sunehag

et al., 2018; Harada et al., 2023), how to design a model which

can generalize to unseen partners is still challenging. For multi-

agent cooperation, some recent studies (Carroll et al., 2019; Shih

et al., 2021, 2022; Strouse et al., 2021; Zhao et al., 2021; Lou et al.,

2023) focus on the generalization research of unseen partners.

Although traditional self-play methods (Silver et al., 2018) have

achieved significant advantages and can often converge to an

optimal equilibrium strategy in competitive games, they tend to

overfit specific partners for cooperative tasks. Some efforts are put

into solving the overfitting through imitation learning (Carroll

et al., 2019; Shih et al., 2022) even though it has been reported as

challenging in collecting expert data in many real scenarios. For the

better generalization of human-AI collaboration, modular methods

are proposed, which explicitly separate the convention-dependent

representations and rule-dependent representations (Shih et al.,

2021). Other studies (Strouse et al., 2021; Zhao et al., 2021) tried to

solve the cooperative task of unseen partners by designing various
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population pools, which include many carefully designed criteria

and agents.

Since brain-inspired SNN has advantages in many aspects

(Zhang et al., 2021), many studies have begun to use SNN to

solve reinforcement learning problems (Florian, 2007; Frémaux

et al., 2013; Patel et al., 2019; Bellec et al., 2020; Tang et al., 2020;

Zhang et al., 2022). Our previous study proposed a multi-scale

dynamic coding improved the spiking actor network (MDC-SAN)

in a single-agent scenario to achieve efficient decision-making

(Zhang et al., 2022). Unlike most of these studies that explore SNN

methods in single-agent RL tasks, this study wants to apply the SNN

method to multi-agent cooperation tasks. In this study, we need to

cooperate with different styles of partners in cooperative tasks, so it

is vital to construct a model for partner modeling.

ToM (Gallagher and Frith, 2003; Frith and Frith, 2005; Roth

et al., 2022; Aru et al., 2023) is a fundamental concept in cognitive

psychology, and it allows individuals to predict and explain

others’ behaviors, communicate effectively, and better engage in

cooperative interactions, which is also what we want AI agents to

achieve. There are some studies that design ToM models (Tabrez

et al., 2020; Wang et al., 2021; Yuan et al., 2022) to solve RL tasks.

Through the ToM model, the agent can communicate with other

partners more efficiently and learn some conventions for partners.

In some studies (Rabinowitz et al., 2018; Roth et al., 2022), the

design of the ToM model is to understand the behavior of other

agents, which is vital for many RL tasks. While ToM encompasses

many aspects, including mental simulation, action prediction, and

reasoning, in this context, we will focus on a specific aspect called

personality traits in order to enhance the agent model.

3. Method

3.1. The problem setting of 2-player
cooperation

We can define this 2-player Markov game as a tuple
(

O,A,P, γ ,π , ρi, r,m
)

, where O denotes the observation space

and A represents the action space that the ego agent and partner

share. We can define o = (o1, o2) including the ego observation

and the partner observation. We can denote label a = (a1, a2)

as the joint action for all players, including the ego action and

the partner action. P :O × A → O represents the environment

transition probability function, and γ ∈ [0, 1) is the discount factor.

π is the joint policy, and the policy of ego agent ρ1 is the spiking

policy of the SAN agent for our MoP-SAN, and ρ2 represents the

partner’s policy. All agents share the same team reward function

r(o, a) : o × a → R. τ = (o0, a0, o1, ...) denotes the trajectory

generated by the joint policy π , and τ 2 = (o20, a
2
0, o

2
1, ...) is the

trajectory of the partner. The MoP modelm can model the partner

based on the historical trajectory information of the partner and

provide actionable guidance for the SAN agent. At each time step,

the SAN agent perceives an observation o1t ∈ O and receives the

guided action â2t from the MoP model m, taking action a1t ∈ A

drawn from a spiking policy ρ1
:O × A → [0, 1], denoted as

a1t = ρ1(·|o1t , â
2
t ). The policy of the partner can be denoted as

a2t = ρ2(·|o2t ). The SAN agent and partner enter the next state ot+1

with the probability P (ot+1 | ot , at), receiving a numerical reward

rt+1 from the environment. All agents coordinate together for the

maximum cumulative discounted return Eτ∼π

[
∑∞

t=0 γ tr(ot , at)
]

.

We assume that there is at least one joint policy through

which all agents can attain the maximum cumulative rewards in

fully cooperative games. The problem, objective statement, and our

approach are formalized in the following sections.

3.2. The algorithmic architecture and
pipeline of MoP-SAN

In the last section, the cooperative MARL problem is defined.

We present our algorithmic architecture and pipeline for the

learning and generalization phases in this section. In this study, we

propose a robust framework for multi-agent collaboration. The left

side of Figure 1 represents the two phases in our experiment, which

will be discussed in the following section. The right side of Figure 1

shows the pipeline of our MoP-SAN in the zero-shot collaboration,

and Figure 2 illustrates the detailed structure of our MoP-SAN.

As shown in Figures 1, 2, our proposed framework includes

a MoP model and a SAN model as the ego agent under the

consideration of biological plausibility and energy efficiency. The

MoP as partner mental model can understand the behavior of

the partner and model the partner to estimate the personality

of partner first and then instruct the action of the SAN agent.

The SAN agent can have a better generalization ability of

partner heterogeneity (zero-shot collaboration with diverse unseen

partners) and cooperate with the unseen partner through the aid

of the MoP model m. As shown in Figure 1, we can divide our

process into the learning and generalization phases, also called the

training and testing process. We introduce a general framework

that does not require additional expert-supervised data in the

learning phase. In our current model, for simplicity, we assume

that the observation encoder is an identity mapping, and the

observation from environment is the input to the MoP. In order

to self-supervise the training of the MoP model without additional

expert data, we directly train MoP as a partner in the learning

process for the sake of simplicity.

On the one hand, the MoP model can act as a pool of many

diverse agents to facilitate the learning of the SAN agent. On the

other hand, the MoP model can also learn various personalities. In

the generalization phase, we want to infer better and adapt to the

unseen partner with a specific personality, so we need to discover as

many base personalities in the personality space as possible during

the learning process.

In the generalization phase, parameters in our framework are

fixed. As shown in Figure 1, when the SAN agent needs to cooperate

with an unseen partner, the personality estimator (PE) determines

the partner’s personality first according to the historical context

information of the unseen partner, and then the multi-personality

network infers the current intention and action of the partner.

Our goal is to maximize the total reward and entropy based on

the historical information of the unseen partner. In the following

sections, our descriptions and formulas use the generalization

phase as an example to describe our method. The output of our

MoP model is the input for the spiking policy of SAN ρ1
θ and θ1

is the parameter for the policy network in SAN. ϕ and η are the
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FIGURE 1

Learning and generalization phases of our proposed MoP-SAN and baseline methods. (A) Ego agent and the specific partner agent collaborate to

complete the Overcooked task in the learning phase. (B) In the generalization phase, the ego agent needs to collaborate with some unseen partner

agents to test generalization ability (zero-shot collaboration). (C) This figure shows our proposed MoP model in the generalization phase. By

constructing a MoP model, we can first estimate the partner’s personality by the personality estimator and predict the actions of the partner by the

multi-personality network according to the personality of the partner. Two agents in the same kitchen in all three graphs represent the cooperative

relationship between the two agents to complete this cooking task.

parameter for the MoP model, and the joint policy can be written

as follows:

π (at | ot) = ρ1
θ

(

a1t | o
1
t , â

2
t

)

ρ2
θ

(

a2t | o
2
t

)

, (1)

where oit is the observation of the i-th player and â2t denotes the

predicted action distribution from our MoP model.

3.3. The SAN model and context encoder

The SAN model in our MoP-SAN refers to a SAN PPO agent,

which makes its action based on the guided action of the MoP

model to maximize the cooperation reward and entropy. The

output action a1t is sampled from the probability distribution

over the action space of the spiking policy in the SAN model

ρ1
θ

(

a1t | o
1
t , â

2
t

)

. The SAN PPO agent includes a spiking actor

and critic. The SAN model consists of leaky-integrate-and-fire

(LIF) neurons, an abstraction of the Hodgkin-Huxley model.

Non-differential membrane potential and refractory period are

biologically plausible characteristics of the LIF neuron, which can

simulate the neuronal dynamics. We define LIF neurons as follows:

τ
dV(t)

dt
= −V(t)+ I(t), (2)

where V(t) represents the dynamic variable of membrane

potential for time t and dt is the minimal simulation time slot.

I(t) represents the integrated post-synaptic potential and τ is the

integrative time period. With input I(t) within a period time of τ

when V(t) is bigger than the firing threshold Vth, the neuron will

be fired and generate a spike, and the membrane potential V(t)

will be reset as the reset potential Vreset . The neuron will be mostly

leaky when V(t) is smaller than the firing threshold. The detailed

configuration of SAN is shown in our previous study (Zhang et al.,

2022).

The context encoder is the key to our good generalization and

adaptation ability. We use the transformer model as our context

encoder, and the input of our context encoder is the historical

trajectories of the partner in a specific context size as context

information. For context information, historical actions and

observations have different dimensions. Therefore, we introduce an

action MLP network and obs MLP network to convert historical
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FIGURE 2

Detailed structure of MoP-SAN. MoP-SAN consists of a SAN agent, a MoP model, and an input module that includes a context encoder and an

observation encoder. The SAN PPO is used to simulate the ego agent with MoP. The MoP model is used to simulate the theory of mind process of

our ego agent modeling the personality of the unseen partners. Our MoP model contains the personality estimator (PE) module, the

multi-personality network, and the DPP module.

actions and observations into the same dimension, concatenating

them in alternating order according to the order of time t in the

trajectory τ , similar to Chen et al. (2021) and Meng et al. (2023).

3.4. The MoP model

The ToM ability of our MoP-SAN is delivered by our MoP

model m, which consists of the multi-personality network, the PE

module, and the DPP module.

The multi-personality networks include k different personality

networks, each consisting of three-layer-MLP that represent a

category of base personality strategies with a different policy.

The input of our multi-personality network is the observation

of the SAN agent, and the output of i-th personality network

per2t,i is a action distribution corresponding to the respective basic

personality under the same environmental observation.

The input of the PEmodule is the partner’s context information

c2t which is the context embedding from historical trajectories of

the partner by context encoder. In contrast to an entirely rational

AI agent, the unseen partners are subject to some irrational factors

that affect their decisions. Therefore, our PE module consists

of a personality multi-layer perceptron (MLP) represented by a

trainable weightmatrixWp and aNoiseMLP represented byWnoise.

The output of the Noise MLP is passed through a softplus function

and a random filter and then added to the output of the personality

MLP. The resulting sum is then passed through a softmax function

to obtain an estimated personality profile p2t for an unseen partner.

The e represents the PE function and the R denotes a random filter

function:

e(c2t ) = Softmax
(

c2t ·Wp + R(c2t ·Wnoise)
)

, (3)

where the output of the MoP model â2t is sampled from the

probability distribution over the action spacemϕ,η

(

â2t | o
1
t , c

2
t

)

. The

output of the PE module p2t corresponds to the predicted partner

personality. η is the parameter of the DPP in MoP and ϕ is the

parameter of theMoPmodel. The policy of ourMoP can be defined

as following:

mϕ,η

(

â2t | o
1
t , c

2
t

)

=

n
∑

i=1

p2t,i · per
2
t,i, (4)

where p2t,i is the i-th coefficient of the output vector of the PE

module and per2t,i represents the output of i-th personality network

which is the probability distribution over the action space of the i-

th base personality in the current observation. The above equation

describes the prediction of our current partner’s actions based on

the predicted personality of the partner and corresponding actions

for a specific personality in the environmental state o1t . Instead

of a sparsely-activated model that chooses different branches for

different tasks, our MoP method integrates the output of all the

base personalities rather than selecting a base personality each time.

Therefore, the output of the PE module, the predicted personality
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of the partner, is not a discrete one-hot vector but a floating-point

vector that sums to one.

Our MoP can model partners and infer the personalities

of other partners that can help any RL agents to

enhance their generalization ability and adaptability

so that the agent can be applied to many zero-shot

collaboration scenarios.

3.5. The DPP module in the MoP

In this section, we introduce the DPP first and present the DPP

in our proposed MoP-SAN. DPP (Kulesza and Taskar, 2012) is an

efficient probabilistic model proposed in random matrix theory

and has been widely used in many application fields of machine

learning (Gong et al., 2014; Parker-Holder et al., 2020; Perez-Nieves

et al., 2021), such as recommendation systems (Chen et al., 2018)

and video summarization (Gong et al., 2014). The high-performing

model DPP can translate complex probability computations into

simple determinant calculations and then use the kernel matrix’s

determinant to calculate the probability of each subgroup. Recent

studies, such as Dai et al. (2022) and Yang et al. (2020), have

incorporated the DPP model into reinforcement learning (RL)

approaches. Dai et al. (2022) utilized DPP models to introduce

intrinsic rewards and enhance the exploration of RL methods.

Meanwhile, Yang et al. (2020) used DPP to enhance existing

RL algorithms by encouraging diversity among agents in RL

evolutionary algorithms.

In the learning process, the multi-personality network can

be considered to have various personalities. Each personality

network can be regarded as a distinct base personality. Measuring

the diversity among the multiple base personalities is crucial

for constructing a diverse set of base personalities in the

personality space. To effectively explore the range of personalities

in task space, we integrate a diversity-promoting DPP module

to regularize these base personalities in our MoP-SAN. This

ensures efficient exploration and optimization of the diverse

set of personalities, improving the overall performance of our

MoP-SAN.

We can measure the diversity of the personalities and select

the subset of diverse personalities through the diversity constraints

as an intrinsic reward imposed by the DPP module. Y denotes

the set containing many personalities, and y refers to a subset

of Y including k personalities that can maximize the diversity.

Since these personality networks share the same observation input

and the output of a specific personality network per2t,i is an

action distribution, the difference between base personalities can

be measured by the action distribution over the action space.

We denote the kernel matrix of y as Ly. The determinant value

of Ly can represent the diversity of the personality set y. To

construct the set y, we need to select k personalities in the

personality space for maximizing the determinant value of the

kernel matrix of y. The personality set y can be regarded as a set

of base personalities that maximizes diversity in the personality

space.

y∗ = argmax
y

P(Y = y) = argmax
y

det
(

Ly
)

. (5)

Since the matrix Ly is positive semi-definite, there exists matrix

Bt at every time step t such that

Ly = BtB
T
t , (6)

Bt and the intrinsic reward r
dpp
t can be defined as follows, and

k is the number of personalities:

Bt =
[

υη

(

per2t,1
)

, υη

(

per2t,2
)

, υη

(

per2t,3
)

, . . . , υη

(

per2t,k

)]T
, (7)

r
dpp
t

(

per2t,1, per
2
t,2 . . . per2t,k; η

)

= log det
(

BtBt
T
)

, (8)

where υη represents the feature vector parameterized by the

parameters η.

We endeavor to build some unique personality vectors as

base personalities for our multi-personality network, which can

combine the entire personality space. Therefore, our MoP model

with our proposed DPP module can enable rapid adaptation and

generalization to any unseen partners in the collaboration task.

3.6. The SAN learning

The policy parameters of the SAN agent θ1 and the

MoP model parameter (ϕ, η) are iteratively optimized in our

method. The overall optimization objective is to maximize

the cumulative discounted return, which depends on the MoP

model mϕ,η

(

a2t | o
2
t , c

2
t

)

and the spiking policy of the SAN agent

ρ1
θ

(

a1t | o
1
t , a

2
t

)

:

θ1
∗
,ϕ∗, η∗ = max

θ ,ϕ,η

∞
∑

t=0

Ea1t ,a
2
t

[

γ t
(

r (ot , at) + αH (π (at | ot))
)]

.

(9)

The goal of the SAN agent is to maximize the extrinsic reward

rext by collaborating with partners. We can calculate the gradient of

the SAN as follows:

∇θ J
(

ρ1
θ

)

= Ea1t ,a
2
t

[

∇θ log(ρ
1
θ (a

1
t |o

1
t , a

2
t ))
(

Gex(ot , at)

− b1
(

o1t , at
)

− α log(ρ1
θ (a

1
t | o

1
t , a

2
t ))
)

]

a1t ∼ ρ1
θ

(

a1t | o
1
t , a

2
t

)

, a2t ∼ mϕ,η

(

a2t | o
2
t , c

2
t

)

, (10)

where the b1 is the baseline function and Gex (ot , at) denotes

the discounted extrinsic returns for SAN. In the study, we used

the game score as the extrinsic reward rext . The above equation

describes the optimization process for the ego SAN agent in our

MoP-SAN method similar to the PPO optimization (Schulman

et al., 2017) in RL. We can estimate the baseline function b1 by the

expected return of all possible actions, as shown in follows:

b1
(

o1t , a
1
t

)

=
∑

a1t ∈A

ρ1
θ

(

a1t | o
1
t , a

2
t

)

Gex (ot , at) . (11)
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3.7. The MoP learning

We introduced the DPP constraint into our study, similar to

a recent study (Dai et al., 2022), by treating the DPP diversity

measurement as the intrinsic reward. We adopted a bi-level

optimization framework (Dai et al., 2022) for the MoP model and

its DPP module to maximize the intrinsic reward and extrinsic

reward.

Our objective can be defined as follows:

max
η

Jex
(

ϕ′, η
)

s.t. ϕ′ = argmax
ϕ

Jmix(ϕ, η), (12)

for this optimization problem, we can treat it as a Stackelberg

game. We use the DPP reward as the intrinsic reward. The mixture

rewards are the sum of intrinsic and extrinsic rewards. The mixture

reward can be written as follows:

rmix
t = rext + βr

dpp
t (a1, a2 . . . ak; η) , (13)

where β is the weight coefficient of the intrinsic reward. rext is

the standard reward from the environment where the SAN agent

makes actions a1t , and MoP makes a2t in the environmental state st

at the time step t, and r
dpp
t is the DPP constraint diversity reward

for the partner. The gradient ∇ϕJ
mix can be calculated as follows:

∇ϕJ
mix = α · ∇ϕ logmϕ,η

(

a2t | o
2
t , c

2
t

)

(

Gmix (ot , at)

− b2
(

o2t , at
)

− α log
(

mϕ,η

(

a2t | o
2
t , c

2
t

))

) , (14)

where Gmix (ot , at) denotes the discounted mixture returns for

our MoP-SAN. The gradient ∇ηJ
ex can be calculated by using the

chain rule:

∇ηJ
ex = ∇ϕ′ Jex∇ηϕ

′, (15)

with

∇ηϕ
′ = ∇ηαG

mix (ot , at)∇ϕ logmϕ,η

(

a2t |o
2
t , c

2
t

)

= αβ

∞
∑

l=0

γ l∇ηR
d
η,t+l∇ϕ logmϕ,η

(

a2t |o
2
t , c

2
t

). (16)

We can use importance sampling to improve the sample

efficiency of the algorithm:

∇ϕ′ Jex = ∇ϕ′

(

mϕ′ ,η

(

a2t |o
2
t , c

2
t

)

mϕ,η

(

a2t |o
2
t , c

2
t

)

)

Gmix (ot , at) , (17)

∇ηJ
ex = ∇ϕ′ Jex∇ηϕ

′

= ∇ϕ′

(

mϕ′ ,η

(

a2t |o
2
t , c

2
t

)

mϕ,η

(

a2t |o
2
t , c

2
t

)

)

Gmix (ot , at) αβ·

∞
∑

l=0

γ l∇ηR
dpp
η,t+l

∇ϕ logmϕ,η

(

a2t |o
2
t , c

2
t

)

. (18)

Hence, the iterative learning of policy parameters in the SAN

and MoP model finally converges the whole system to support

next-step MARL tasks.

4. Experimental results

4.1. Environmental settings

Our experimental environment is Overcooked (Carroll et al.,

2019), a primary human-AI zero-shot collaboration benchmark.

Similar to previous studies (Carroll et al., 2019; Shih et al., 2021,

2022), we have conducted experiments on the “simple” map

based on PantheonRL (Sarkar et al., 2022), a pytorch framework

for human-AI collaboration. In this environment, two players

cooperate to complete the cooking task, i.e., making as many onion

soups as possible for winning a higher reward in a limited time. The

players can choose one of six actions and execute simultaneously,

including up, down, left, and right, empty operation, or interaction.

It is necessary to follow a specific order when making onion

soup. The player must put three onions in the pot and cook them

for 20 steps. Then player pours the onion soup from the pot onto

the plate and serves the dish to the designated position. After this

process, the player can get certain rewards (20). A player can not

complete this task alone on the challenging task. Only through good

cooperation can the players achieve high scores, which requires the

ability to infer the personality of the partner first and predict the

actions of the partner.

4.2. Configurations of our baselines and our
MoP-SAN

There are several baselinemethods. Onemethod is the standard

DNN PPO baseline (Schulman et al., 2017), an important MARL

method with excellent performance in many scenarios. In this

method, both ego and partner agent are homogeneous PPO

agents, and this way is also called self-play (Silver et al., 2018)

in RL.

Another important baseline is the SAN PPO baseline. In

this study, we choose SAN as our baseline for three main

reasons. The first reason is that SAN is the ego agent in

our MoP-SAN method, and our MoP model serves as a ToM

model to provide partner action predictions for SAN. Other

reasons include the higher generalization performance for one-

shot learning and the improvement of energy efficiency. Since

the ego agent in our method is also the SAN PPO, we refer

to the SAN PPO baseline as the SAN baseline in the following

experimental description. It is worth mentioning that we first

introduce the SAN version of PPO into themulti-agent cooperation

task Overcooked. For the SAN baseline, in our cooperation

environment, the ego agent is the SAN PPO, and the partner is the

standard PPO.

The experimental details of our setting are shown in

Figure 3. As shown in Figures 1, 3, the SAN agent and MoP

in one pair have the same name and are trained together

by iterative optimization in the learning phase for our MoP-

SAN. For example, our SAN A as the ego agent and MoP

A as the partner will cooperate in the learning phase for a

good score. In the generalization phase, SAN and MoP with

the same name will be combined into MoP-SAN as the ego

agent. We will evaluate the generalization of our proposed
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FIGURE 3

Experimental setting detail for our MoP-SAN in learning and generalization phases (zero-shot collaboration). Agent A-E corresponds to the agent with

di�erent seeds whose name is A-E. (A) In the learning phase, the ego agent and specific partner agent in a pair collaborate for this task and are trained

by iterative optimization. The ego agent and partner agent in a pair have the same name. There are five agent pairs in the learning phase: (A, A), (B, B),

(C, C), (D, D), and (E, E). (B) In the generalization phase, the ego agent needs to collaborate with all unseen partner agents in a zero-shot manner. For

example, the ego agent A will cooperate with another unseen partner agent with a di�erent name (B, C, D, or E) for the zero-shot collaboration test.

MoP-SAN model by cooperating with different unseen partners,

which means the ego and partner agent in one pair have

different names.

Our training experiment is run for half a million steps, and the

generalization experiment (zero-shot collaboration) is conducted

for several games to take the average score during the generalization

phase in all our experiments. The personality number is 12, and

the context size is 5. For the context encoder in our MoP-SAN,

if the length of historical trajectories of the partner is less than

the context size, we will pad 0. We use a single-layer transformer

with two heads as a context encoder whose inner dimension is

256 and the dimension for q,k,v is 64. For the part of padding

0, we mask it in the transformer. Our MoP-SAN model uses an

actor-critic framework, and the actor is based on SAN, similar

to a previous study (Zhang et al., 2022). The actor network

is (64, tanh, 64, tanh, 6); the critic network is (64, tanh, 64,

tanh, 1). We sample action from categorical distribution for all

methods. In these methods, we use the Adam optimizer, and

the learning rate is 0.0003. The reward discount factor is γ =

0.99, and the batch size is 64. The weight coefficient of the

intrinsic reward β is 0.5, and the maximum length of the replay

buffer is 2048. We use gradient clipping to prevent exploding and

vanishing gradients.

4.3. Stronger generalization ability of
MoP-SAN

Figure 4 is a histogram representing the generalization and

learning scores obtained by three methods in the Overcooked task.

The line chart in the histogram shows the trend of the average

score for the different methods. The red dot indicates the average

score of all corresponding agents, and the shaded area represents

the standard deviation of the corresponding results for the three

methods.

The average score for the method in the left diagram is the

average score of all generalization tests with unseen partners. As

shown in Figure 3, the average score for our MoP-SAN method in

A is 142, which means that the average for four unseen tests (A-

B, A-C, A-D, and A-E) is 142. The average score for our method is

142.25 means that the average for twenty unseen tests (A-B, A-C,

A-D, A-E, B-A, B-C, B-D, B-E, C-A. . . ) is 142.25. Figure 5 shows

the detailed score for all generalization tests with unseen partners.

The detailed score in the learning and generalization phase for each

pair can be found in the Supplementary material.

Figure 4 indicates that our proposed MoP-SAN model

outperforms all baselines for unseen partners during the zero-

shot collaboration, showing a more robust and stable ability for
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FIGURE 4

Score comparison between the baseline and MoP-SAN models in the generalization and learning phases. The (left) figure shows that our MoP-SAN

outperforms other baselines in terms of generalization performance, with a strong generalization ability to complete cooperative tasks with unseen

partners. The (right) figure shows that our MoP-SAN improves the poor performance and large variance of SAN in the learning phase. Agents A-E

denote di�erent agents with di�erent random seeds.

cooperation. What needs to be further emphasized is that our

MoP-SAN method not only significantly outperforms the SAN

baseline but also the DNN baseline in the generalization test,

which strongly demonstrates the powerful generalization ability for

partner heterogeneity of our method in zero-shot collaboration.

The average score in the learning phase can be found in the

right diagram of the Figure 4. Although our MoP-SAN method

primarily focuses on zero-shot generalization test without any prior

knowledge of partners, the scores during the learning phase can still

reflect the collaborative performance with the specific partner. Our

MoP-SAN has better learning scores and minor variance compared

to the SAN baseline in the learning phase.

4.4. Significantly better zero-shot
collaborative performance of MoP-SAN

Our experimental results in the zero-shot collaboration test

reflect the generalization ability of partner heterogeneity for

different methods. Figure 5 is the color temperature map showing

the specific experimental data in the generalization test for all three

methods. The color temperature maps in Figure 5 correspond to

the DNN baseline, the SAN baseline, and our MoP-SAN model,

respectively. The row represents the ego agent, and the column

represents the partner. For example, the score in the first row,

the third column for our MoP-SAN represents the zero-shot

collaboration score between MoP-SAN A and unseen partner

C. The scores on the diagonal represent the scores achieved by

the corresponding pairs during the learning phase, which are

not included in the zero-shot collaboration score data of the

generalization phase. We can see that the more obvious the color

difference is, the more significant the variance of this method.

As shown in Figure 5, our multi-scale biological plausibility

MoP-SAN achieved significantly better scores and smaller variance

than the other baselines for most pairs in the zero-shot

generalization test with low energy consumption, achieving good

generalization results with unseen partners of different styles. As

shown in Figure 6, although DNN achieves high scores in some

generalization test experiments, its variance is large, and the average

score is low. Moreover, the SAN baseline has a better average

score and smaller variance than the DNN baseline. These results

demonstrate that our MoP model can complete partner modeling

and help the SAN agent have a higher collaborative score with a

better generalization ability.

The question of why SAN can achieve better generalization

results than DNN has caught our attention. In order to further

verify whether the poor generalization test performance of

DNN was due to overfitting, we conducted a series of analysis

experiments on DNN.We saved the checkpoints of DNN’s learning

process from underfitting to “overfitting” and performed unseen

partner generalization tests. As shown in Figure 6, these results

indicate that as the number of training steps increases, the

generalization performance of DNN gradually improves. We have

discovered a similar pattern in these test results and named it the

DNN type.

Similarly, in the generalization test results of SAN, we also

discovered a similar pattern which we named the SAN type.

As shown in Figure 6, compared to the DNN type, the SAN

type exhibits stronger generalization and cooperation abilities in
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FIGURE 5

Color temperature diagram shows the detailed generalization score for the baseline methods and our MoP-SAN. The di�erence in colors

demonstrates the di�erence in scores. Compared with the DNN and SAN baseline, our proposed MoP-SAN has more satisfactory results for a better

score and smaller variance.

FIGURE 6

Diagram depicts the detailed generalization analysis experiment of DNN and SAN, showing the generalization test results of the DNN under di�erent

training steps, which represent di�erent scales of overfitting. As the number of training steps increases, the generalization performance of DNN

gradually improves. The generalization test results for DNN exhibit a similar pattern of DNN-type, while the results for SAN also exhibit a similar

pattern of SAN-type. By comparing these two patterns, we can see that SAN has better generalization ability and robustness.

unseen partner generalization scenarios. These results represent

that “overfitting” was not the main cause of the poor generalization

test performance of DNN. We believe that the reason why DNN

performs worse than SAN in the generalization test with unseen

partners is that SAN has better noise resistance and robustness.

In cooperative reinforcement learning, the generalization test

with unseen partners can be regarded as a noise perturbation

test, and therefore, SAN performs better than DNN in our

generalization experiment.

4.5. Larger personality size contributes

better cooperative performance

Furthermore, we conduct some ablation experiments to

confirm the effectiveness of different modules and parameters in

our MoP-SAN. The experimental results in Table 1 show that as

the number of personalities increases, the learning ability of our

MoP-SAN model gradually improves and the variance gradually
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gets smaller. These results also show that diverse personalities play

an essential role in the multi-agent cooperation task.

From Table 1, we can see that some pairs have very poor

cooperation scores when the number of base personalities is small.

This may be because these base personalities can not be combined

to express all the dimensions of the personality of the partners. As

the number of base personalities increases, the expression ability of

the existing base personalities for personality of the current partner

grows, resulting in better performance.

The personality theory in cognitive psychology suggests that

breaking down personality into finer-grained traits is an excellent

way to improve predicting and explaining human behavior.

TABLE 1 Mean score of di�erent number of personalities in our method.

Agents A B C D E Avg

Ours w/personality 6 0.2 0.4 0.4 0 1.6 0.52 (±0.63)

Ours w/personality 8 1.8 123 0 0.4 0 25.04 (±54.77)

Ours w/personality 10 7.6 151 1.6 157 114 86.24 (±76.35)

Ours w/personality 12 149 154 150 146 146 149 (±3.32)

Bold values indicate the setting which can produce the best results, i.e., the maximum value

in that column, facilitating comparisons between the results.

TABLE 2 Mean score of di�erent number of context size in our method.

Agents A B C D E Avg

Ours w/context 0 4.4 2.8 2.6 1 1.2 2.4 (±1.38)

Ours w/context 1 11.6 0.2 1 17.2 85.2 23.04 (±35.48)

Ours w/context 3 136 148 143 140 140 141.4 (±4.45)

Ours w/context 5 149 154 150 146 146 149 (±3.32)

Bold values indicate the setting which can produce the best results, i.e., the maximum value

in that column, facilitating comparisons between the results.

Our experimental results further validate this point. By using a

larger personality number, we obtain more precise personality

delineation, which can better predict the personality of the

partner and cooperate more efficiently with partners to achieve

higher scores.

4.6. Richer context information contributes
better personality prediction

Table 2 indicates that as the context information of the partner

increases, the score of our MoP-SAN in the learning phase

gets better and better, which shows that partner information is

crucial for our MoP-SAN model in the cooperation task. The

result is the worst when there is no partner information at

all. This is because partner information serves as input for the

PE module to predict the personality of partner. Without such

information, the personality prediction is random, leading to

inefficient collaboration between ego and partner agents when

completing tasks such as making onion soup. Limited partner

informationmaymake the personality prediction inaccurate, which

is detrimental to the collaboration score.

These results in Table 2 also indicate that the existence

of partner context information is the key to our ability

to solve this task. We find that the existence of partner

information achieves better results in the learning phase and

gets better generalization results in the zero-shot collaboration

generalization experiment.

4.7. Personality diversity controlled by DPP

The results in the ablation experiment of DPP demonstrate

the effectiveness of the DPP module, which can achieve better

FIGURE 7

Left color temperature diagram demonstrates the detailed generalization scores for our method w/o the DPP module. Right violin plot demonstrates

the visual comparison of the scores in the ablation experiments on the DPP module, where violin plots are presented for our method w/o the DPP

module and our method for the learning and generalization phases.
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results in the generalization experiments. We further analyze the

results of the ablation experiment through the color temperature

map and violin plot in Figure 7. We show the maximum,

minimum, and average lines in the violin plot, and the shade

means the data distribution whose size represents the variance

of the corresponding method. As shown in the right violin plot

of Figure 7, our method is much better than our method w/o

DPP at the generalization test, and our MoP-SAN has a smaller

variance than our MoP-SAN w/o DPP. The color temperature

plot of our MoP-SAN is shown in Figure 5 as the third plot

c. The comparison between the left color diagram in Figure 7

with plot c in Figure 5 indicates that our MoP-SAN model has

better generalization performance and minor variance owing to the

DPP module.

This result indicates that with the same size of personality

number, the addition of DPP can constrain the base personalities

in MoP, which allows these base personalities to cover as

much personality space as possible. This complete coverage

leads to a more robust PE module that can more accurately

predict the personality of unseen partner, achieving in

better scores.

5. Conclusion

In this study, we focus on strengthening the conventional

actor network by incorporating multi-scale biological inspirations,

including the local scale neuronal dynamics with spike encoding

and global scale personality theory with the spirit of the

theory of mind. Our proposed mixture of the personality

improved the spiking actor-network (MoP-SAN) algorithm can

remarkably improve the generalization and adaptability in

the MARL cooperation scenarios under a surprisingly low

energy consumption.

Our MoP-SAN is then verified by experiments, which

shows that the two-step process in personality theory is

very crucial for predicting the unseen partner’s actions. The

MoP improved SAN shows a more satisfactory learning

ability and generalization performance compared with SAN

and DNN baseline. To the best of our knowledge, we are

the first to apply SAN and MoP in the MARL cooperation

task. This integrative success has given us more confidence

about borrowing more inspirations from neuroscience and

cognitive psychology in future for designing new-generation

MARL algorithms.

Although the biologically plausible MoP-SAN approach

can improve collaboration efficiency and scores in two-

player cooperative tasks, our MoP-SAN method can not

achieve significant results when cooperating with seen

partners, and the complex module design resulted in some

computational overhead. It is worth exploring how to apply

biological and cognitive inspirations to enhance collaboration

efficiency among three or more players. Additionally, it

is also worth investigating how to collaborate better with

non-rational players.
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