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After regular rehabilitation training, paralysis sequelae can be significantly 
reduced in patients with limb movement disorders caused by stroke. 
Rehabilitation assessment is the basis for the formulation of rehabilitation 
training programs and the objective standard for evaluating the effectiveness 
of training. However, the quantitative rehabilitation assessment is still in the 
experimental stage and has not been put into clinical practice. In this work, 
we propose improved spatial-temporal graph convolutional networks based 
on precise posture measurement for upper limb rehabilitation assessment. 
Two Azure Kinect are used to enlarge the angle range of the visual field. 
The rigid body model of the upper limb with multiple degrees of freedom 
is established. And the inverse kinematics is optimized based on the hybrid 
particle swarm optimization algorithm. The self-attention mechanism map 
is calculated to analyze the role of each upper limb joint in rehabilitation 
assessment, to improve the spatial-temporal graph convolution neural 
network model. Long short-term memory is built to explore the sequence 
dependence in spatial-temporal feature vectors. An exercise protocol for 
detecting the distal reachable workspace and proximal self-care ability of the 
upper limb is designed, and a virtual environment is built. The experimental 
results indicate that the proposed posture measurement method can reduce 
position jumps caused by occlusion, improve measurement accuracy and 
stability, and increase Signal Noise Ratio. By comparing with other models, 
our rehabilitation assessment model achieved the lowest mean absolute 
deviation, root mean square error, and mean absolute percentage error. 
The proposed method can effectively quantitatively evaluate the upper limb 
motor function of stroke patients.
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1. Introduction

Stroke is the second leading cause of death in the world, and its incidence rate is on the rise 
in recent years (Paul and Candelario-Jalil, 2021). The disability rate of this disease is high, and 
more than 50% of survivors will leave varying degrees of disability, which seriously affecting the 
daily life of patients, causing great pain to themselves, and adding a heavy economic burden to 
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families and society. The World Stroke Organization (WSO) estimates 
that the global cost of stroke is over $721 billion (Feigin et al., 2022). 
Therefore, there is a great demand for rehabilitation training and 
assessment in patients with motor dysfunction.

Rehabilitation assessment is not only the basis of making a 
rehabilitation treatment plan but also the objective standard to 
observe its treatment effect. It plays an important role in 
rehabilitation treatment, evaluation of treatment effect, and 
prediction of functional recovery (Liao et al., 2020). At present, 
the commonly used assessment method is carried out by 
experienced rehabilitation physicians using the evaluation scale. 
The popular clinical evaluation tools are the Brunnstrom 
evaluation method, Fugl-Meyer Assessment (FMA), Barthel 
index, and so on. However, these methods are subjective 
assessment methods of rehabilitation physicians, with 
inconsistent judgment standards and inability to distinguish 
between compensation and true recovery (Li et al., 2022; Rahman 
et al., 2023). The main defect of the subjective scale is that it has 
a ‘ceiling effect’ on patients with mild injury. In addition, 
completing assessment tests is time consuming, complex, and 
labor intensive.

Scholars have carried out related research on rehabilitation 
assessment to solve the problems above. It is proposed to use an 
inertial measurement unit, accelerometer, VICON, infrared 
camera, and so on to capture human posture data (Fang et al., 
2019; Hussain et al., 2019; Ai et al., 2021). The manual features 
are extracted from human posture data to represent  
human motion (Cai et  al., 2019; Hamaguchi et  al., 2020). 
Mahalanobis distance, and dynamic time warping (DTW) 
algorithm is used to quantify the correctness of rehabilitation 
exercise, support vector machine, logistic regression, and neural 
network are also used to grade the rehabilitation assessment 
(Houmanfar et al., 2016; Fang et al., 2019; Li et al., 2021). These 
methods rely on the results of sub-problems such as preprocessing 
and feature extraction, but the optimal solution of the 
sub-problem is not necessarily the global optimal solution and 
lacks end-to-end learning intuition.

Because wearable measuring equipment is very cumbersome 
to use, the acceptance of patients is not high, markers may 
be moved due to soft tissue effects, and motion capture systems 
such as VICON are too expensive. As an unmarked tool, Kinect 
is increasingly being applied to human posture tracking (Zelai 
and Begonya, 2016; Bawa et al., 2021). Kinect-based joint data 
contains a variety of information, including spatial information 
between joint nodes and their adjacent nodes, as well as time-
domain information between frames. It has been widely used in 
motion recognition (Wang et al., 2020), gesture recognition (Ma 
et al., 2021), somatosensory interaction (Qiao et al., 2022), and 
also has applications in rehabilitation assessment (Agami et al., 
2022) proposed a method for generating accurate skeleton data 
based on the offline fusion of a Kinect 3D video sensor and an 
electronic goniometer. This method is difficult to measure the 
patient’s joint angles with the electronic goniometer (Lee et al., 
2018) used Kinect v2 and force sensing resistor sensors based on 
Fugl-Meyer assessment for evaluating upper extremity motor 
function (Bai and Song, 2019) conducted a preliminary 
rehabilitation assessment using the first-generation Kinect to 
measure the joint data of stroke patients, ignoring the drawbacks 
of a single camera.

However, there is an issue of inaccurate joint position 
recognition using a single Kinect. This type of erroneous 
recognition is prone to occur in situations of self-occlusion, when 
the subject is not facing the camera, or when moving at high speeds 
(Han et al., 2016; Wang et al., 2016). This is because although the 
connections of the bones obtained during recognition are 
biologically consistent, the length of the limbs and the limitations 
of the joints are not limited, resulting in unrealistic and distorted 
movements. Adding additional manual measurements or wearable 
sensors can be time-consuming and reduce patient comfort. The 
accuracy of tracking data for human motion posture seriously 
affects the correctness of rehabilitation assessment results, 
therefore, the accuracy of human motion tracking should 
be  improved. How to improve the accuracy of patient pose 
recognition using only visual sensors is a complex problem.

An approach to improve the accuracy of human motion tracking 
is to combine a rigid body model with the depth camera (Matthew 
et al., 2019) used this approach in the sit-to-stand movement and the 
upper limb motion. Due to the lack of hand modeling and occlusion, 
the estimation of joint position is incorrect. In the Proximal Function 
test, the system error is introduced, and the accuracy of the overall 
pose estimate is reduced (Matthew et al., 2020). Using one Kinect for 
rehabilitation assessment (Liu et al., 2016), the body information is 
particularly prone to occlusion, in some specific evaluation 
movements such as touching the back of the head, touching the 
lumbar vertebrae, and so on. The occlusion problem should be solved 
in order to improve the accuracy of rehabilitation assessment. So, in 
our work, we have added an Azure Kinect and optimized the rigid 
body model.

Neural networks and deep learning have been used in quantitative 
rehabilitation assessment research (Kipf and Welling, 2017; Williams 
et al., 2019). Graph convolutional neural networks have been widely 
used in traffic prediction based on historical traffic speeds and route 
maps (Guo et al., 2019). It is also possible to realize action recognition 
and gesture recognition based on human skeleton data (Ahmad et al., 
2021). According to current research, spatial–temporal graph 
convolutional networks (STGCN) have been used to achieve motion 
recognition based on dynamic bones (Yan et al., 2018). However, the 
application of STGCN in upper limb rehabilitation assessment is 
relatively limited. This study proposes to use an improved STGCN 
based on precise posture measurement to assess the motor function 
of hemiplegic upper limbs.

In this work, we proposed an innovative method as follows: two 
Azure Kinects is used combined with a comprehensive rigid body 
model to improve the biological feasibility of the skeleton. A hybrid 
particle swarm optimization algorithm is used to optimize inverse 
kinematics. A rich movement protocol is proposed to test the 
movement of the patient’s upper limbs from the reachable workspace 
and proximal function. A modified STGCN model with LSTM is 
proposed to assess the upper limb motor function.

2. Methods

We proposed an upper limb rehabilitation assessment method 
based on posture measurement, as shown in Figure 1. The upper limb 
rigid body model is established to increase the constraints of biological 
behavior and improve the accuracy of human posture data collection. 
The motion protocol for upper limb motion assessment is proposed, 
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and the extended STGCN is adopted to achieve continuous upper 
limb rehabilitation assessment.

2.1. Two-camera synchronization

Azure Kinect can extract the position of 32 human bone skeletons, 
and there is occlusion when the upper limb moves to the back of the 
body. Using two Azure Kinect can effectively fill the occluded area and 
increase the spatial coverage of the camera. Therefore, we use two Azure 
Kinect to collect the motion of patients’ limbs in this study. During the 
use of two Azure Kinect, synchronization is necessary to ensure that 
each frame of data captured by the two cameras is the scene at the same 
time. One camera is set as master and the other as subordinate. The two 
cameras are connected via a 3.5 mm synchronization port attached to 
the device. This study adopts a daisy chain configuration, with the 
master’s synchronization port connected to the output synchronization 
port of the slave device through a cable. Then calibrate the two devices 
using the black and white checkerboard calibration method to obtain 
the internal and external parameters of the devices, and fuse joint data 
from different perspectives into the same perspective.

2.2. Models

Taking the torso as the base frame, the upper limbs can 
be modeled as two branches of the torso. The kinematic model of the 
right arm is as follows. The Kinect captured joints information, the 
Torso can be defined by the spine-chest and spine-naval markers. 
Anatomically, the shoulder is a complex composed of the 
glenohumeral joint, sternoclavicular joint, acromioclavicular joint 
and, the scapulothoracic joint. The glenohumeral joint can realize 
flexion/extension, adduction/abduction, and adduction/abduction. 
The sternoclavicular joint allows retraction/protraction, elevation/
depression and backward of the glenohumeral joint. The elbow allows 
two movements for flexion/extension and pronation/supination. To 
simplify the human upper limb mechanism model, this paper singles 
out 2-DOF at the sternoclavicular joint, 3-DOF at the shoulder, 
1-DOF at the elbow, 2-DOF at the wrist, and 1-DOF at the hand. Thus, 
the equivalent mechanism model of human upper limbs can 
be established as a 9-DOF series motion model, as shown in Figure 2. 
LSCAP is the initial length of the upper limb girdle, LUA is the length 
of the upper arm, LLA is the length of the forearm, LH  is the length 
from palm to the wrist, LT  is the length of the hand tip. The position 
of the hand, wrist, elbow, shoulder, clavicle, neck, and spine chest can 
be obtained by Azure Kinect. The base frame is fixed at the neck and 
the hand position is the palm position. Both left and right hands are 
modeled, and the right hand is taken as an example to illustrate the 
modeling process.

2.2.1. Rigid model
The upper limb rigid model consists of 10 segments connected by 

11 joint markers. The human torso is modeled as the base of the rigid 
body, the neck joint of the torso is set as the origin, and the two 
scapulae rotate at the origin. The rigid body model is divided into two 
continuous chains of the left arm and the right arm. The motion of the 
torso (T) in the world coordinate system (W) is modeled as a system 
with associated homogeneous transformations:

 
T

R R R t
W To

X Y Z
, =











0 1  
(1)

Where R represents rotation, each rotation is determined by the 
angle θ, and t represents translation. Then model the scapula (SC), 

FIGURE 1

The upper limb rehabilitation assessment method based on posture measurement.

FIGURE 2

The rigid model of upper limb.
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upper arm (UA), forearm (FA), hand (HA) and fingertip (TIP) as two 
branches of the trunk. The right arm is modeled as:
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The left arm is modeled in a similar way, but the direction of 
rotation is opposite. The forward kinematics model of the rigid body 
can be  obtained by multiplying the coordinate changes of each 
segment in turn. The positions of each joint can be written as:
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Where q is the local position of each joint. The position of each 
joint p is solved according to the forward kinematics, and the mapping 
relationship is established. The forward kinematic map is:
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Scapulohumeral rhythm is present during arm abduction 
(Klopčar and Lenarčič, 2006) calculated the scapulohumeral rhythm 
of the generalized shoulder joint movement of the upper limb on four 
lifting planes with angles of 0°, 45°, 90° and 135° through experiments. 
The functional relationship between the lift angle β  and the forward/
backward extension angle θ fb and the upward/downward angle θud  of 
the SC joint is as follows.
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2.2.2. Inverse kinematics optimized by crossbreed 
particle swarm optimization

The inverse kinematics of the rigid body model is a nonlinear 
problem. Solving the joint posture through the upper limb end posture 
is a one-to-many mapping relationship. The inverse kinematics is 
optimized based on a hybrid particle swarm optimization algorithm. 
The classical particle swarm optimization (PSO) algorithm belongs to 
a global random optimization algorithm with the advantages of few 
parameters required, simple algorithm structure, fast operation speed, 
etc. (Zhou et al., 2011). Suppose a D dimension search space has N 
particles, the position, and velocity of a particle in a group is,

 

X x x x

V v v v

i i i iD
T

i i i iD
T

= [ ]
= [ ]

1 2

1 2

, , ,

, ,



  
(11)

The evolution of particles at each iteration consists of three parts: 
inheritance of the previous velocity, self-memory, and information 
exchange of the population. Therefore, the kth iteration process can 
be expressed as:

 

v k v k c r p k x k
c r g k x

ij ij best ij

best ij

+( ) = ( ) + ( ) − ( ) 
+ ( ) −

1 1 1

2 2

ω

 kk( )   (12)

  x k x k v kij ij ij+( ) = ( ) + +( )1 1  (13)

Where ω is inertia weight coefficient, c1 and c2 are two different 
learning factors, r1 and r2 are two randomly generated numbers in 
[0,1], pbest represents the personal best solution of the particle, gbest 
represents the global best solution of the swarm.

Due to the drawbacks of premature convergence and poor local 
optimization ability in PSO. Crossbreed Particle Swarm Optimization 
(CBPSO) is used to increase the fitness of the offspring population 
through the natural evolution of the population, thus jumping out of 
the local extreme value in the search process and converging to the 
global optimal solution. During the iteration process, the formula for 
updating the position and velocity of the offspring particles is as follows:

 

child x P parent x P parent x

child v
parent v
c c( ) = × ( ) + −( )× ( )

( ) = (
1 2

1

1

)) + ( )
( ) + ( ) ( )


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parent v
parent v parent v

parent v2

1 2
1

 

(14)

where child x( ) and child v( ) represent the position and velocity 
of the child particle respectively, parent x( ) and parent v( ) represent 
position and the velocity of the parent particle, respectively. When two 
particles trapped in different local optimums are hybridized, they can 
often escape from the local optimality, and the introduction of a 
hybrid algorithm can enhance the global optimization ability of 
the population.

Our goal is to make the “distance” between the current end 
effector position F xi( ) and yk  the shortest. So inverse kinematics is 
transformed into an optimization problem.yk  is the joint point 
collected by Azure Kinect. The fitness function is as follows:

 
fitness X y F xk i

∗( ) = − ( )min
2

 
(15)
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The specific steps of the algorithm are: First initialize the particle 
swarm and parameter settings, and then iterate the algorithm to 
calculate the fitness function value of each particle, compare the 
current fitness of each particle with the size of the individual extreme 
value, update the individual extreme value, and judge whether the 
hybridization condition is met. If not, return to the continuous update. 
Finally, select the particles corresponding to the global extremum as 
the optimal solution for the population.

2.3. Extended STGCN

Human skeleton motion is a string of time series, with spatial features 
at each time point and time features between frames. In the process of 
evaluating the motor function of the upper limb, different joints play 
different roles. For example, in the movement of touching the nose with 
the right upper limb, the joints on the left side of the body participate less 
and show less importance, and the degree of participation of the joints on 
the right side is different. Self-attention mechanisms can select more 
critical information from a lot of information. The self-attention 
mechanism is adopted to extract the spatial relationship of each joint and 
distinguish their important degree, in order to guide patients to strengthen 
the rehabilitation training of important joints and obtain higher evaluation 
scores. The extended graph network structure is shown in Figure 3.

ConvLSTM can extract the characteristics of spatial and temporal 
features on time series data simultaneously (Deb et al., 2022). The 
STGCN is improved by the self-attention mechanism graph Sk  
calculating form ConvLSTM. The skeleton sequence is initially 
processed by temporal convolution with kernel Γµ .
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Where ∗ is convolution, σ  is the sigmoid function, W is weight, b 
is bias, S hk k= . The GCN improved with the self-attention map is 
as follows,

 
G A S ZWk k k k= ( )( )σ φ � �

 
(18)

 A A Ik k = +  (19)

Where, A I A
k

k+ =∑ , A RN N∈ × is the adjacency matrix, A I0 =

and A A1 = , D
%  is the degree matrix, Wk  is the weight matrix. φ  is 

normalization, σ  is an activation function.
Then three Temporal convolutional (TC) layers with different 

kernels Γ1
l , Γ2

l  and Γ3
l  is adopted to extract time features and 

concatenate them. Multiple STGCN layers are stacked to obtain more 
complex features of different lengths, and LSTM is used to extract the 
time dependence of the series. Finally, continuous rehabilitation 
assessment scores are obtained by the full connection layer.

2.4. Exercise protocols base on VR

The exercise protocols were designed according to the anatomical 
position, clinical evaluation methods such as the Fugl-Meyer scale, 
Barthel index, range of motion, and some related articles. The 
measurement of upper limb motor function mainly includes distal 
reachable workspace measurement and proximal function 
measurement, the specific movement methods are shown in Table 1. 
The reachable workspace measurement was used to evaluate the 
motion range of the upper limb, and the proximal functional 
measurement was used to evaluate the subjects’ ability to self-care in 
daily life, such as eating, combing hair, and so on.

Vivid virtual reality (VR) scene modeling can improve the 
enthusiasm and initiative of patients to participate in rehabilitation 
assessment. In this manuscript, a virtual scene of motion assessment 
was built, in which the therapist demonstrates the action, and the 
subjects follow the therapist to carry out the same action. The subject’s 
avatar was designed and the visual feedback is applied to facilitate the 
subjects to observe whether their movements are completed or not. 
Auditory feedback was used to guide related movements with a variety 
of sensory stimuli, to increase the feasibility of the virtual environment 
demonstration. The rehabilitation training game is shown in Figure 4, 

FIGURE 3

The extended STGCN for rehabilitation exercise assessment.
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when the position of the subject’s hand coincides with the minion, the 
animation of the minion jumping with the sound effect is played. The 
patient’s participation increased, and the patient’s tension and anxiety 
were relieved.

3. Experimental validation

The experimental setup is as follows, two Azure Kinect depth 
cameras were placed on the tripod with a spacing of 2 m and an 
angle of 90°, and adjusted horizontally using a spirit level, as 
shown in Figure 5. During the experiment, the subjects were asked 
to perform the designed movements in front of the camera and 
could not rotate their bodies. To reduce the impact of accidental 
factors, explanations and related training were provided to the 
subjects before the experiment. The participants simulated the 
coach’s actions by watching pre-recorded videos on the display 
screen, enabling them to proficiently apply the assessment method 
before conducting relevant experiments.

This experiment recruited a total of 20 subjects, including 10 
healthy individuals and 10 stroke patients. Among them, two 
rehabilitation physicians from the rehabilitation department of 
Nanjing Tongren Hospital voluntarily participated in the 
experiment. The exclusion criteria for participants in the 
experiment are cognitive impairment or inability to cooperate in 
the experiment. This work is approved by the local science and 
ethics committee.

4. Results

The data collected by Azure Kinect needs to be preprocessed to 
reduce individual differences, and eliminate migration and expansion 
during the experimental process. Median filtering can effectively 
eliminate isolated noise points. First, median filtering is performed on 
the data, and then the 6th-order low-pass Butterworth filter with a 
cut-off frequency of 30 Hz is used to filter again.

4.1. Model optimization result

According to the reachable workspace and proximal measurement 
in the exercise protocols, the validity of the optimized rigid body 
model is verified through the data of 10 healthy people. Taking the 
right upper limb as an example, the reachable workspace and its area 
of the upper limb was calculated by reference (Bai and Song, 2019). 
The brief description is as follows: the center of the upper limb 
workspace is at the shoulder joint, the motion trajectory is fitted using 
the least squares method, coordinate transformation is performed, 
Alpha Shape algorithm is used to locate the maximum boundary of 
the trajectory, Catmull-Rom spline interpolation is used to smooth the 
boundary, coordinate transformation is performed again, surface 
blocks are selected, the surface area is calculated, and normalization 
is performed. The reachable workspace is divided into four quadrants, 
with the first quadrant (blue) located on the inner side above the 
shoulder, quadrant 2 (pink) located on the inner side below the 

TABLE 1 The exercise protocols.

IDX Protocol

Reachable workspace 

(straighten the arm)

Vertical direction
Azimuth angle (°) 0 45 90 135

Elevation angle (°) 0 ~ 180

Horizontal direction
Azimuth angle (°) 0 ~ 135

Elevation angle (°) 45 90 135 0 ~ 180

Proximal function ①Side, ②Lumber spine, ③Stomach, ④Contralateral shoulder, ⑤Ipsilateral shoulder, ⑥Nose, ⑦Ear, ⑧Head top

FIGURE 4

Virtual scene of motion assessment. In the rehabilitation training game, when the position of the subject’s hand coincides with the minion, the 
animation of the minion jumping with the sound effect is played. (A) The hand has not move to the minion position (B) Hand and minion position 
coincide (C) After the position of the hand and the minion overlap, the minion jumps and accompanies the sound effect.
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shoulder, quadrant 3 (red) located on the outer side above the 
shoulder, and quadrant 4 (green) located on the outer side below the 
shoulder. Figure 6 shows the reachable workspace results, A is the 
result measured by Azure Kinect, and B is the result optimized using 
the method we proposed.

In the Figure 6A the solid lines represent the original trajectory 
information, the dashed lines represent the preprocessed results. The 
red ellipse marks show some points away from the track, or even 
skipping points. These points are not consistent with the biological 
characteristics of human movement. These spots can be caused by the 
arms facing the camera, moving too fast, or being blocked by the torso 
when extended backwards.

Due to the fan-shaped measurement range of the camera, 
occlusion can easily occur when the arm moves between the body and 
the camera, or the arm extends to the back of the body. At this point, 
a single camera cannot detect the position information of the occluded 
joint. Error signals will be detected at these occlusion positions, as 
shown in the ellipse inside Figure 6. Occlusion positions are points 
with obvious jumps and abrupt changes, which can easily lead to the 
phenomenon of unclosed fitting boundaries in the reachable workspace.

In this study, a part of the occlusion problems can be solved by 
using two cameras. The other part of the occlusion problem can 
be optimized by adding a rigid body model. After model optimization, 
the number of singularities was significantly reduced, the occurrence 
of non-biological motion was reduced and the accuracy and stability 
of hand joint motion measurement was improved.

Figure  7 shows the proximal function results, A is the result 
measured by Azure Kinect, and B is the result optimized using the 
method we proposed. From the comparison of Figures 7A,B, without 
the addition of a rigid body model, during the process of the upper 
limb touching the ear and the hand touching the lumbar spine, the 
trajectory did not reach the position of the ear/lumbar spine. After 

adding the rigid body model, the measurement results were improved, 
and the hand motion trajectory could reach the corresponding position.

Table 2 shows the Signal Noise Ratio (SNR) of the motion 
trajectory of raw Kinect, two Azure Kinect, and two Azure Kinect 
with the rigid model. The raw Kinect trajectory exhibit low SNRs, 
especially in the Y and Z directions of the chest joint and the Z 
direction of the ipsilateral shoulder joint, the signal-to-noise 
ratio is below 10. The SNR of the final motion trajectory 
measured by two Kinects has increased, but there is still an SNR 
of less than 10. This study applied two Azure Kinect combined 
with a rigid body model, the measurement results show that all 
directions of each joint are greater than 10, and the SNRs are 
greater than 20 in the elbow joint, wrist joint, and hand joint. 
This table indicates that the method used in this study can 
improve the SNR of collected signals from each joint and increase 
the accuracy of upper limb posture recognition.

4.2. Assessment result

In rehabilitation assessment experiments, each subject underwent 
5 exercises, with 30 groups tested each time and 10 groups resting for 
10 min. A total of 3,000 sets of data were collected. Each action data 
in the dataset consists of a series of skeletal action frames. Each frame 
contains up to two skeletons, each with 11 skeletal nodes of the upper 
limbs. The data includes distal and proximal actions, with a total of 16 
action categories, and each bone node has corresponding three-
dimensional spatial coordinate data.

Three STGCN blocks are used. The optimization strategy of the 
model is the Adam optimizer, with a learning rate of 0.1, a batch size 
of 4, and an output space dimension of 80,40,40,80 for the LSTM layer. 
The model shares four LSTM layers with a dropout of 0.25.

FIGURE 5

The experimental setup.
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The accuracy of the assessment model is measured using 
Mean Absolute Deviation (MAD), Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE). The 

lower the error, the higher the accuracy of the model. The model 
was trained and predicted 10 times, and the obtained MAD, 
RMSE, and MAPE are recorded simultaneously. Finally, the 

FIGURE 6

Reachable workspace results. (A) Raw data. (B) Data after rigid model.

https://doi.org/10.3389/fnins.2023.1219556
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bai et al. 10.3389/fnins.2023.1219556

Frontiers in Neuroscience 09 frontiersin.org

average of the 10 results is taken to ensure the reliability of 
the results.

Each joint plays a different role in limb movement. Attention-
guided graph convolution is used to extract spatial information, and 
each joint is processed differently based on the spatiotemporal frames, 
increasing the impact of different joints on the evaluation results. 
STGCN based on an attention mechanism makes the evaluation 
results more accurate, and can also provide guidance for rehabilitation 
and strengthen the training of important joints.

Figure  8 shows the impact of each joint on different assessed 
movements. As can be  seen from the figure, in the movement of 
touching the nose with the right upper limb, the left joints of the body 
participate less in the movement and show lower importance. The 
degree of participation of the right joints varies, such as higher 
participation of the elbow joint and hand joint, and lower participation 
of the sternoclavicular joint. The wrist joint plays a crucial role in 
measuring the entire reachable workspace. The importance of different 
joints in different movements varies.

Table  3 compares the performance of our proposed model, a 
single Azure Kinect and two Azure Kinect algorithms combined with 

STGCN. MAD, RMS, and MAPE are analyzed. It is obvious from the 
table that our proposed model finally gets the lowest evaluation error.

5. Discussion

 (1) Improve posture recognition accuracy
Accurate recognition of posture is key to the rehabilitation 

assessment of upper limb motor function using posture. However, 
human posture recognition is very complex and the accuracy is 
difficult to be guaranteed. Occlusion is easy to occur when using a 
single Kinect (Han et al., 2016) only used a one-generation Kinect to 
collect the reachable workspace of the upper limb in Duchenne 
muscular dystrophy, without proposing a method to solve the 
occlusion problem, resulting in low accuracy in human pose 
recognition (Matthew et  al., 2020) also used only one-generation 
Kinect, with an improvement of adding a model. The model had fewer 
degrees of freedom and does not include the degrees of freedom of the 
wrist and hand. The accuracy of human body recognition 
measurement was not high, and there was a significant error in 
proximal upper limb movement.

Therefore, this study proposes to use two Azure Kinects and 
increase the constraint of the rigid body model at the same time, in 
order to reduce the inconsistency of human bone connection in 
biology, and then improve the accuracy of posture recognition. In the 
experimental results, Figure.6 contains the action of touching the 

FIGURE 7

Proximal function results. (A) Raw data. (B) Data after rigid model.

TABLE 2 Signal to Noise ratio.

Segment Axis
RW PF

TKM TK RK TKM TK RK

Spine chest

X 18 18 18 18 20 20

Y 20 9 7 20 12 11

Z 12 9 5 15 11 6

Ipsilateral 

neck

X 19 21 21 22 24 23

Y 16 16 14 19 19 16

Z 12 12 10 14 15 13

Ipsilateral 

clavicle

X 20 18 19 22 20 20

Y 18 18 16 15 16 15

Z 15 12 9 17 14 14

Ipsilateral 

Shoulder

X 27 20 18 20 20 18

Y 18 11 11 19 14 15

Z 14 9 7 16 10 7

Ipsilateral 

Elbow

X 26 14 14 20 14 14

Y 25 12 11 25 15 14

Z 28 14 14 21 13 15

Ipsilateral 

Wrist

X 28 17 16 29 16 15

Y 29 14 14 27 12 11

Z 27 17 16 28 18 17

Ipsilateral 

Hand

X 26 16 16 27 16 15

Y 28 14 12 24 13 10

Z 26 17 15 25 15 11

Two Azure Kinect optimization model (TKM), Two Azure Kinect (TK), Kinect (RK).
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FIGURE 8

The role of joints in different movements. (The importance increases sequentially from 0 to 1. The vertical axis represents 16 evaluation actions, A * and 
E * represent the reachable workspace actions respectively, S1-H8 represents the proximal actions. The horizontal axis is an abbreviation for the names 
of each joint, from left hand to neck and then to the fingertip of the right hand).

TABLE 3 Assessment results.

Metric Our Methods
STGCN with 
two Azure 

Kinect

STGCN with 
one Azure 

Kinect

MAD 1.021 2.757 5.378

RMSE 1.180 3.259 8.671

MAPE 3.973 5.875 25.092

lumbar vertebrae by hand. It can be clearly seen that the occlusion 
phenomenon is very obvious in the absence of a rigid body model, 
especially when the upper limb moves to coincide with other joints, 
the trajectory of the occluded part is messy and irregular, and the joint 
motion trajectory does not comply with human biology. The results of 
different test methods in the figure can obviously show the 
effectiveness of the proposed posture recognition method. Due to the 
inability of the camera to test the rotational motion of the arm, a more 
abundant human rigid body model is proposed to measure human 
posture from both attitude and position, achieving accurate 
posture recognition.

 (2) Improve the accuracy of the assessment model
The effective and accurate assessment of upper limb motor 

function can provide the scientific basis for rehabilitation training, but 
the existing rehabilitation assessment methods lack universality, 
robustness, and practical relevance. Convolutional neural networks 

can be used to design scientifically reasonable quantitative assessment 
methods, but the accuracy of the assessment results still needs further 
verification. On the basis of improving the accuracy of human body 
recognition, this study conducts rehabilitation assessment tasks to 
increase the accuracy of assessment model recognition. Due to the 
varying degrees of participation of each joint in different movements, 
the importance of each joint is increased based on attention 
mechanisms. When the right hand is active, the participation of the 
left joint is lower, while when the left hand is active, the participation 
of the right joint is lower. At the same time, the importance of each 
joint is calculated for both the expert therapist and the patient. The 
difference in joint function between the patient and the therapist is 
significant. By comparing the difference in joint function with the 
average expert therapist, it can be  determined which joints can 
be  trained more effectively to improve the patient’s rehabilitation 
assessment score based on the size of the difference. The difference in 
joint function can provide a reasonable direction for rehabilitation 
training for patients. Adding joint participation to a rehabilitation 
assessment model can achieve continuous assessment and improve the 
accuracy of rehabilitation evaluation.

6. Conclusion

This study addresses the issue of non-quantification in 
rehabilitation assessment, and proposes an improved STGCN 
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based on precise upper limb posture recognition to achieve 
continuous quantitative rehabilitation assessment. Two Azure 
Kinects were used to expand the field of view, a multi-degree of 
freedom upper limb motion rigid body model was proposed, 
making the upper limb posture measurement in line with normal 
human biological movement. The accuracy of upper limb posture 
recognition is increased, and the signal-to-noise ratio of 
measurement is improved. By identifying the participation degree 
of each joint in different movements based on the self-attention 
mechanism, the STGCN algorithm was improved to achieve 
continuous quantitative rehabilitation assessment. The 
experimental comparison results show that the upper limb 
posture recognition algorithm proposed in this study can 
effectively reduce incorrect joint coordinates, and the 
rehabilitation assessment model based on improved STGCN can 
effectively reduce the assessed MAD and RMS and MAPE. This 
study provides a new approach for the quantitative rehabilitation 
assessment of stroke patients. In the future work, we will continue 
to optimize the rigid body model and improve the rehabilitation 
assessment method.
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