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Transformer, a deep learningmodel with the self-attentionmechanism, combined

with the convolution neural network (CNN) has been successfully applied

for decoding electroencephalogram (EEG) signals in Motor Imagery (MI)

Brain-Computer Interface (BCI). However, the extremely non-linear, nonstationary

characteristics of the EEG signals limits the e�ectiveness and e�ciency of the

deep learning methods. In addition, the variety of subjects and the experimental

sessions impact the model adaptability. In this study, we propose a local

and global convolutional transformer-based approach for MI-EEG classification.

The local transformer encoder is combined to dynamically extract temporal

features and make up for the shortcomings of the CNN model. The spatial

features from all channels and the di�erence in hemispheres are obtained

to improve the robustness of the model. To acquire adequate temporal-

spatial feature representations, we combine the global transformer encoder

and Densely Connected Network to improve the information flow and reuse.

To validate the performance of the proposed model, three scenarios including

within-session, cross-session and two-session are designed. In the experiments,

the proposed method achieves up to 1.46%, 7.49% and 7.46% accuracy

improvement respectively in the three scenarios for the public Korean dataset

compared with current state-of-the-art models. For the BCI competition IV 2a

dataset, the proposed model also achieves a 2.12% and 2.21% improvement for

the cross-session and two-session scenarios respectively. The results confirm that

the proposed approach can e�ectively extract much richer set of MI features from

the EEG signals and improve the performance in the BCI applications.

KEYWORDS

brain-computer interface, motor imagery, transformer, attention mechanism,

Convolutional Neural Network

1. Introduction

The brain-computer interface (BCI), as a promising tool for stroke rehabilitation and

other biomedical applications, enables people to interact with external devices by decoding

the electroencephalogram (EEG) signals generated by various brain activities (Mane et al.,

2020a). EEG is widely used in the clinical and neuroscience domain, especially in BCI

systems because of its excellent properties of noninvasiveness and portability (Zhang and

Li, 2022). Motor imagery (MI), the mental rehearsal of physical movement task (Decety

and Ingvar, 1990), is commonly used to allow disabled people to self-regulate EEG signals

through active modulation rather than external stimulus and assistance. When a person is

imagining a certain motor behavior, the related motor cortex generates the corresponding

neuron responses which help improve motor functional recovery by reducing the gap

induced by brain disorders between motor intention and sensory feedback of motor

movements (Craik et al., 2019).
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However, the non-stationary, low signal-to-noise ratio and

non-linear characteristics make it difficult to decode MI-EEG

signals. Traditional machine-learning approaches mainly focus

on analyzing the spatial information from MI-EEG signals. The

representative method called the Common Spatial Pattern (CSP)

is valid in building optimal spatial filters to distinguish binary

MI tasks (Pfurtscheller and Neuper, 2001). The improved variants

of the CSP method such as Common Spatio-Spectral Pattern

(CSSP) (Lemm et al., 2005), Sub-band Common Spatial Pattern

(SBCSP) (Novi et al., 2007) and Filter Bank Common Spatial

Pattern (FBCSP) (Ang et al., 2008) have also been implemented

successfully in MI classification. Further, Alexandre et al. proposed

the minimum distance to Riemannian mean (MDM) and tangent

space mapping (TSM) (Barachant et al., 2011) for the EEG

classification by using the topology of the manifold of symmetric

and positive definite (SPD) matrices. Conventional classifiers such

as Linear Discriminant Analysis (LDA) (Chen et al., 2014) and

Support Vector Machines (SVM) (Li et al., 2013) are common

methods used in MI-BCI. Although many methods have achieved

impressive results, the unfitting and inefficient combination of

feature extraction methods and classifiers limits the model’s

accuracy, robustness, and adaptability performance.

As an end-to-end signal processing method, Deep Learning

(DL) has been successfully applied in extracting and analyzing

abstract information from MI-EEG signals in recent years (Lotte

et al., 2007; Zancanaro et al., 2023). For example, Schirrmeister

et al. proposed several models based on the Convolutional

Neural Networks (CNNs) according to the principle of FBCSP

(Schirrmeister et al., 2017). The two first layers used in the model

capture temporal and spatial features which greatly influence

subsequent studies. Lawhern et al. (2018) replaced the common

CNN layer with the separable one to reduce the calculated

dimensions. The hyper-parameters were also adopted according

to the sampling rate and brain rhythms. To further improve the

capabilities of the DL model based on CNNs, Dai et al. (2020)

and Wu et al. (2019) used multiscale CNN filters to capture the

features in different fields of view. Huang et al. adopted the SPD

matrices as inputs to capture the spatial patterns of EEG signals

(Huang and Van Gool, 2017). Syed et al. fused the results from

four parallel CNN structures with multi-depth for fusing shallow

and deep layers to learn the relevant MI information at different

levels (Amin et al., 2019). Mane et al. (2020b) proposed a multi-

view CNN namely Filter-Bank Convolutional Network(FBCNet)

to encode spectro-spatial discriminative information from MI-

EEG with various spectral filtering. Zhang et al. (2019) proposed

a hybrid architecture based on the CNN and Long Short-term

Memory (LSTM) for processing time series signals. However, the

characteristics of hard inductive bias in the CNNs and LSTM are

overly restrictive, limiting the potential performance (Chen et al.,

2018). The locality of CNNs impairs the ability to extract features

from long-range signals like MI-EEG. The huge serial computing

consumption and restricted sequence length in LSTM bring the

challenge in decoding MI-EEG signals.

In recent years, the DL model based on the transformer

(Vaswani et al., 2017) with a multi-head attention mechanism

has been successfully applied in the Computer Vision (CV) and

Natural Language Processing (NLP) domain. Compared with the

CNN or LSTM structure, the transformer has soft inductive bias

(d’Ascoli et al., 2021) increasing the upper limit of model

performance. The Self-Attention (SA) structure and parallel

computing mode allow the transfer extract global information

without multiple convolutions and pooling calculations. In the

BCI field, the transformer is adopted to handle signals in the

applications such as person identification (Du et al., 2022), emotion

recognition (Li et al., 2022), visual stimulus classification (Bagchi

and Bathula, 2022) and signal denoising (Pu et al., 2022). For MI-

EEG decoding, Ma et al. (Ma et al., 2022) proposed a hybrid CNN-

Transformer model to weigh spatial features and frequency signals

by employing the attention mechanism. However, the model uses

the CSP features as inputs which loses the advantage of the end-

to-end process in the DL model. Song et al. (2023) also proposed

a hybrid model with six transformer encoders after extracting

features from MI-EEG by CNN layers. The model performs well

in the hold-out tests, but the huge computational costs caused by

encoders limit the actual use. Tao et al. (2021) employed the gating

mechanism on the transformer to improve the model performance,

but missed the extraction of EEG spatial information. Xie et al.

(2022) designed five hybridmodels with different layers in the CNN

and transformer. This study adapted the model in the cross-subject

scenario with much more training data than small data scenarios

like within-subject and within-session applications, limiting the

model robustness. Besides that, the shortfall of these studies is that

they only extract the spatial features from the fusion of all channels,

neglecting the possible information learned from the differences

between the hemispheres.

To address the above issues, a novel approach with the local and

global transformer combing with CNNs for MI-EEG classification

is proposed in this study. First, we adopt the local transformer

and 1-dimension CNN filter with the same kernel size to extract

temporal features from each channel. Although the respective

fields from the local transformer and CNN are the same in the

beginning, the different mechanisms allow the model to learn

a comprehensive set of useful and subtle features from multi-

views. The local transformer also avoids the overfitting problem

compared with the global transformer which extracts more subtle

features from raw EEG signals in the first layer. Then, two parallel

branches use different depthwise CNN to extract and fuse different

spatial information. One branch focuses on all channels in the

motor cortex and the other one extracts the features of channels

from the left and right motor regions respectively. Next, for

better mining the temporal-spatial features, we use the Densely

Connected CNN (DenseNet) (Huang et al., 2017) on both CNN and

global transformer layers by connecting each layer to every other

in a feed-forward way. The short path helps the information reuse

and flow which improve the model adaptability and robustness.

Finally, the proposed model is validated and compared with other

baseline models in different scenarios including within-session and

cross-session to verify its performance.

2. Materials and methods

In this section, we first introduce the dataset and preprocessing

approach used in the experiment briefly. The different scenarios are

given in detail. Then, we present the proposed model including the

mechanism, structure and hyper-parameters.
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2.1. Dataset and preprocessing

We used the Korea University dataset (Lee et al., 2019) and

the BCI Competition IV 2a (Tangermann et al., 2012) dataset to

evaluate the proposed model performance on the two-class and

four-class MI tasks classification.

(1) Korea University (KU) Dataset: We used the Korea

University Dataset containing 54 subjects with binary MI tasks of

the left hand and right hand. Two sessions were conducted on

different days in the dataset, each with 200 trials for every subject.

The MI-EEG signals were collected by 62 Ag/AgCl electrodes

with impedances of less than 10 k�. To better decode MI

information, 20 electrodes in the motor cortex region were selected

(C-z/1/2/3/4/5/6, CP-z/1/2/3/4/5/6, FC-1/2/3/4/5/6) according to

previous studies (Kwon et al., 2019; Mane et al., 2020b; Ju and

Guan, 2022). The sampling rate was 1,000 Hz and we downsampled

to 250 Hz.

(2) BCI Competition IV 2a (BCIC-IV-2a) Dataset: The BCIC-

IV-2a consists of recordings from nine healthy subjects performing

four different motor imagery tasks: left-hand, right-hand, both-

foot, and tongue. The signals were acquired using 22 EEG

electrodes with a sampling frequency of 250 Hz and were bandpass

filtered between 0.5 Hz and 100 Hz, as well as notch filtered at 50

Hz. Two sessions were recorded on different days for each subject,

with each session comprising 288 trials. The dataset only has 22

channels so that we feed all channel signals into the proposed

model.

The most common frequency band used in the MI-EEG field

is α rhythm (Jasper and Andrews, 1938) which is about 10 Hz and

β rhythm which is around 20 Hz (Jasper and Penfield, 1949). The

filter bands that include useful spectral MI information vary from

person to person (Novi et al., 2007). Therefore, some studies (Kwon

et al., 2019; Mane et al., 2020b; Ma et al., 2022) divided the raw

MI signals into several bands with a 4 Hz length ranging from

4 to 40 Hz by spectral filters. Considering the extra calculations

caused by multi-inputs, we only feed three inputs including the

raw signals and two filtered bands based on α (7–12 Hz) and β

(13–32 Hz) rhythms. Each trial has 4 s with 1,000 samples in total.

We employed the Z-score normalization to handle the signals, as

shown:

Z =
x− µ

σ
(1)

where xwas the raw data of each channel.µwas the mean value

of x and σ represents the standard deviation.

2.2. Scenarios description

We design three scenarios of the within-subject analysis using

data from the same subject for training, validation, and testing

(Figure 1). Different scenarios help verify the models’ adaptability

and robustness for actual applications. The details of different

scenarios are described as follows:

1) Within-Session Scenario: This scenario only uses one session

with 200 trials for 10-fold cross-validation (CV). Although the

training data is limited, within-session ensures the stability of

the data distribution as far as possible.

2) Cross-Session Scenario: The first session is used for training

and the second one for testing. Two cases are presented in this

scenario considering the different applications in reality. The

first namely the hold-out scenario uses the part of the data in

session two for validation and the rest for the test. The other case

only uses the whole data in session two for the test, ensuring no

data participates in validation at the modeling stage. In either

case, the data from session two will not be used in training.

Due to the circumstance that two sessions were conducted on

different days, the drift of statistical distributions brings the

challenge for classification.

3) Two-Session Scenario: Two sessions of one subject are grouped

for a 10-fold CV to show the performance of the models in

big data.

In the BCIC-IV-2a dataset, each phase contains 144 trials

because there are 288 trials for each session while one phase in the

KU dataset has only 100 trials.

2.3. The proposed model

2.3.1. Architecture
The proposed model has three branches which were fed from

filtered data and concentrated by a fully connected layer for fusing

features from multi-bands. Each branch has the same structure

consisting of the temporal block, spatial block and transformer-

based densenet block (T-Densenet Block) (Figure 2).

2.3.2. Temporal block
Considering that the MI-EEG signals are time series, the

previous studies (Schirrmeister et al., 2017; Lawhern et al., 2018;

Mane et al., 2020b) preferred using a 1-D CNN filter to extract

the temporal feature which is one of the most distinguished MI

information. CNN filter has a strong inductive bias of weight

sharing (Simoncelli and Olshausen, 2001). Such a characteristic

reduces a huge amount of computation and makes a model more

parameter-efficient, but it ignores the dynamic relationship among

the input data in a kernel with the filter sliding because the weights

learned by the CNN are fixed after training.

2.3.2.1. Self-attention

The self-attention mechanism focuses more on the correlation

between each value in the kernel and all other values. First, the

transformer encoder divides the input into three representations

namely Queries (Q), Keys (K) and Values (V) by the linear dense

layers. Then the specific attention “Scaled Dot-Product Attention”

(shown in Figure 3d) computed the dot products of the queries with

all keys. The results were divided by
√

dk and ended with a softmax

function to obtain the weights on the values. The formula is:

Attention (Q,K,V) = softmax





QKT

√

dk



V (2)
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FIGURE 1

Descriptions of di�erent scenarios (KU dataset). (A) Within-session scenario. (B) Cross-session scenario case 1. (C) Cross-session scenario case 2. (D)

Two-session scenario.

where dk was the dimension of keys. To better jointly learn

the information from different representation subspaces at different

positions (Vaswani et al., 2017), the scaled dot-product attention

was embedded in the structure of the “Multi-head Self Attention”

(Figure 3d):

MultiHead (Q,K,V) = Concat
(

head1, ..., headh
)

WO

headi = Attention (Q,K,V) (3)

whereWO
∈ Rhdv×dmodel , hdv resprents the dimension of values

and dmodel is the dimension of the outputs. We employ h = 2

parallel attention layers in the proposed model. From Equations (2)

and (3), the calculation of the output is determined by a weighted

total of the values, and the weight for each value is determined by

a function that assesses the compatibility between the query and its

corresponding key. Therefore, the weights are dynamic rather than

fixed like CNN filters.

2.3.2.2. Local transformer encoder

In this work, to take full advantage of the characteristics of the

modes of CNN and transformer, we add the outputs from the local

transformer encoder and those from the CNN filter together as

the final temporal features (Figure 3a). Compared with the global

transformer that obtains the attention score of a query based on all

keys (Figure 4B), the local transformer encoder reduces the number

of keys to ensure that the queries are multiplied by the limited

keys every time (Figure 4A). Such a mode improves the temporal

feature decoding by increasing the locality. Although the local

mode cannot learn the global features, it selects local subtle features

which otherwise are largely ignored in the global mode. And it can

further overcome the overfitting and underfitting problems for long

raw EEG signals.

2.3.2.3. Positional encoding

Considering that the MI-EEG signals are the sequence that has

the order, the position information is injected by the sum of the

Positional Encoding (PE) value and the raw signals. According

to the successful PE application in the MI-EEG field (Xie et al.,

2022), we used sine and cosine functions to represent the position

as follows:

PE(pos,2i) = sin

(

pos

100002i/d

)

(4)

PE(pos,2i+1) = cos

(

pos

100002i/d

)

(5)

where pos means the position and i is the dimension. d

represents the dimension of the inputs.

2.3.3. Spatial block
Previous research has already demonstrated the feasibility of

using the brain hemisphere to control both the left and right hands,

but the degree of control for each hand differs due to lateralization

(Müller et al., 1998; Martin et al., 2016). Therefore, the spatial

feature differences between the two hemispheres may potentially
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FIGURE 2

The proposed model structure.

be useful for motor imagery classification. After concatenating

the temporal features learned from the CNN and the local

transformer encoder, the depthwise CNNs are used to extract

spatial information from the EEG channels. The proposed model

sends the input into three parallel paths (Figure 3b). The first CNN

filters extract the spatial features from all C channels in the motor

region. The rest two CNN filters extract features from C−1
2 channels

in the left hemisphere and the right hemisphere respectively. The

extra channel Cz was deleted because it was set in the central

position. Then the difference was obtained by subtracting the

features of the two hemispheres. Finally, the spatial features based

on the channels from the motor region and the difference caused

by hemispheres are fed into the next block.

2.3.4. T-Dense block
This block comprises one T-Dense Unit and a 1-D CNN

filter, as shown in Figure 3c. The T-Dense Unit (Figure 3e) has

two branches with the CNN filters and the global transformers

(Figure 4B) respectively. Both branches in the T-dense unit has

the similar structure and processing steps as shown in Figure 3e.

For instance, in the CNN filter branch, the features of the first

CNN filter are concatenated with the ones from the second

filter to feed into the third CNN filter. Each subsequent layer of

CNN is not only connected to the immediate preceding layer,

but also to all other preceding layers, enabling the establishment

of shorter paths to help the flow and reuse of the information

(Huang et al., 2017). Meanwhile, batch normalization and dropout

techniques are applied to address the overfitting issue. In the T-

dense unit, the global mode is applied to the transformer to retain

its original advantages of extracting the global information using

all neurons based on the SA mechanism while CNN filters works

differently, as they learn the global information by sliding and

pooling layers steps given the limited size of a filter. The branches

in the T-Dense Unit are combined to learn a comprehensive set

of features which otherwise can not be achieved using a single

feature extraction mechanism. After the T-Dense Unit, the 1-D

CNN layer is used to reduce the dimension thus to reduce the

calculation burden for the subsequent output neurons after three

parallel branches.
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FIGURE 3

The proposed model structure.

2.3.5. Training setup
The cross-entropy function is employed as a loss function

which evaluates the distance between the probability distribution

of the model prediction values yp and the true labels yt :

L
(

yp, yt
)

= −

∑

m

yp,m log yt,m. (6)

where m is the index of y. The optimizer is Adam (Kingma

and Ba, 2014) and the learning rate is set to 0.0001. The training

takes 800 epochs with 32 batches per epoch. The early stopping

technology was used to save the best weights. The training step

ended after checking if the validation loss value decreased for the

last 100 epochs. After reaching the threshold, the model with the

best weights produces the classification results of the test fold.

The computer used in this experiment had 15 Intel processors

and 80 GB RAM. GTX 3090 GPU with 24 GBmemory was used for

training and testing MI-EEG signals. Keras based on TensorFlow

was used for constructing the proposed model.

3. Results

3.1. Performance comparison

We evaluate the proposed model and other models in the

different scenarios. The average classification accuracies of all

subjects of the KU dataset and BCIC-IV-2a with standard deviation

(SD) are shown in Tables 1, 2 respectively.

In the KU dataset, our proposed model achieved the best

performance in all scenarios, especially on the cross-session and

two-session ones. Constrained by the limited data size of each

subject, which only comprises 200 trials per session, achieving

even slight improvements can be a challenge. In the within-session

scenario, the proposed model achieved accuracy of 75.94% and

77.38% in session 1 and session 2 respectively. which are 0.99%

and 1.46% higher than the best public model namely tensor-

CSPNet. When utilizing twice the amount of data in the two-

session scenario, the proposed model achieved a classification rate

exceeding 80%, 7.46% higher than the Shallow ConvNet. In two

cases of cross-session scenarios, as Figures 1B, C presented, both

of them used the data from session 2 as the test and did not

allow them to present in the training step. The difference was

that case 1 used half of the data from session 2 to validate while

case 2 did not use it. Considering the drift of data distributions

caused by the different sessions conducted on different days,

the results of cross-session are lower than the ones of within-

session. The performances of most compared methods decrease

including the proposed model. The existing high-performing

models such as FBCNet and Tensor-CSPNet exhibited reduced

performance to <70% while the proposed model only lost an

average of 0.24% accuracy and still produced the best accuracy

of 77.14% in case1. Given the BCI application that people often

only used the data collected in one day to build the model

without training or updating in the following day for saving

patients’ time, case 2 is more suitable in practical applications. The

proposed model achieved 74.51%, a much higher accuracy than

the benchmarks, which confirms the superiority of our proposed

model on adaptability and robustness. The statistical test was also

conducted to compare the performances of different models. We

observed that the proposed model outperformed most baseline

models (p < 0.001), FBCNet(p < 0.05) and Tensor-CSPNet

(p < 0.05) in different scenarios.
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FIGURE 4

Attention patterns in the transformer. The blue squares represent

corresponding attention scores are calculated and the blank ones

mean the attention score is discarded. (A) Local pattern. (B) Global

pattern.

In the BCIC-IV-2a dataset, FBCNet performed best in two

within-session scenarios while the proposed model showed an

accuracy decrease of 3.07% and 0.33% respectively in session 1

and session 2. However, in the two cross-session scenarios, our

proposed model improved significantly which reached 75.84% in

case1, 1.24% higher than the Shallow ConvNet and 75.08% in

case2, 2.12% higher than the Tensor-CSPNet. The result in the two-

session scenario also reached 81.04% which improved the accuracy

by 2% compared to the Shallow ConvNet. The statistical test

showed that the proposed model outperformed all baseline models

(p < 0.05) in both of the cross-session and two-session scenarios.

We also checked the statistical significance between each

scenario. The t-tests result of within-session 1 with within-session

2 was [correlation = 0.781, p < 0.001; t(53) = −1.062, p = 0.293]

and [correlation = 0.88, p < 0.01; t(53) = −1.024, p = 0.336]

in KU and BCIC-IV-2a dataset separately, which shows that there

is consistency between different sessions for each subject, but the

difference between two sessions is not statistically significant. In

the KU dataset, the t-tests of within-session1 with case 1 and

case 2 in the cross-session scenario were [t(53) = −0.838, p =

0.406] and [t(53) = 1.182, p = 0.242]. The t-tests in BCIC-IV-

2a were [t(53) = −0.627, p = 0.548] and [t(53) = −0.475, p =

0.648]. Both results of the t-test did not have statistically significant

differences. Hence, the data quality of an individual varies on

different days. Building a model for each day is time-consuming

and impractical, but employing a cross-session model may result

in a decrease in classification accuracy, making it a challenging

task. The t-tests results of within-session 1 with two-session and

within-session 2 with two-session are [correlation = 0.882, p <

0.001; t(53) = −4.514, p < 0.001] and [correlation = 0.901, p <

0.001; t(53) = −3.102, p < 0.01] separately. Evidently, an

increase in the volume of data contributes to the enhancement of

model performance even though the sessions were collected on

different days.

In summary, for the KU dataset, the proposed model

outperforms other models, achieving up to 0.99% and 1.46% for

the session 1 and 2 respectively in the within-session scenario, up

to 7.49% and 8.19% for the case 1 and 2 respectively in the cross-

session scenario and up to 7.46% for the two-session scenario.

When testing on the BCIC-IV-2a dataset, the model can also

improve the classification accuracy by 1.24% and 2.12% for the

case 1 and 2 in the cross-session scenario and 2.21% for the two-

session scenario, confirming the superiority of the proposed model

in decoding MI-EEG information.

3.2. Ablation study

The purpose of an ablation study is to assess the impact of

specific components on the overall performance of a model by

removing them and analyzing their contribution. We conducted

the ablation tests to evaluate the effectiveness of the transformer

encoders, the hemisphere difference in the spatial block, and the

T-Dense units in different scenarios. (1) The proposed model

without transform encoders (w/o_Trans) removes both the local

and global transformer encoders; (2) The proposed model without
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TABLE 1 Comparison of average classification accuracy (%) and standard deviation (SD) for di�erent methods (KU dataset).

Within-session Cross-session Two-session

Session1 (SD) Session2 (SD) Case1 (SD) Case2 (SD) Session 1&2 (SD)

CSP 56.53 (13.10) 58.38 (14.63) 61.70 (16.14) 60.43 (13.98) 55.80 (11.07)

FBCSP 64.41 (16.28) 66.47 (16.53) 59.67 (14.32) 61.57 (14.73) 65.62 (14.75)

MDM 50.47 (8.63) 51.93 (9.79) 52.33 (6.74) - -

TSM 54.59 (8.94) 54.97 (9.93) 51.65 (6.11) - -

SPDNet 57.88 (8.68) 58.88 (8.68) 60.41 (12.13) - -

Shallow ConvNet 67.73 (17.58) 68.47 (17.65) 67.79 (19.16) 66.32 (16.18) 72.74 (15.82)

Deep ConvNet 56.19 (13.71) 57.38 (15.27) 56.59 (15.29) 56.75 (13.03) 62.91 (17.64)

EEGNet 63.37 (17.06) 64.73 (17.97) 65.26 (19.31) 63.28 (15.69) 69.73 (17.05)

FBCNet 74.16 (12.60) 73.81 (13.99) 67.83 (14.34) - -

Tensor-CSPNet 74.95 (15.27) 75.92 (13.99) 69.65 (14.97) - -

Proposed model 75.94 (14.71) 77.38 (15.29) 77.14 (14.76) 74.51 (13.93) 80.20 (13.01)

The bold values indicate the highest value within each column of data in the table.

TABLE 2 Comparison of average classification accuracy (%) and standard deviation (SD) for di�erent methods (BCIC-IV-2a dataset).

Within-session Cross-session Two-session

Session1 (SD) Session2 (SD) Case1 (SD) Case2 (SD) Session 1&2 (SD)

CSP 57.75 (13.71) 60.60 (14.29) 54.01 (12.77) 54.07 (12.13) 57.15 (12.26)

FBCSP 73.57 (16.28) 72.46 (16.53) 65.59 (17.51) 65.79 (14.21) 75.01 (12.97)

MDM 62.96 (14.01) 59.49 (16.63) - 50.74 (13.80) -

TSM 68.71 (14.32) 63.32 (12.68) - 49.72 (12.39) -

SPDNet 65.91 (10.31) 61.16 (10.50) - 55.67 (9.54) -

Shallow ConvNet 71.83 (15.63) 72.64 (19.62) 74.61 (12.36) 68.96 (14.28) 78.83 (12.32)

EEGNet 69.26 (11.59) 66.93 (11.31) 61.65 (14.20) 60.31 (10.52) 70.67 (17.27)

FBCNet 77.26 (14.82) 76.58 (13.09) - 72.71 (14.67) -

Tensor-CSPNet 75.98 (14.26) 74.92 (14.63) - 72.96 (14.98) -

Proposed model 74.19 (10.60) 76.25 (12.67) 75.85 (14.11) 75.08 (12.66) 81.04 (8.54)

The bold values indicate the highest value within each column of data in the table.

the hemisphere difference in the spatial block (w/o_Diff-hemi)

removes the structures in Figure 3b which extract the spatial

features from each hemisphere and calculate the difference. The

previous models proposed in the literature which were shown to

achieve good classification results in the KU EEG dataset such as

EEGNet (Lawhern et al., 2018), Shallow ConvNet (Schirrmeister

et al., 2017) and FBCNet (Mane et al., 2020b) focus on the spatial

features from all channels in the motor region and ignore the

available information that might be learned from the hemispheric

differences. (3) The proposedmodel without T-dense units (w/o_T-

dense) replaces the two T-dense units with common CNN layers.

The results of the ablation study in different scenarios are shown in

Table 3.

In the KU dataset, the T-test results indicated that there is no

statistical significance (p > 0.05) to show the w/o_trans brings

a negative impact on the classification accuracy in session 1 of

the within-session scenario. Apart from this, the absence of any

specific components will make the accuracy drop(p < 0.05).

Especially for session 2 in the within-session scenario, without

the transformer encoders, the classification result decreased by

9.37%. In the BCIC-IV-2a dataset, although in within-session1 and

two-session scenarios, the model without transformer encoders

performed better, other cases still show the importance of the

different modules. The statistical analysis showed that w/o_trans

decreased the classification accuracy in the cross-session scenario

(p < 0.05). The w/o_Diff-hemi had significance in within-session

and cross-session scenarios (p < 0.05) while the T-test result

in the two-session scenario was p = 0.127. The w/o_T-dense

had statistical significance in all scenarios (p < 0.01). It is clear

that the T-dense has significant contributions to the classification

accuracy improvement, as it produces a comprehensive set of

temporal-spatial features. Without this module, using a simple

temporal block and spatial block is unable to capture sufficient

and subtle useful features embedded in the highly corrupted

and diffused EEG raw data. We also tested the selection of

the activation functions on cross-session case 1 from the KU

dataset (Figure 5). The ELU function performed best with the

highest accuracy.
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TABLE 3 Ablation study of the proposed method on the di�erent modules.

Within-session Cross-session Two-session

Session1 (SD) Session2 (SD) Case1 (SD) Case2 (SD) Session 1&2 (SD)

KU dataset

w/o_trans 75.81 (14.22) 68.01 (13..31) 75.02 (14.89) 66.42 (11.01) 72.88 (12.63)

w/o_diff-hemi 75.20 (14.92) 75.98 (15.59) 73.89 (16.01) 73.20 (13.98) 78.89 (13.60)

w/o_T-dense 67.88 (12.36) 68.53 (13.12) 68.54 (12.88) 66.74 (11.39) 73.61 (12.81)

Proposed model 75.94 (14.71) 77.38 (15.29) 77.14 (14.76) 74.51 (13.93) 80.20 (13.01)

BCIC-IV-2a dataset

w/o_trans 74.64 (11.21) 76.07 (12.58) 73.14 (13.64) 73.64 (11.54) 84.01(8.60)

w/o_diff-hemi 72.56 (11.09) 73.95 (14.59) 70.67 (15.15) 73.72 (11.82) 78.91(10.08)

w/o_T-dense 63.31 (8.43) 65.74 (10.11) 68.82 (13.73) 63.12 (6.47) 77.21 (8.66)

Proposed model 74.19 (10.60) 76.25 (12.67) 75.85 (14.11) 75.08 (12.66) 81.04 (8.54)

The bold values indicate the highest value within each column of data in the table.

3.3. Complexity

Table 4 shows the model complexity based on the number

of trainable parameters. The results show that there is no

decisive relationship between the complexity of a model and its

performance. Deep ConvNet has the most parameters because

of more CNN layers used in the structure. However, regardless

of the scenarios, the Deep ConvNet performs badly even worse

than the traditional approach FBCSP. Among these compared

models, the EEGNet only has nomore than 2k trainable parameters

because the depthwise separable convolution layer is employed

to reduce the dimensions. However, EEGNet performs much

better than the Deep ConNet in each scenario. The Tensor-

CSPNet divides the raw signals into several frequency bands

to learn subtle features within different frequency bands, thus

encompassing the spectral differences among different subjects.

This approach adds additional computational parameters but

the model performance is the best as demonstrated in the

previous studies. The proposed model includes 12K of trainable

parameters that are only half of the Tensor-CSPNet but has

better classification results, which demonstrated its efficacy and

effectiveness.

3.4. Feature visualization

The t-distributed Stochastic Neighbor Embedding (t-SNE)

approach was employed to visualize the feature distribution

after the last fully connected layer of the proposed model.

Figure 6 shows the comparison of the visualization based on

the different scenarios. We used the data from subject 3 in the

two datasets respectively. Figures 6A–E belongs to the BCIC-IV-

2a while Figures 6F–J belongs to the KU dataset. Each color

represents one label of MI-EEG tasks. According to the t-SNE

result, the proposed model showed a great ability to classify EEG

signals. In comparison to within-session, the feature distribution

in cross-session and two-session scenarios appears to be more

dispersed. However, there are still clear distinctions that can

be observed, further showing the superior performance of the

proposed model.

4. Discussion

In this work, we proposed a local and global convolutional

transformer-based model for MI-EEG classification. The

transformer encoder with the self-attention mechanism is

widely applied to the computer version and natural language

processing. Compared with the CNN limited by the size of its filter,

the transformer can capture all samples simultaneously, which is

suitable to extract global features. Meanwhile, the calculation step

of the self-attention mechanism focuses on finding the relationship

of different features while CNN extracts common mode from

features. Once the CNN-based model is trained, the weights

in the filters are fixed. However, in a transformer encoder, the

weights depend on the inputs, so they are dynamically changed

according to the data. Previous studies have shown that the EEG, as

intricate time series, varies from subject to subject which makes the

transformer a suitable approach for processing EEG signals. Due

to the distinct characteristics of CNN and transformer, combining

and complementing each other makes for exploring more useful

features of EEG signals and ensuring the robustness of the model.

In the proposed model, we employed two strategies for the

transformer, specifically the local and the global modes. When

extracting temporal features from raw EEG signals, such a long

time series will significantly increase the cost of model computation

and lead to severe overfitting problems. Using the local transformer

encoder can limit the size of the filter like the learning mode

of a CNN layer. Although this will cause the transformer to

lose the chance of obtaining global features of long sequences at

once, it can still leverage the advantage of dynamically extracting

learning feature relationships, complementing the CNN. When

the features are sent into the T-Dense block, the transformer

encoder employs the global mode because the time series has been

processed with the pooling layers. Meanwhile, the feed-forward

fashion connecting each layer to every other layer in the CNN

and transformer branch encourages feature reuse and information
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FIGURE 5

The e�ect of activation functions of all subjects in KU dataset.

flow which improve the model performance. In the spatial block,

compared with previous models the proposed model used the

depthwise CNN layer to extract spatial features not only from

all channels like ConvNet (Schirrmeister et al., 2017), EEGNet

(Lawhern et al., 2018) and FBCNet (Mane et al., 2020b) which

performed well in the KU and BCIC-IV-2a dataset but also from

the difference of two hemispheres. The result of the ablation study

has shown the efficiency of this module. After extracting features

from the hemisphere differences, the proposed model got higher

classification results in all scenarios, especially in the cross-session

cases.

To better validate the superiority of the proposed model, we

designed three scenarios including within-session, cross-session,

and two-session in two famous public datasets. From Tables 1, 2,

the results show that our proposed model achieved the highest

classification result in the different scenarios. Compared with

the other two scenarios, the cross-session scenario is closer to

the real application which limits the model performance because

of the number of data and the drift of statistical distributions.

However, our proposed model still performed well and was less

than only 3% than within-session results which further shows the

good robustness and adaptability. Previous models based on the

transformer for MI classification use the CNN layers (Ma et al.,

2022; Xie et al., 2022; Song et al., 2023) to extract temporal features

while the transformer is used to refine features. While the proposed

model adopted the local mode of the transformer to complement

the functionality of CNN in time-series data analysis, rather than

simply placing the transformer behind the CNN layer. Meanwhile,

during the feature refinement stage, the proposed model not only

employed the attention mechanism in the transformer but also

combined with the DenseNet to improve the flow and reuse

of information. Further, the spatial features learned from the

difference of the hemispheres were also taken into consideration.

Although our proposed model has shown superior

performance than previous methods, there is still room for

improvement. First, the proposed model only adopts the

transformer encoder on the time series but ignores the possible

TABLE 4 Model complexity based on the number of trainable parameters.

Models Parameters

Shallow ConvNet 42,884

Deep ConvNet 282,004

EEGNet 1,876

Tensor-CSPNet 232,360

Proposed Model 118,337

spatial features extracted based on the self-attention mechanism.

The main reason we did not add this module is that the overall

length of the sequence is quite long after obtaining temporal

features. If we use a transformer to learn the correlation between

each channel’s features and replace the deepwise convolutions,

it will cause severe overfitting problems. Meanwhile, although

the complexity based on the trainable parameters of our model

is not high, the computation time is still large because the

local transformer slid to process inputs like CNNs which is

time-consuming. Also compared with other transformer-based

models, the selection of the position encoding methods is

not considered in the proposed model. Thus, a future work

will investigate a more efficient model structure. Secondly,

self-attention can help reallocate the weights that present the

importance of each feature. In future works, investigations and

visualization of these weights to expand the interpretability and

mechanism corresponding with the nerve disease are desirable

to study.

5. Conclusion

In this article, we have presented a novel and effective

approach for MI-EEG classification using a local and global

convolutional transformer-based model. The proposed model has

been validated on the three scenarios and two public datasets.
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FIGURE 6

The feature map obtained by the proposed model in 2-D embedding based on t-SNE. (A–E) is the distribution of the extracted features of the third

subject from the BCIC-IV-2a dataset. (F–J) show the distribution of extracted features of the third subject from the KU dataset.

The combination of CNN filters and transformer encoders with

local and global structures has the advantage of extracting a

comprehensive set of useful features from EEG signals. In the

spatial module, we also consider the possible information from

the differences between the hemispheres which helps improve the

robustness of the model. Our results showed that the proposed

model outperformed the state-of-the-art methods for MI-EEG

classification on the KU dataset, achieving up to 0.99% and 1.46%

for the session 1 and 2 respectively in the within-session scenario,

up to 7.49% and 8.19% for the case 1 and 2 respectively in

the cross-session scenario and up to 7.46% for the two-session

scenario. For the BCIC-IV-2a dataset, the model can also improve

the classification accuracy by 1.24% and 2.12% for the case 1

and 2 in the cross-session scenario and 2.21% for the two-

session scenario.
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