AUTHOR=Chai Yaqiong , Park Hea Ree , Jo Hyunjin , Seo Min Young , Kim Hyo Yeol , Joo Eun Yeon , Kim Hosung TITLE=White matter microstructure and connectivity changes after surgery in male adults with obstructive sleep apnea: recovery or reorganization? JOURNAL=Frontiers in Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1221290 DOI=10.3389/fnins.2023.1221290 ISSN=1662-453X ABSTRACT=Study objectives

Obstructive sleep apnea (OSA) is a prevalent clinical problem significantly affecting cognitive functions. Surgical treatment is recommended for those unable to use continuous positive airway pressure. We aimed to investigate the therapeutic effect of upper airway surgery on the white matter (WM) microstructure and brain connectivity in patients with OSA.

Methods

Twenty-one male patients with moderate-to-severe OSA were recruited for multi-level upper airway surgery. Overnight polysomnography (PSG), neuropsychiatric tests, and brain MRI scans were acquired before and 6.1 ± 0.8 months after surgery. Nineteen male patients with untreated OSA were also included as a reference group. We calculated the longitudinal changes of diffusion tensor imaging (DTI) parameters, including fractional anisotropy (ΔFA) and mean/axial/radial diffusivity (ΔMD/AD/RD). We also assessed changes in network properties based on graph theory.

Results

Surgically treated patients showed improvement in PSG parameters and verbal memory after surgery. Globally, ΔFA was significantly higher and ΔRD was lower in the surgery group than in the untreated group. Especially ΔFA of the tracts involved in the limbic system was higher after surgery. In network analysis, higher Δbetweenness and lower Δclustering coefficients were observed in the surgical group than in the untreated group. Finally, the improvement of verbal memory after surgery positively correlated with ΔFA in superior thalamic radiation (p = 0.021), fronto aslant tracts (p = 0.027), and forceps minor tracts (p = 0.032).

Conclusion

Surgical treatment of OSA can alleviate alterations in WM integrity and disruptions in local networks, particularly for the tracts involved in the limbic system. These findings may further explain the cognitive improvement observed after the treatment of OSA.