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Introduction: The current method of monitoring sleep disorders is complex, 
time-consuming, and uncomfortable, although it can provide scientifc guidance 
to ensure worldwide sleep quality. This study aims to seek a comfortable and 
convenient method for identifying sleep apnea syndrome.

Methods: In this work, a one-dimensional convolutional neural network model 
was established. To classify this condition, the model was trained with the 
photoplethysmographic (PPG) signals of 20 healthy people and 39 sleep apnea 
syndrome (SAS) patients, and the influence of noise on the model was tested by 
anti-interference experiments.

Results and Discussion: The results showed that the accuracy of the model 
for SAS classifcation exceeds 90%, and it has some antiinterference ability. This 
paper provides a SAS detection method based on PPG signals, which is helpful for 
portable wearable detection.
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1. Introduction

According to the statistics of the World Health Organization, more than one-third of the 
world’s population suffers from sleep disorders, which seriously affect people’s health. SAS is a 
common sleep disorder, and its standard recognized method of diagnosis is polysomnography. 
However, this method requires multiple sensors, resulting in discomfort during the detection 
process. It can also seriously affect the patient’s natural sleep mode, with high costs (Phan and 
Mikkelsen, 2022). Thus, it is an urgent problem to find a simple and comfortable diagnostic 
method for the detection of SAS. To improve the comfort of the diagnostic process, thermal 
infrared imaging, radio frequency (RF) architecture, and sound detection have been introduced 
for non-contact detection (Murthy et al., 2009; Norman et al., 2014; Penzel, 2017; Tran et al., 2019), 
since body position, limb movement, and noise can easily interfere with the monitoring results. In 
recent years, some scholars have been committed to researching SAS detection based on wearable 
devices, which are used to collect chest bioimpedance, electrocardiogram (ECG), or PPG. At the 
same time, machine learning or deep learning are used to detect SAS, with accuracy generally 
around 70–85% (Baty et al., 2020; Hsu et al., 2020; Papini et al., 2020; van Steenkiste et al., 2020).

At present, many scholars have conducted research on convenient SAS detection based on 
neural networks. Convolutional neural networks have been gradually applied to analyze sleep 
quality. Song and other researchers constructed convolutional neural networks to classify sleep 
stages using single-channel electrocardiogram signals (Song et al., 2016; Sors et al., 2018; Wang 
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et al., 2019; Eldele et al., 2021; Haghayegh et al., 2023). Guo et al. 
(2022) proposed a pseudo-3D convolutional neural network method 
to detect people’s nocturnal sleep behavior, with an accuracy of 90.67% 
on the test set. du-Yan et al. (2022) used convolutional neural networks 
to analyze sleep stages using heart rate variability. Casal et al. (2022) 
constructed a time convolutional network and transformer using 
pulse oximeter signals to classify sleep stages. The above research 
methods mostly extract classification features from ECG signals. 
However, ECG signals are easily affected by low-frequency and large-
amplitude P and T waves, and the above studies are mostly used for 
sleep stages but not for SAS detection.

Pulse signals contain all kinds of human information and can 
be easily obtained, and monitoring it is of great significance in assessing 
the risk of various diseases (Allen and Hedley, 2019). Pulse wave 
amplitude and pulse rate variability have been used for SAS diagnosis 
and detection (Haba-Rubio et al., 2005; Liu, 2017). However, when the 
signal is disturbed or weak, it is very difficult to extract local features 
of the waveform using these methods. As fitting functions, the 
Gaussian function and lognormal function use the global information 
of the signal to extract the characteristics of pulse waves for SAS 
research (Jiang et al., 2021), but this method requires normalizing the 
data, resulting in a long processing period. Shen et al. established a 
convolutional network using PPG signals collected from wearable 
smart bracelet devices to detect sleep apnea syndrome, but the accuracy 
of fragment detection is approximately 80% (Shen et al., 2022).

In this study, a one-dimensional convolutional neural network 
(1D-CNN) was established by using PPG signals for the recognition of 
SAS, with a classification accuracy of over 90%. The results indicate 
that the convolutional model based on PPG has satisfactory recognition 
performance for SAS. This means that SAS can be identified using PPG 
signals by a one-dimensional convolutional model, which can make 
the detection process of SAS convenient and comfortable.

2. Methods

2.1. Subjects and data

In this study, signals were collected from 59 subjects, which 
included 20 healthy people and 39 SAS patients. The data used for 
analysis were the PPG signals of the subject’s fingers obtained from 
the Alice 5 detection system of the polysomnography monitor in the 
Sleep Center of Shandong Provincial Hospital. It was approved by the 
committee of our research institute as a retrospective study with the 
subjects’ informed consent. The PPG signals (sampling frequency is 
100 Hz) of each subject are segmented by 1,500 points. Table 1 shows 
the clinical information of 59 subjects and the summary of the 
PPG datasets.

As shown in Table 1, this study used 35,741 data segments, all of 
which were randomly divided into training, validation, and test sets, 
with a ratio of 6:2:2. To avoid the contingency of the experimental 
results, five cross-validations were used for training.

2.2. One-dimensional convolutional neural 
network

The convolutional neural network (CNN) is a common deep 
learning model, whose convolutional kernel can extract intrinsic features 

from different dimensions. It has the characteristics of local perception 
and weight, allowing the merging of local features from different fields of 
view. This greatly enhances learning efficiency and accuracy. In addition, 
its network structure mainly adopts local connections and weight-
sharing methods, which reduce the number of weights, facilitate network 
optimization, and minimize model complexity and the occurrence of 
overfitting. Considering that pulse wave data is a one-dimensional time 
series signal, this study proposes a 1D-CNN model for SAS classification 
and detection that includes eight convolutional layers, four maximum 
pooling layers, two LSTMs, and two fully connected layers. Figure 1 
shows the structure of the 1D-CNN model.

2.2.1. Convolutional layers
Convolutional layers are mainly used for feature extraction and 

can automatically extract features for learning. Different convolutional 
kernels can extract different local features, and the amount of feature 
learning can be increased by setting different convolutional kernels. 
As the number of layers in a neural network increases, convolutional 
neural networks typically have stronger feature extraction capabilities 
and yield better results. However, increasing the number of 
convolutional kernels significantly raises computational complexity 
and the difficulty of network training. At the same time, with the 
increase in network depth, it is easy to cause gradient vanishing and 
overfitting. To prevent these phenomena and obtain accurate results, 
this paper designs a progressive convolutional kernel scheme layer by 
layer. As shown in Figure 1, the model consists of eight convolutional 
layers, divided into four groups, each with two convolutional layers. 
A pooling layer and the ELU activation function are added between 
the convolution layer groups. The k-value of each convolutional kernel 
is 3, and the number of neurons in the four groups is 32, 64, 128, and 
256, respectively.

2.2.2. Pooling layers
Pooling is a process of data processing that reduces the 

dimensionality of feature maps and the number of parameters in the 
network. The pooling layer can gradually reduce the feature map 
output of the network and improve learning efficiency. In this study, 
four maximum pooling layers were designed. This design achieves 
rapid dimensionality reduction of information by mapping distributed 
features to the sample label space while ensuring its comprehensiveness 
and translation invariance.

2.2.3. LSTM
The Long Short-Term Memory (LSTM) neural network is an 

improved network based on recurrent neural networks. Due to the 
fact that traditional RNN structures are prone to associated gradient 
problems during training, they are not suitable for processing time 
dependence. The LSTM network can solve the dependency problem 
of RNN networks through the gate structure, thereby establishing a 
larger deep network. Its structural diagram is shown in Figure 2. Input 
gates can facilitate the flow of information and update the state of cells. 
The output gate can not only achieve information outflow but also 
be used to determine the value of the next hidden state. The Forgotten 
Gate can update the previous state and choose whether to discard or 
retain the information. The sigmoid function categorizes the data 
between 0 and 1, filters the updated data, and then transfers the output 
data of the previously hidden layer and the current state data together 
to the Tanh function to determine a new candidate value. Finally, the 
outputs of these two functions are multiplied.
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where It represents input gates; Ft represents forgetting gates; ht 
represents the hidden layer of the output gate; Xt is the external input 
at the current time; and ht-1 is the output of the network at the 
previous time.

The pulse wave is a temporal signal, and this article uses two 
LSTMs to extract temporal features from the data.

2.2.4. Cross-entropy loss function
The loss function is the key factor that guides the optimization 

direction of neural network parameters. The parameters of the 
network model are updated according to the backpropagation of the 
loss function to optimize the model. The cross-entropy loss function 
uses the logic function to obtain probabilities and adopts an inter-
class competition mechanism to effectively learn inter-class 
information. This scientific question in this paper is a binary 
problem; therefore, the binary cross-entropy loss function is utilized, 
which is defined in Formula 1 as:

 
L

N
y p y p

i

N
i i i i= − ( ) + −( ) −( ) 

=
∑1 1 1

1

. .log log

 
(1)

where N represents the total number of samples, yi represents the 
label of sample i, with positive classes being 1 and negative classes being 
0; pi  represents the probability that sample i is predicted to be positive.

3. Results

3.1. Evaluation indicators

To validate the performance of the model, four indicators were 
used to evaluate the classification performance of the model: accuracy 
(ACC), precision (PRE), sensitivity (SE), and specificity (SP). The 
calculation formula for each indicator is as follows:

 
ACC TP TN

TP TN FP FN
=

+
+ + +

 
PRE TP

TP FP
=

+

 
SE TP

TP FN
=

+

 
SP TN

TN FP
=

+

TABLE 1 Summary of PPG datasets.

Category Number Gender
Male subjects /
female subjects

Age (years) 
Mean [range]

Record duration 
(min) Mean 
[range]

Data segments

Healthy 20 11/9 29 [21–56] 473 [348–563] 15,343

SAS patient 39 29/10 48 [22–76] 494 [318–557] 20,398

Total 59 40/19 42 [21–76] 486 [318–563] 35,741

FIGURE 1

The structure of the 1D-CNN model.
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3.2. Result comparison

In order to verify the performance of the 1D-CNN model, SVM, 
LSTM, and KNN models were also constructed using the same data. 
The comparison between the confusion matrix results of the four 
models is shown in Figure 3. The evaluation index values of each 
model are shown in Table 2.

Compared to the other three models, it is obvious from Table 2 
that the 1D-CNN model established in this paper exhibited good 
performance. Except for the PRE indicator, the 1D-CNN model 
achieved the highest values for the other three performance indicators, 
ACC, SE, and SP Their values are 91.40, 98.36, and 87.63%, 
respectively, in the validation set; and 90.75, 98.24, and 86.74%, 
respectively, in the test set.

3.3. Anti-interference experiment

To test the influence of noise on the performance of 1D-SCNN, 
an anti-interference experiment was designed by adding Gaussian 
white noise to the original signal with a signal-to-noise ratio 
(SNR) of 5, 10, 15, 20, 25, and 30 dB, respectively. The data 
segments were also randomly divided into training, validation, 
and test sets in a ratio of 6:2:2. The anti-interference test results 
of the model’s test set are shown in Table 3. The experimental 
results indicated that noise has little effect on the performance 
indicators of 1D-SCNN, and the model has a certain anti-
interference ability.

3.4. Ablation experiment

To verify the role of the LSTM layer in the model, we designed 
an ablation experiment by removing the LSTM layer from the 
1D-CNN model, and then used the original data and followed the 
same method to train the model without the LSTM layer. The 
performance indicators ACC, PRE, SE, and SP of the test set 
without the LSTM layer had values of 89.94, 78.57, 97.71, and 
85.81%, respectively, which reduced its accuracy by 0.81% 
compared to the 1D-CNN model. The results showed that the 
LSTM layer can improve system performance, although the 
accuracy improvement is not very significant.

4. Discussion

In this study, we  constructed a 1D-CNN model for SAS 
detection and compared its performance with SVM, LSTM, and 
KNN models. The results showed that the accuracy of the 
1D-CNN model on the test set was 90.75%, which was 11.2% 
higher than the results for the SVM model, with a recorded 
accuracy of 79.55% on the test set. The results indicate that the 
constrained 1D-CNN model in this study has better performance 
in the classification of SAS. At the same time, we designed anti-
interference and ablation experiments to test the anti-noise 
performance of the model and the role of LSTM layers, 
respectively. The experimental results indicated that the model 
has a certain level of anti-interference ability, and the LSTM layer 
helps to improve the performance of the model.

Shen et  al. (2022) proposed a Multitask Residual Shrinkage 
Convolutional Neural Network that utilizes PPG signals to detect 
SAS with a fragment detection accuracy of 81.82%. Lazazzera et al. 
(2021) also proposed a method to detect and classify sleep apnea and 
hypopnea using light plethysmography (PPG) and peripheral 
oxygen saturation [SpO(2)] signals. However, there is significant 
room for improvement in the accuracy of their models. In our 
previous work (Jiang et al., 2021), Gaussian and lognormal functions 
were used to build SVM models based on PPG signals to classify 
SAS. The correct rate of the SVM model with a lognormal function 
in the awake period reached 95.00%, and the correct rate of the SVM 
model with a Gaussian function in the rapid eye movement periods 
reached 93%. However, in this study, only 10 cycles of pulse signals 
were captured from each subject, and the difference between the 
number of healthy individuals and the number of patients was too 
large, while the SVM machine learning method did not separate 
more subtypes. All these factors make the generalization ability of 
SVM models weak.

This study has several limitations. First, the sample size is small, 
involving only 59 subjects for a total of 35,741 data segments, which 
may have affected the performance of the model. Second, compared 
to SAS patients, healthy subjects are younger. Previous studies have 
shown that age affects PPG signals (Millasseau et al., 2002; Liu et al., 
2015), and differences in PPG signals caused by different age groups 
may also affect the classification performance of the model. However, 
the above factors have a small impact on the performance of the 
model, which has not changed much overall.

FIGURE 2

The structural diagram of LSTM.
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FIGURE 3

Confusion matrix results of the four models.

TABLE 2 Evaluation index values for each model.

Method Validation set Test set

ACC (%) PRE (%) SE (%) SP (%) ACC (%) PRE (%) SE (%) SP (%)

SVM 79.35 84.88 80.12 78.17 79.55 84.53 80.58 78.01

LSTM 74.40 83.94 65.83 84.77 74.47 84.00 65.90 84.83

KNN 74.42 84.95 74.04 75.12 74.46 85.02 74.06 75.21

1D-CNN 91.40 81.12 98.36 87.63 90.75 79.90 98.24 86.74
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5. Conclusion

In this study, a 1D-CNN model based on PPG signals for SAS 
classification was established. The results showed that this had the best 
performance, with a test set accuracy of over 90%, compared to other 
types of models. Our research results indicate that using only PPG 
signals for SAS classification is feasible, which can provide a foundation 
for seeking convenient and comfortable SAS detection methods. 
Furthermore, this can be helpful for portable wearable detection.
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