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The potential low-energy feature of the spiking neural network (SNN) engages

the attention of the AI community. Only CPU-involved SNN processing inevitably

results in an inherently long temporal span in the cases of large models and

massive datasets. This study introduces the MAC array, a parallel architecture

on each processing element (PE) of SpiNNaker 2, into the computational

process of SNN inference. Based on the work of single-core optimization

algorithms, we investigate the parallel acceleration algorithms for collaborating

with multi-core MAC arrays. The proposed Echelon Reorder model information

densification algorithm, along with the adapted multi-core two-stage splitting

and authorization deployment strategies, achieves e�cient spatio-temporal load

balancing and optimization performance. We evaluate the performance by

benchmarking a wide range of constructed SNN models to research on the

influence degree of di�erent factors. We also benchmark with two actual SNN

models (the gesture recognitionmodel of the real-world application and balanced

random cortex-like network from neuroscience) on the neuromorphic multi-core

hardware SpiNNaker 2. The echelon optimization algorithmwithmixed processors

realizes 74.28% and 85.78% memory footprint of the original MAC calculation

on these two models, respectively. The execution time of echelon algorithms

using only MAC or mixed processors accounts for ≤24.56% of the serial ARM

baseline. Accelerating SNN inference with algorithms in this study is essentially

the general sparse matrix-matrix multiplication (SpGEMM) problem. This article

explicitly expands the application field of the SpGEMM issue to SNN, developing

novel SpGEMM optimization algorithms fitting the SNN feature and MAC array.

KEYWORDS

SpiNNaker 2, SNN, MAC array, SpGEMM, multi-core load balancing deployment

1. Introduction

Coupling spatial and temporal information, the SNN shows promise in simulating

biologically related models more comprehensively and efficiently. The CPU-based system

is widely used for simulating these brain-inspired neural networks by taking advantage of

flexibility. However, the efficient input spike encoding way is still in the exploration stage,

and a gap still exists between the current encoding efficiency and that of the human brain,

which reduces the expected sparsity of the input signal and extends the CPU running time.

Moreover, to accommodate the serial operation mechanism, the model needs to introduce

additional information when deployed to the hardware, such as the storage address of

neurons, extra memory occupation owing to non-equivalent connections, and intermediate
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state storage buffers. This not only burdens the memory space but

also inevitably requires more time to execute the corresponding

pre- and post-neuron matching algorithm for information transfer

and neural update, which is detrimental to the operation of real-

time SNN inference.

To address these issues caused by pure CPU systems, we

introduced the parallel computing concept into SNN inference.

The feasibility of parallel architecture processing SNN lies in the

neurons of SNN being typically governed by the same type of

equations (Yavuz et al., 2016). As a result, the single-instruction-

multiple-data (SIMD) architecture of MAC fits SNN calculation.

This study targets a wholly parallel calculation based on the

more efficient matrix parallelism. We emulate the SNN inference

on SpiNNaker 2 (Mayr et al., 2019), which integrates the MAC

array in each processing element (PE). The parallelism of this

integrated hardware component has the potential of speeding up

SNN inference in a sufficiently parallel manner. Nevertheless, there

are two challenges to tackle:

• Memory alignment: The memory alignment for catering

to the MAC array architecture triggers an issue of data volume

surges, blocking the possibility of deployingmore neurons and

synapses on limited hardware resources.

• Multi-core distribution: The unconsidered multi-

core distribution of the large-scale model can differentiate the

spatial-temporal overhead among activated PEs, wasting the

resources in space and time and affecting the performance of

applications with strict requirements.

This study addresses these two challenges by lossless densifying

the memory-aligned model information and splitting matrix

multiplication operands into multiple PEs in a spatial-temporal

load-balancing way.

Essentially, accelerating SNN inference with our algorithms

is the SpGEMM problem, as explained in Section 2.2. SpGEMM

is very popular in high-performance computing, mainly used

in algebra and graph analysis (Gao et al., 2020). The vast

majority of the relevant studies, such as Davis (2018), Zhang

et al. (2020), and An and Çatalyürek (2021), are based on

the “row-wise” algorithm proposed by Gustavson (1978), also

known as compressed sparse row format (CSR) or Yale sparse

matrix format. This traditional algorithm is unsuitable for

using MAC array accelerating SNN, so we propose a brand-

new optimization algorithm set, which can accelerate the SNN

processing when alleviating the ineffective memory footprint.

This algorithm set, consisting of four algorithms up to now,

provides an alternative to the traditional method for solving the

SpGEMM problem. To the best of our best knowledge, our work

is the first to build a bridge between the concept of SpGEMM

and SNN, expand the application field of SpGEMM to SNN,

and tackle the SNN inference using the MAC array with new

SpGEMM algorithms.

As a follow-up to our previous study that states three algorithms

of information densification (Huang et al., 2023), this study

proposes Echelon Reorder, filling in the unoptimized aspects of

that work, completing the optimization algorithm set to fully resist

the data sparsity caused by the SNN characteristics and fixed

MAC array hardware structure. The corresponding splitting and

FIGURE 1

Schematic of the MAC array (Huang et al., 2023). Pink squares

express 4× 16 MAC calculation units. In each clock cycle, the

SpiNNaker 2 bus system can convey four values from operand A and

16 from operand B and feed them into the MAC array as the arrow

indicates for executing matrix multiplication. To deploy this

structure, we should align the row and column number of operand

A to a multiple of 4 and operand B to a multiple of 4 and 16.

deployment strategies proposed in this study extend the application

range of the whole optimization algorithm set from single PE to

multi-core, enabling accelerating the larger model on SpiNNaker 2

effectively. Furthermore, the compact splitting strategy fully uses

each PE’s memory resource, paving the way for the subsequent

high-performance multiple tasks deployment on this multi-core

neuromorphic platform.

This study briefly introduces the hardware and software

cornerstones in Section 2. Then, based on them, we elaborate

on the Echelon Reorder algorithm for weight and input pure

and mixture processor splitting strategies and also multi-core

role-based SNN model deployment in Section 3. Next, Section

4 evaluates the performance of this proposed processing chain.

Finally, we conclude this article in Section 5.

2. Prerequisite

This section provides the hardware and software foundations

for the next section concerning the MAC array architecture

of SpiNNaker 2 and the stacked matrix-multiplication operands

essential for accelerating SNN inference.

2.1. MAC array

SpiNNaker 2 is a neuromorphic multi-core system. Each core

contains 64 MAC units in a 4 × 16 layout (Yan et al., 2021;

Zeinolabedin et al., 2022), which we call the MAC array. For

executing matrix multiplication, operands are supposed to be

memory aligned, as Figure 1 illustrates. The alignment shapes

originate from the fixed hardware architecture of the MAC array

and data access bandwidth of the SpiNNaker 2 system. The

precision of the operands could be 8 bits or 16 bits. For output

precision, 8 bits, 16 bits, and 32 bits can be configured.
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FIGURE 2

Original processing chain of MAC array calculating SNN (left) and the schematic of Operand Stack optimization algorithm (right) (Huang et al., 2023).

2.2. Operand Stack

Conducting SNN inference generally consists of two

consecutive steps: synaptic processing and neural update.

The following equation defines the dynamics of the arguably

most prominent neuron model in the brain, that is, the leaky

integrate-and-fire (LIF):

V t+1
j = 6iWjix

t−d(j,i)
i + αV t

j − ztjVth (1)

In the synaptic processing step, weights that connect pre-

neuron i and post-neuron j are summed if the spikes arrive at

the post-neuron after traveling across the synapse for time interval

d(j, i). Then, in the neural update step, the membrane potential

decays by factor α (equals to e1/τm , τm denotes the membrane time

constant) and is updated by checking the neuron states ztj at time t.

If the sum of the first two terms exceeds the threshold Vth, neuron

states are set to 1 and neuron spikes, otherwise 0. This equation

refers to (Bellec et al., 2020) and its supplementary, with factor 1−α

removed. Unlike the original equation, the input and recurrent

synaptic processing share the same term.

Because of the high data precision requirement of the neural

update, the MAC array primarily contributes to accelerating the

synaptic processing of the SNN inference. As with the serial

synaptic processing mentioned by Rhodes et al. (2018), the parallel

synaptic processing also contains processing input spikes and

advancing the input current buffer of each delay, as shown on

the left side of Figure 2. To be specific, first, the memory-aligned

weight-delay matrix is divided into several weight matrices, each

of which has the same delay attribute. Then weight matrices is

transmitted to the MAC array one by one serving as the operand

B and simultaneously conveying the memory-aligned input spike

train to MAC as the operand A. Finally, the MAC calculated results

is added to the input current buffer to update the input current

of each delay. Here, the “delay,” or “synaptic delay” precisely, is

the time for conducting a signal across a synapse, that is, the

interval between the arrival of the spike and the start of the

membrane potential.

The delay stack algorithm proposed in our previous study

(Huang et al., 2023) simplifies these conventional synaptic

processing steps to only one step (matrix multiplication), so there

is no need to consider the weight matrix division and the input

current accumulation. As depicted on the right side of Figure 2, this

algorithm stacks sequential input spike trains of tn−3 to tn+3 into an

input-spike-train map and stacks weight matrices along the delay

into a weight-delay map. These two maps act as the new operands

for matrix multiplication on the MAC array. SNN features sparse

input to mimic the working mechanism in the mammalian brain

but decouples weight sparsity. By applying delay stack, the weight

matrix is divided into multiple sparse matrices, and the merged
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FIGURE 3

Two optimization algorithms proposed in Huang et al. (2023): (A) Zero Elimination (B) Proportion Merger.

weight-delay map exhibits sparsity as a result. Thus, the issue

of accelerating SNN inference with MAC array is converted into

efficient multi-core processing SpGEMM problem.

Considering the limited SRAM space on each PE of

SpiNNaker 2 and the sparsity of the merged weight-delay map, our

last study (Huang et al., 2023) further applies the Zero Elimination

and Proportion Merger algorithms to shrink the size of the matrix-

multiplication operands, as shown in Figure 3. Basically, the Zero

Elimination algorithm removes the rows with all zero values in

the weight-delay map against the operand sparsity, and it also

removes the corresponding columns in the input-spike-train map

to guarantee the result correctness of the matrix multiplication.

The Proportion Merger merges rows that is proportional to each

other to only one row for weight-delay map and records the

proportional values (greatest common divisor), which contribute

to pre-processing the input-spike-train map at runtime. This

algorithm essentially migrates some weight-delay information into

input operand, addressing the accuracy mismatch problem of SNN

input (1-bit) and MAC operand requirement (8-bit/16-bit) and

improving the memory utilization.

These three algorithms from our last study (Huang et al.,

2023) tackle or alleviate most of the memory issues caused by

SNN characters and memory alignment, except memory alignment

alongside the column of operands B and C, as indicated in Table 1.

In other words, if only deploying these three algorithms, the part

from the 5th to 16th column of the weight-delay map in Figure 2

that has all values equal to zero has to be saved on SRAM of PE

for matrix-multiplication calculation. According to the MAC array

working mechanismmentioned in Section 2.1, the output (operand

C) also requires the same number of column reserved for storing
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TABLE 1 Correspondence between memory issues and optimization algorithms.

Memory issues

Optimization algorithms Operand Stack Zero Elimination Proportion Merger Echelon Reorder

SNN characters
Sparse operand A ⋆ ⋆

Accuracy mismatch ⋆

MAC structure

Operand A
Row ⋆

Column ⋆

Operand B
Row ⋆

Column ⋆

operand C
Row ⋆

Column ⋆

Generated during
Sparse operand B ⋆ ⋆ ⋆

optimization

The first row lists four optimization strategies, and the first and second column state the memory issues to be solved when we want to accelerate SNN inference with MAC array. Stars mark

which optimization algorithms can solve or alleviate whichmemory issues. The first three algorithms proposed in our previous study (Huang et al., 2023) ignore the memory alignment problems

of column of operand B and C, highlighted with pink color. The Echelon Reorder algorithm proposed in this study can solve them.

FIGURE 4

An example of utilizing the Echelon Reorder algorithm, which reorders the row of weight-delay map to form the echelon matrix that the left corner

has only zeros.

matrix-multiplication results, which is unfriendly to the limited

memory space. In addition, the previous study does not discuss

multi-core MAC arrays collaborating on processing a large SNN

model. We address these two issues in the following section.

3. Method

This section elaborates on each part of the SNN multi-

core MAC array acceleration processing chain, incorporating the

information densification algorithm for the weight-delay map and

input-spike-train map, pure MAC and mixed processor splitting

strategies, as well as the multi-core deployment.

3.1. Echelon Reorder

3.1.1. Weight-delay map
The Operand Stack algorithm from Huang et al. (2023)

dilutes the original weight-delay matrix and results in a sparse

weight-delay map. Our proposed Echelon Reorder algorithm takes

advantage of this sparsity to isolate the meaningful weights for

weight-delay map, as shown in Figure 4 and Algorithm 1. In

this algorithm, we reorder the rows of the weight-delay map

to form an echelon matrix, of which the lower left part has

all values of zero so that the upper right part has a denser

distribution of non-zero weights than the weight-delay map.

The storage performance and computing power improvement are

foreseeable if only the upper right part is stored and calculated.

We will discuss the specific storage approach in Sections 3.2

and 3.3.

3.1.2. Input-spike-train map
To guarantee the correctness of thematrixmultiplication result,

it is necessary to adjust the operand A (input-spike-train map)

according to the modification of operand B (weight-delay map)

which is discussed in Section 3.1.1. To be specific, we record how

the row of operand B is reordered and apply it to the column

reorder of the operand A. Unlike the operand B, the operand A

is unknown in advance because there is no way to predict the
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Require: weight-delay map WD_map of size row× col

Ensure: echelon matrix E_matrix, echelon matrix index

list tgt_idx_list

/∗ this algorithm reorder the rows of WD_map to

generate E_matrix ∗/

/∗ execute this algorithm on PC before inference,

and load the result E_matrix to PE of SpiNNaker 2 as

operand B ∗/

E_matrix_row_count← 0

for j ← 0 to (col− 1) do

for i ← 0 to (row− 1) do

if WD_map[i][j]! = 0 then

E_matrix[E_matrix_row_count]←WD_map[i][:]

E_matrix_row_count+ = 1

add i to tgt_idx_list

end if

end for

end for

Algorithm 1. Echelon Reorder algorithm.

input spike status, so we cannot reorder operand A offline and

have to adjust the operand A when executing the SNN inference.

This adjustment can be achieved on the host PC with Python or

on SpiNNaker 2 with C language. To make a fair comparison

with the pure ARM baseline in Section 4 and to extend the

capability of SpiNNaker 2 of directly handling the spikes from

the sensor peripheral, we propose the Circle Reverse algorithm

(Algorithm 2) to online real-time process the input-spike-train

map on SpiNNaker 2. It consists of two steps: find circles and

reverse circles.

Find circles: During the reorder process of the operand B, we get

the target index list that corresponds to the source index list, that

is, which source row of the operand B should be placed in which

target row in the generated echelonmatrix, as presented in Figure 4.

Suppose the current target index is taken as the next source index,

we can retrieve the next target index iteratively until finding out the

target index that equals the start source index. The indices found in

this process can form a circle. All the indices of a weight-delay map

can be represented by several circles. In our example, two circles are

found, as demonstrated on the left side of Figure 5.

Reverse circles: Now we consider adjustment of the operand A

(input-spike-train map). If we directly move columns of operand

A based on the order given by original circles, the previous column

overwrites the current column, and then the current column cannot

assign the correct values to the next column. To solve this issue, we

reverse the index order of each original circle and preserve the start

column before executing the column movement for the operand A,

as shown on the right side of Figure 5. Then we assign the preserved

start column to the column at which the start column points. In this

process, only a little extra memory is required to preserve the start

column instead of a whole space with the same size as the original

input-spike-train map. This algorithm does not involve the sort

and search algorithms. Thus, the runtime grows linearly with the

number of columns, and the time complexity is O(n).

Require: weight-delay map index list src_idx_list,

echelon matrix index list tgt_idx_list

Ensure: reversed_circle_list

/∗ this algorithm calculates reversed_circle_list needed

for the input-spike-train map online reorder ∗/

/∗ execute this algorithm on PC before inference,

and load the result reversed_circle_list to PE of

SpiNNaker 2. It processes input data during

inference to generate operand A ∗/

/∗ step 1: find circles ∗/

/∗ input: src_idx_list, tgt_idx_list ∗/

/∗ output: circles_list, circle_count ∗/

circle_count← 0

repeat

start_src_index← one element from src_idx_list

src_index← start_src_index

delete src_index from src_idx_list

add src_index to circles_list[circle_count]

repeat

tgt_index← tgt_idx_list[src_index]

src_index← tgt_index

delete src_index from src_idx_list

add src_index to circles_list[circle_count]

until tgt_index == start_src_index

circle_count+ = 1

until no element in src_idx_list

/∗ step 2: reverse circles ∗/

/∗ input: output of step1, that is: circles_list,

circle_count ∗/

/∗ output: reversed_circle_list ∗/

for i← 0 to circle_count do

reversed_circles_list ← reverse the elements of

circles_list[i]

end for

Algorithm 2. Circle Reverse algorithm.

3.2. Multi-core two-stage splitting

3.2.1. Pure MAC
Considering the MAC array exclusively supporting the

acceleration of the rectangular matrix, we employed a set of

rectangles to enclose all the meaningful data and as few zeros as

possible. The length of the rectangle is a consecutive integer (1, 2,

3, etc.) multiple of 16, and the width is an integer multiple of 4.

Themultipliers derive from the hardware characteristic of theMAC

array of SpiNNaker 2. Using the alignment splitting algorithm,

we obtained a set of rectangles with the smallest total area, as

Figure 6A(c) indicates.m in this figure represents the remainder of

dividing the column number of the echelon matrix by that of MAC

array (16). The data contained in this set of rectangles consume the

least memory resources when deploying on SpiNNaker 2.

Now, length and width of the rectangles meet the requirements

of the MAC calculation, and its time to discuss the load balancing

issue. The amount of data outlined by rectangles varies. All data
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FIGURE 5

An example of utilizing Circle Reverse algorithm. The indices of the

weight-delay map in Figure 4 has two circles with index order 0→

3→ 0 and 1→ 4→ 5→ 2→ 1, arrows pointing at the direction of the

row movement. To avoid the row overwrite (row of weight-delay

map, equivalent to column of input-spike-train map here) and save

memory footprint, we reverse the index order to: 0← 3← 0 and 1←

2← 5← 4← 1. Preserve the start point of each circle (0 and 1,

respectively) beforehand and assign the preserved values to the row

that the start row points at (3 and 4, respectively).

in some rectangles might occupy little memory if we simply

distribute each small rectangle to one PE without combination.

In contrast, all data in other rectangles may be far beyond the

maximum available SRAM space of one PE. Even if the data

in the largest rectangle barely fit into one PE, the unbalanced

weight loading of the rectangle set among multiple PEs can

prolong the overall processing time, and partial computing

power of the core with a low weight load is wasted. Therefore,

based on the set of rectangles obtained in the above steps, we

execute the core splitting algorithm to achieve a spatial-temporal

load balancing deployment on multiple cores. This step splits

the rectangles obtained by alignment splitting into more and

smaller rectangles horizontally and then divides them into several

groups with an equal amount of weight values, as Figure 6A(e)

shows. The number of the group is the number of PEs to be

activated.

Equally distributing weights across multiple cores has many

possibilities. Here, we put weights into as few PEs as possible to fully

utilize the resources of each core.We do this for two reasons: on the

one hand, matrix multiplication withMAC array has a considerable

time advantage, and the marginal utility of dividing into more cores

is tiny; on the other hand, the full utilization of each core is also

conducive to simultaneously deploying and executing more tasks

on multi-core SpiNNaker 2 platform in future.

3.2.2. MAC and ARM mixture
By observing the biggest rectangle in Figure 6A(c), we find that

there is still a relatively large area with all values equal to zero,

arising from memory alignment alongside the column of operand

B. The concrete size of this area is subject to m, the remainder

dividing the column number of the echelon matrix by 16. Whenm

is small, these zero values employed as placeholders occupy a large

memory space. We improve this situation by abstracting only the

meaningful data, as Figure 6B(b) illustrates, and conducting matrix

multiplication for this part with the ARM core.

As for the corresponding core splitting strategy that matches

this mixture alignment splitting, we figured out the number of

required PEs with the approach mentioned above and outlined

the core splitting rectangles for the blue and pink marked area of

Figure 6B separately. For example, we needed four PEs, so we split

the whole area marked with blue into four groups equally and do

the same for the pink. Later, in the deployment step, we saved one

split rectangular group for MAC calculation and one for ARM into

one PE. Then all the activated PEs executed matrix multiplication

by leveraging the local MAC array and ARM core. Finally, the

results from all activated PEs were converged to get the synaptic

processing result.

This optimization eliminates the extra memory overhead

originating from necessary memory alignment alongside the

columns of operands B and C. When m is small, or the number of

source neurons (corresponds to the row number of echelon matrix)

is large, the optimization is particularly effective.

3.2.3. Pure or mixed?
The variable m represents a number ranging from 1 to

16 in various models. Therefore, it is necessary to analyze the

influence of m on processor selection quantitatively. In the pink

outlined area in Figure 6B(a), the memory cost of the pure

MAC approach is independent of m. In contrast, the MAC and

ARM mixture approach consumes only 6.25% of the memory

required by pure MAC in the extreme case of m being 1, as

shown in Figure 7A. With m climbs, the memory gap gradually

narrows until it disappears when m reaches the maximum value

of 16. As for the time comparison, we found that pure MAC

outperforms ARM of the mixed approach except for several cases

when m and row number are pretty small, according to Figure 7B.

Consequently, if a model has a high requirement of the real-time

reaction and fewer memory constraints, pure MAC is a better

option in the vast majority of cases; otherwise, MAC and ARM

mixture outperforms.

3.3. Multi-core authorization deployment

After the splitting process, we discuss how to deploy the

split echelon matrix and where to process the original input-

spike-train map. The MAC array of SpiNNaker 2 supports

reading operands from other PEs. Based on this feature, we

authorize the core that reads reversed input data from another

PE and preloads the split weight rectangular group as the

“Subordinate PE.” The PE that provides reversed input data

acts as the “Dominant PE.” Figure 8 illustrates the multi-

core authorization result and the whole processing chain. First,

the Dominant PE (Core 0) receives the original input spikes,

generates the reversed input-spike-train map, and waits for the

reading request from Subordinate PEs. Then, the Subordinate PE

reads the corresponding reversed input data and performs pure

MAC operation or mixture calculation. The generated synaptic

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1223262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2023.1223262

FIGURE 6

Multi-core splitting. (A) Two-stage splitting algorithm. The first splitting stage (alignment splitting) generates a set of rectangles that meet the

memory alignment requirement from MAC array hardware structure, i.e., the length of the rectangles is a multiply of MAC array column number (16

for SpiNNaker 2) and the width of MAC array row number (4). The second splitting stage (core splitting) further disassembles and reorganizes these

rectangles according to the available storage and then deploy them to multiply cores in a balanced loading way. Algorithm details (a) signifies the

memory-aligned echelon matrix. For alignment splitting, first we find the intersection of the gray vertical line and rose red echelon line and

determine the dark blue horizontal dividing lines in (b). In addition, add two light blue lines on the first and last rows. Starting from the second line,

shift the line downwards until meeting the requirement that the number of rows between two adjacent lines is the multiply of 4. Based on them, we

can outline the smallest rectangular set in (c). In the core splitting process, we divide the sum of the memory of all data in the dark blue rectangles by

the available memory per PE for getting the number of PEs (supposing 5 in this example). Purple lines in (d) cut the memory into equal five portions at

first, and a shift downwards is also necessary if two adjacent lines are not the multiply of 4. Purple rectangles surround the area as (e) depicts. Finally,

we can save weights in these rectangles into corresponding PEs for direct MAC calculating with no need for further data format adjustment. (B) Two

kinds of splitting approaches for echelon matrix. We store the weights enclosed by colored borders into PE. Approach of (a) fits pure MAC

acceleration and has the speed advantage. (b) Deploy mixed processors to execute matrix multiplication. The weights outlined in blue utilize MAC

array, while the pink area, which is di�erent from (a), uses ARM processor. This approach consumes more running time but less memory footprint.

The white area represents zero values, the orange area marks denser weights, and the rose red echelon line is the dividing line of them. m represents

the remainder of dividing the column number of the echelon matrix by that of MAC array (16). n in (c) and (e) of subfigure (A) is the non-zero integer.

processing results are eventually accumulated and written back to

the Dominant PE, serving as the input for the subsequent neural

update step.

4. Experiment and result

To evaluate the performance of the information densification

and splitting algorithms and the feasibility of the deployment

strategy from Section 3, we benchmarked it with constructed and

actual SNN models in this section.

4.1. Constructed SNN models

The optimization performance of our proposed approaches

relies on the following five factors: delay range, number

of pre-neurons, number of post-neurons, weight connection
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density, and the selection of splitting strategy. The first four

factors are determined by the SNN model itself. Thus, we

constructed multiple SNN models based on various combinations

of these four factors and explored their influence on spatial and

temporal performance. To focus on the scope of our proposed

approaches, we experimented on the synaptic processing part

of SNN.

Figure 9 illustrates the comparison of the memory optimization

rate among 30, 31, and 32 post-neurons. We define memory

optimization rate as the ratio of the number of uncalculated

weights to the number of memory aligned weights, i.e., the ratio

of the area that is not enclosed by rectangles to the total area in

Figure 6B. Figure 9A shows that the memory optimization effect

gets better with the increase of delay range. Moreover, the two

echelon algorithms perform better inmemory cost when the weight

operand is getting more sparse, and the more sparse the weight

operand, the more obvious the effect. In addition, the mixed

splitting approach always performs better than or equal to the

pure MAC approach. This experimental result is consistent with

the analysis in Section 3.2.3. The performance difference between

these two splitting approaches depends on the remainder of post-

neurons divided by 16, that is, the value m in Figure 6. As the

remainder grows, the performance difference decreases. Until the

remainder reaches 16 (back to 0), there is no difference between the

two methods.

In addition to the impact of the remainder of post-neurons

divided by 16 on the spatial performance difference between the

two methods, the change of the post-neuron number itself also

affects the memory optimization rate. Figure 9B demonstrates a

3D plot with the projections of the contours, highlighting the

relation of memory optimization rate and two factors: the number

of pre-neurons and post-neurons. Observing the contour on the

back “wall,” we find that the memory optimization rate fluctuating

declines with a period of 16 with the post-neurons increasing. The

increase of post-neurons brings the reduction of the optimization

rate, which surges at the point where the remainder returns from

15 to 0. The reason is that the post-neuron number at this point

exactly adapts to the hardware structure of the MAC array that

no memory alignment is required. The projected contour on the

left “wall” is almost parallel to the pre-neurons axis after the

initial unstable status, implying the independence of pre-neuron

number and memory optimization rate. The following formula

briefly summarizes the relationship between memory optimization

rate and factors:

ropt ∝∼ d,
1

p
,

1

npost
(2)

ropt represents the memory optimization rate, which is

approximately directly proportional to the delay range d, and

inversely to weight connection density p and number of post-

neurons npost . The use of the approximately proportional symbol
∝
∼

is intended to qualitatively show the positive and negative

relationship of the variables before and after it. The relation details,

such as the aforementioned “the more sparse the weight operand,

the more obvious the effect” and “fluctuating declines with a period

of 16,” are not reflected in this equation.

Although the memory optimization rate is unrestricted by the

pre-neuron number, the impact of the pre-neuron number on

SNN inference performance is mainly reflected in the running

time, which basically consists of input data pre-processing (Circle

Reverse algorithm elaborated in Section 3.1.2) and synaptic

processing. The synaptic processing is accelerated by the MAC

array, and the input data pre-processing is only calculated by ARM.

Therefore, the input data pre-processing consumes most of the

temporal resources. The smaller the number of input neurons

(i.e., pre-neurons), the better the algorithms proposed in this

study performs in execution time. If only considering the synaptic

processing part, the temporal performance of the mixed echelon

approach also has an intense dependence on the number of pre-

neurons. The mixed echelon algorithm sacrifices some runtime in

exchange for a lower memory footprint, and this time is positively

correlated with the number of pre-neurons.

4.2. Actual SNN models

We selected two actual benchmarks for evaluation of our

proposed approaches: an application model from the real scenario

(radar gesture recognition SNN model) and a classic structural

modeling in neuroscience (balanced random cortex-like network).

The experiments compared serial ARM, original MAC, pure MAC

echelon, andMAC andARMmixture approaches regarding spatial-

temporal performance. The data measurement concentrates on the

part where the above four approaches behave differently during

SNN inference, that is, synaptic processing. As for the multi-core

mapping and deployment, we evenly split the weight operand

into multiple adjacent PEs and fully utilized each PE’s available

memory resources (120 KB in our configuration) in conjunction

with other necessary data (split input, temporary output, and input

current buffer) for serial ARM and original MAC. When a PE can

accommodate not less than one weight matrix of one delay, we

ensure the integrity of a computational unit, i.e., one weight matrix

of one delay, to avoid introducing additional result fusion time. For

example, if a kernel can hold 2.5 weight matrices of one delay, we

assigned pure MAC echelon and mixture approaches that adopted

supporting strategies from Section 3.2 and 3.3.

We adopted the following method to calculate memory cost

and measure the execution time of the multi-core cooperation

system:

• Two baselines: The memory cost of serial ARM and

original MAC comes from the input placeholder, weight,

output placeholder, and input current buffer in all activated

PEs. Note that the input and weight operands are supposed

to be memory aligned in advance. The execution time is

comprised of matrix multiplication, output merging from

different PEs and input current buffer update.

• Two echelon approaches: The memory cost consists

of the footprint of the Dominant PE (input placeholder,

reversed order, and output) and Subordinate PEs (weight

cost and temporary output). In addition to the matrix-

multiplication execution time (MAC or mixture processors)

and the time of accumulating output into Dominant PE,
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FIGURE 7

(A) The memory usage comparison of pure and mixed processor approaches. (B) Synaptic processing execution time comparison of pure MAC array

and ARM part of the mixed approach, regarding the part that has di�erence when adopting the pure or mixed approach. Pink rectangles in Figure 6B

mark this part. m represents the remainder of dividing the column number of the echelon matrix by that of MAC array (16).

FIGURE 8

Multi-core authorization result and SNN multi-core MAC array acceleration processing chain. Core 0 is the ”Dominant PE,” and Core 1 to Core 5 are

“Subordinate PEs.” The weights deployment corresponds to the splitting outcome of Figure 6A, i.e., pure MAC splitting. This processing chain is also

applicable to the outcome of MAC and ARM mixture splitting.

the execution time also incorporates the input reorder time

to guarantee a fair comparison with serial ARM and the

original MAC baseline. Since each calculation obtains the

same number of results as the delay number instead of only

one result of the serial ARM and original MAC approach as

Figure 2 shows, we divide the tested total execution time by

the delay number to get the processing time per frame.

4.2.1. Application model from the real scenario:
radar gesture recognition SNN model

Gesture recognition is an important and active area of AI

research, with relevant models and hardware deployment acting

as the fundamental verification unit for more sophisticated real-

world scenarios. For the first benchmark, we set up the radar-

based SNN gesture recognition model with 2,048 input neurons,

20 hidden neurons, four output neurons, and four delays. This

model is similar to the study in Gerhards et al. (2022) and Huang

et al. (2022a,b) but introduces the concept of delay. We train

this benchmarking model with our own collected radar dataset

mentioned in Kreutz et al. (2021), involving three directional

gestures (left, right, and push) and one environmental reference

(random gesture or background noise). The experiment refers to

processing synapses between the input layer and hidden layer

marked with light blue in the gesture recognition model on the left

top of Figure 10.

For the Echelon Reorder optimization algorithm with only

MAC as the processor, the densified weight-delay map (i.e., echelon

matrix) can be split and deployed into two Subordinate PEs as

depicted on the right part of Figure 10A. One Dominant PE

has enough space to save the input-spike-train map and the

reversed order. The mixed echelon algorithm also consumes two
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FIGURE 9

Memory optimization rate comparison. (A) Memory optimization rate comparison 2D plot. Three plots corresponds to 30, 31, 32 post-neurons.

Pre-neuron is set to 50. Delay ranges from 1 to 16. (B) Memory optimization rate comparison 3D plot with the projections of the contours.

Subordinate PEs and one Dominant PE. Both serial ARM and

original MAC baselines need more than one PE, given the available

memory of one PE. We split the weight and input operands

of these two baselines into multiple cores in a balanced and

compact way for a fair comparison purpose. According to the

operand scale, two and four PEs are required for these two

baselines, respectively.

Analyzing the performance data reported on the bottom left

of Figure 10A, the echelon optimization with mixed processors

occupies 74.28% of the memory of the original MAC calculation.

It is close to the serial ARM memory cost. As for execution

time, it accounts for 24.56% of the serial ARM calculation, i.e.,

this approach optimizes 75.44% of the runtime. The echelon

optimization with MAC even increases this percentage to 89.86%

(1−10.14%). The remainder m and row number are calculated

to be 4 and 5,500. According to the analysis in Section 3.2.3,

the mixed optimization is expected to outperform the pure MAC

regarding memory footprint but be inferior concerning execution

time. The experiment data from Figure 10 are consistent with

this deduction.
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FIGURE 10

(A) Top-left is the structure of the radar gesture recognition model. The experiment part corresponds the synaptic processing of the blue-marked

components, including the neural populations and the synaptic projection. The right subfigures depict what experimental memory objects are

required and how they are split and deployed into multiple PEs of SpiNNaker 2 hardware according to four di�erent synaptic processing approaches

(two baselines and two proposed approaches). The two bar plots on the bottom left compares the execution time and memory cost of these four

approaches. The colorful legend in the middle fits the memory cost comparison bar plot and all the subfigures on the right. (B) Balanced random

cortex-like network has the same subfigure distribution as (A). Because of the limited space, we put the specific splitting result of two echelon

algorithms of the balanced random cortex-like network into Supplementary material.

4.2.2. Classic structural modeling in
neuroscience: the balanced random cortex-like
network

The balanced random cortex-like network, commonly used to

benchmark and map to neuromorphic systems (Brüderle et al.,

2010; Pfeil et al., 2013; PyNN, 2023), serves as our second

benchmark, originated from Brunel’s work (Brunel, 2000). Brunel

devoted to models of networks with simple neurons to describe

the dynamical properties of sparsely connected excitatory and

inhibitory integrated-and-fire (IF) neurons. His study reports that
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FIGURE 11

Summary of the memory cost di�erences of delayed weight of the four approaches (two baselines and two proposed approaches) with three “rate.”

The memory alignment rate of row and column ralign_rc equals the memory aligned area in the weight matrices of delay x from Figure 2, and other

two “rate” represent the proportions of the pointed white area in the whole area of weight-delay map after using the Echelon Reorder.

the networks present rich states according to external stimulation,

the proportion of excitation and inhibition, and synaptic

features.

Similar to the cortex in the brain, the balanced random

cortex-like networks are composed of an excitatory and inhibitory

population of neurons (PyNN, 2023), which are randomly

interconnected with each other with fixed probability and

recurrently connected within the population. They are also

stimulated with excitatory populations with spikes of Poisson

distribution, as shown on the top left of Figure 10B. We choose

the main part of the model, namely, the excitatory population

projecting the inhibitory population marked with dark blue in

the Figure to benchmark the proposed approaches in this study.

Compared with the original experiment setup in Brunel (2000), the

overall number of neurons is scaled to 1,000, but the proportion of

excitation and inhibition remains the same (4:1), i.e., 800 excitatory

and 200 inhibitory neurons. The parameter delay keeps the original

value four and is uniformly distributed in the range of 0 to

3. We create the connection between excitatory and inhibitory

populations with a fixed probability of 0.1.

The pure MAC echelon and mixed echelon require one

Dominant PE and five Subordinate PEs according to the splitting

and deployment strategies mentioned in Section 3.2 and 3.3.

Both serial ARM and original MAC run on eight PEs. The

right part of Figure 10B presents the specific splitting and

deployment consequences.

The sub-graph in the lower left of Figure 10 compares

the spatial-temporal performance of four approaches.

Two echelon optimization occupies ∼86% of the memory

of the original MAC calculation, and both outperform

serial ARM. In addition, the execution time of two

echelon algorithms is smaller than 7.4% and close to the

original MAC.

4.2.3. Performance comparison of the two actual
models

The two benchmark actual models coming from different

domains have distinct structures that are suitable for comparison.

The radar gesture model features a larger number of pre-neuron

(2,048) than the balanced random cortex-like network (800),

as shown in Figure 10. According to the analysis in Section

4.1, the number of pre-neurons mainly influences the execution

time performance dominated by ARM processing parts (Echelon

Reorder and ARM calculating part of matrix-multiplication of

mixed echelon). Thus, the violet and light blue-marked areas of two

echelon algorithms on the execution time comparison subfigure of

Figure 10A is larger than that of Figure 10B. The balanced random

cortex-like network with a smaller number of pre-neuron has a

better spatial optimization result by leveraging echelon algorithms.

In addition to the distinction in pre-neuron number, these

two benchmark models structure different weight connection

densities (3.16%, 10%) and post-neuron numbers (20, 200). The

formula 2 indicates the model with smaller weight connection

densities, and post-neuron numbers deserve a better memory

optimization effect for weight-delay map. The blue bars of two

echelon algorithms relative to the original MAC in the memory

cost comparison of Figure 10A are indeed significantly smaller

than that of Figure 10B. However, the overall advantage of spatial

performance improvement of the radar gesture model is blocked

by extra memory for storing input spikes (green bars) and reversed

order (yellow bars) owing to a larger number of pre-neurons.

In addition, we introduce a definition of “memory alignment

rate of column” to account for the reason for a sharper drop of

the blue bar from echelon (MAC) to echelon (MAC + ARM).

The memory alignment rate of the column presents the impact of

memory alignment along the column of the weight-delay map for

the size of the whole memory aligned weight-delay map, that is,
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the rate of the right side white rectangle area to the whole area in

Figure 6A(a) or

ralign_c =
16−m

npost + 16−m
(3)

where m is the reminder of post-neuron number npost divided by

16. With the increase of the post-neuron number, the memory

alignment rate decreases. This means that the extra area brought

by column memory alignment is a decreasing share of the total

weight-delay map. As a result, the echelon (MAC + ARM)

algorithm, functioning as optimizing this extra area as mentioned

in Section 3.2.2 and 3.2.3, behaves much better in the radar

gesture recognition model than in the balanced random cortex-like

network. Similarly, the different ratios (we name the ratio ralign_rc)

in comparison of serial ARM and original MAC (61.77%, 97.19%)

are caused by memory alignment along the row and column of

weight matrices of delay x shown in Figure 2. A larger post-neuron

number leads to a smaller memory increase of memory alignment

from serial ARM to original MAC.

5. Conclusion and discussion

5.1. Summary

This study describes the processing chain for accelerating

SNN inference with multi-core MAC arrays, including Echelon

Reorder information densification algorithm, Multi-core two-

stage splitting and multi-core authorization deployment strategies.

These algorithms and strategies alleviate the intrinsic memory

issue of excessive usage originating from memory alignment

and data sparsity. They also realize the multi-core spatial-

temporal load balancing for the large SNN layer. We benchmark

with constructed and actual SNN models. The former explores

how model feature and algorithm selection affect the spatial-

temporal optimization performance, and the latter demonstrates

two actual SNN models (the radar gesture recognition SNN

model and balanced random cortex-like network) on SpiNNaker 2

hardware. They prove the feasibility of the whole optimization

process and achieves performance increase. Based on the

theoretical analysis and the experiment result, we found those as

follows:

• The proposed algorithms and strategies are applicable to

various densities of matrix multiplication operands, and

the memory optimization degree increases with the weight

operand getting sparse.

• In addition to the weight sparsity, the memory optimization

rate is also positively correlated with delay range.

• The number of post-neurons periodically affects the memory

optimization rate, and the overall trend is downward.

• The number of pre-neuron is generally independent of the

memory optimization performance but has intense correlation

with running time.

• The echelon mixed processor algorithm behaves better

regarding memory but has less temporal efficiency than the

echelon pure MAC solution.

The proposed algorithms not only provide a concrete solution

for accelerating SNN on themulti-coreMAC arrays of SpiNNaker 2

but also has a referential value for hardware systems embedded with

multi-core MAC arrays that intend to solve the SpGEMM issue.

5.2. Related work

Some researchers have introduced the parallel computing

concept into SNN inference to tackle the problems caused by

CPU-based parallel processing. One of the representative works

of parallel processors accelerating SNN computation is GeNN

(Yavuz et al., 2016), a code generation framework speeding up the

SNN simulation process using the graphics processing unit (GPU).

Specifically, it speeds up the synaptic processing by utilizing a

serially executed atomic add operation to add weight to the delay

ring-buffer after reading the index of post-neuron and weight and

delay by each thread of the GPU (Yavuz et al., 2016; Knight and

Nowotny, 2018). However, this mixture of thread/vector parallel

processing and serial add operation does not take full advantage of

the parallelism of the processor.

Another related study regarding parallel processing SNN

inference is SpiNeMap (Balaji et al., 2020) and its follow-up

(Balaji et al., 2021). SpiNeMap is a design methodology to

partition and deploy SNNs to the crossbar-based neuromorphic

hardware DYNAP-SE (Moradi et al., 2018). The proposed unrolling

techniques decompose a neuron function with many presynaptic

connections into a sequence of computation nodes with two

presynaptic connections. This approach improves the crossbar

utilization but introduces spike latency, i.e., distorts interspike

intervals (ISIs) for global synapses. This issue can be relieved by

reducing the number of spikes on global synapses as reported

in Balaji et al. (2020), probably realized by modifying the model

parameters or decreasing the input spike rate, both of which can

negatively impact the accuracy of the original SNN.

Our study targets no ISIs, no accuracy loss, and a wholly parallel

calculation based on the more efficient matrix parallelism rather

than vector-based computing.

5.3. Macro significance

The proposed algorithms act on synaptic processing, which

is part of the SNN inference. The impact of algorithms on the

optimization of the whole network is a question worth discussing.

To review the motivation of our study, it is discussed in Section 1

that the serial ARM baseline suffers from a large time-consuming

issue and the naive parallel solution original MAC is unfriendly

to limited memory space, it is necessary to explore the portion of

synaptic processing of serial ARM in time and original MAC in

memory in order to have amacro view of the degree of optimization

of our proposed algorithms in the whole SNN inference.

SNN inference consists of synaptic processing and neural

update. We estimated the time consumption rate of these two steps

for the serial ARM baseline with the following equation referring to

ARM Cortex-M4 Technical Reference Manual (ARM, 2023):
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tsynap
tneural

=
npre×npost×d×MLA

npost×(MLA+COMP)
≅ 0.67× npre × d. (4)

This equation shows that the time consumption rate depends

on the number of pre-neuron and delay range. Ameaningful model

is supposed to have more than one pre-neurons, so this rate is

always greater than 1. For the two benchmark actual models in

Section 4.2, the synaptic processing time is 5,488.64 and 2,144.0

times larger than neural update.

As for the memory comparison, suppose that the number of

pre- and post-neuron is memory aligned, the decay and threshold

values of the neural update of all neurons are identical, and only

count one output matrix for the multi-core scenario, we have the

following equations:

memsynap

memneural
=

4× npre + npre × npost × d + 4× npost + 4× npost

4× npost + 0.125× npost

≅ 1.94 + 0.24× npre × (
4

npost
+ d). (5)

This equation provides the rate of memory cost of synaptic

processing to neural update for the original MAC baseline. The

rate always greater than 1.94 means synaptic processing dominates

memory cost. For the two benchmark actual models, this rate

indicates the memory cost of synaptic processing is 2,066.32 and

773.78 times larger than neural update, respectively.

The above search confirms that synaptic processing has the

lion’s share in SNN inference, both in terms of running time and

memory storage. Therefore, the optimization of synaptic processing

is crucial and largely determines the optimization performance of

the whole SNN inference.

5.4. Limitation and future work

By analyzing formula 2 and comparing two actual models

regarding the temporal performance of synaptic processing, we

found that the larger number of pre-neuron hinders the running

time optimization degree that is primarily governed by ARM

calculation parts of the Echelon Reorder and matrix-multiplication

of the echelon mixed processor approach. Future optimization for

time can be placed on finding a more efficient algorithm for the

Echelon Reorder and further compressing the data of the serial

operation range in the echelon mixed processor approach.

The spatial performance of our proposed optimization

algorithms is limited by the smaller delay range, denser weight

connection, and the larger number of post-neuron. How to further

optimize the memory optimization rate ropt and ralign_c is defined

in Section 4.1 and Section 4.2.3 and increasing the area of the white

area of Figure 11 are the next things that are worth investigating.

This study merely elaborates on the optimization mechanism of

the Echelon Reorder that is based on the data transformation of

the Operand Stack. In fact, the other two optimization algorithms

(Zero Elimination and Proportion Merger) in Table 1 proposed in

our previous study (Huang et al., 2023) of one PE accelerating

SNN inference also fit multiply PEs. The memory optimization will

benefit from their synergy.

Although Section 3.3 provides the solution of authorizing

PEs that contain the split echelon matrix and input buffer, an

efficient multi-core deployment strategy and routing algorithm

are not included in this study. Randomly deploying the six cores

from Figure 8 on SpiNNaker 2 may cause a relatively low-efficient

communication between the “Dominant PE” and the “Subordinate

PE.” This issue will be of greater concern when we extend the

deployment of one SNN layer to an entire network. At that time,

a reasonable multi-layer deployment topology and global routing

algorithm can avoid the potential traffic congestion and reduce the

communication latency by fully utilizing the bandwidth resources

of PE to PE and PE to DRAM. Thus, improving the spatio-temporal

efficiency of the entire SNN even multiple SNNs on SpiNNaker 2

will be one of our future research priorities.

The traditional serial processing for SNN inference, as the

current mainstream method, is constantly being optimized and

iterated, and the performance has been improving. It has a good

performance in the condition of very sparse input spike train and

weight-delay operand, which is what the approaches proposed in

this study is yet to be improved. If we can find the sweet spot of SNN

model structure factors including input and weight connection

density between the traditional approach and our algorithms, it will

help the neuromorphic community to have a deeper understanding

of the serial and parallel processing methods and contribute to

the mechanism of the hybrid processors jointly processing SNN

inference in a more efficient way.
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