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The alpha rhythm is often associated with relaxed wakefulness or idling and
is altered by various factors. Abnormalities in the alpha rhythm have been
linked to several neurological and psychiatric disorders, including Alzheimer’s
disease. Transcranial alternating current stimulation (tACS) has been proposed
as a potential tool to restore a disrupted alpha rhythm in the brain by
stimulating at the individual alpha frequency (IAF), although some research has
produced contradictory results. In this study, we applied an IAF-tACS protocol
over parieto-occipital areas to a sample of healthy subjects and measured its
e�ects over the power spectra. Additionally, we used computational models to
get a deeper understanding of the results observed in the experiment. Both
experimental and numerical results showed an increase in alpha power of 8.02%
with respect to the sham condition in a widespread set of regions in the cortex,
excluding some expected parietal regions. This result could be partially explained
by taking into account the orientation of the electric field with respect to the
columnar structures of the cortex, showing that the gyrification in parietal regions
could generate e�ects in opposite directions (hyper-/depolarization) at the same
time in specific brain regions. Additionally, we used a network model of spiking
neuronal populations to explore the e�ects that these opposite polarities could
have on neural activity, and we found that the best predictor of alpha power was
the average of the normal components of the electric field. To sum up, our study
sheds light on the mechanisms underlying tACS brain activity modulation, using
both empirical and computational approaches. Non-invasive brain stimulation
techniques hold promise for treating brain disorders, but further research is
needed to fully understand and control their e�ects on brain dynamics and
cognition. Our findings contribute to this growing body of research and provide
a foundation for future studies aimed at optimizing the use of non-invasive brain
stimulation in clinical settings.
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1. Introduction

The oscillatory behavior of the brain is characterized by a
well-defined set of rhythms that play a crucial role in cognitive
processes such as attention, memory and perception, among others.
Importantly, the alpha rhythm, which typically ranges between 8
and 12 Hz and is prominent in posterior regions of the brain
(Britton et al., 2016), is often associated with a state of relaxed
wakefulness or idling (Buzsaki, 2006) and can be altered by
various factors such as sensory stimulation, mental effort, and
attention (Webster and Ro, 2020). It has been suggested that the
alpha rhythm reflects inhibitory processes that suppress irrelevant
sensory inputs and promote the processing of internal information
(Payne and Sekuler, 2014). Abnormalities in the alpha rhythm have
been associated with various neurological and psychiatric disorders
(see, e.g., Babiloni et al., 2020; Ippolito et al., 2022). For instance, in
Alzheimer’s disease, a reduction in alpha power relative to healthy
controls has been reported along the disease progression (Babiloni
et al., 2009; López-Sanz et al., 2016; Lejko et al., 2020). These
previous findings raise up the question, whether the modulation
of those brain rhythms could improve cognitive functions in these
clinical conditions or even in control subjects.

Transcranial alternating current stimulation (tACS) is a non-
invasive brain stimulation technique that uses external electrical
currents to modulate the neuronal oscillatory activity at specific
frequencies. Similar to other types of brain stimulation, tACS has
the potential to advance our understanding of brain function by
establishing causal links between brain activity, cognition, and
behavior (Dayan et al., 2013; Herrmann et al., 2013; Polanía
et al., 2018). The mechanistic underpinnings of tACS imply
weak electrical currents delivered through the skull altering the
polarization of cellular membranes, and thereby modulating the
thresholds of neural activation (Reato et al., 2013; Liu et al., 2018).
This effect can enhance neural synchronization by biasing the
timings of neural activation with the rhythm of the stimulation
(Helfrich et al., 2014; Liu et al., 2018; Vogeti et al., 2022).
Additionally, some recent reports point out that tACS may also
modulate neural plasticity, inducing long-term potentiation and
depression (Jeong et al., 2021; Schwab et al., 2021).

tACS has emerged as a promising technique for modulating
brain activity and has shown promise in reversing the reduction
of alpha power observed in several disorders. Some studies have
already explored the use of a specific application of tACS at
the individual alpha frequency (IAF) to enhance the power of
alpha oscillations (Zaehle et al., 2010; Helfrich et al., 2014; Kasten
et al., 2019; Zarubin et al., 2020). In this type of experiments,
the IAF-tACS stimulation is delivered at parieto-occipital regions
to generate an entrainment with the predominant posterior alpha
rhythm. The results of these experiments are contradictory, both
in terms of the effective results of stimulation, and the locations
where the effects are found. tACS can be influenced by several
factors, including the selection of electrode montages, current
dosage, targeted regions, skull conductivity, head positioning,
cortex morphology, and cells’ orientation (Datta et al., 2012; Huang
et al., 2019; Kasten et al., 2019; Guerra et al., 2020).

One of the issues being discussed is how the orientation of the
cellular body axis influences the effects of electric field stimulation.
Pyramidal neurons are arranged in the form of a palisade, with their

main axes parallel to each other and perpendicular to the cortical
surface (Hansen et al., 2010; Susi et al., 2019; da Silva, 2022). Their
elongated morphology makes them responsive to the application
of external electromagnetic fields (Liu et al., 2018; Aberra et al.,
2020), and previous research has demonstrated that the impact of
the electric fields depends on its relative orientation with respect to
the axodendritic direction of the pyramidal cells’ bodies (Radman
et al., 2009; Dmochowski et al., 2012; Aberra et al., 2020). However,
more research is needed to optimize tACS and better understand
the variables that affect its mechanisms. This will pave the way
for efficient and controlled tACS application, leading to better
outcomes for patients.

Computational modeling has emerged as a valuable tool for
investigating the mechanistic effects of electrical stimulation on
the brain. Within this field of research, two types of models have
become particularly prominent: current propagation models and
neural activationmodels. Current propagationmodels are designed
to analyze, predict, and regulate the electric fields produced in the
brain by the applied stimulation. These models consider the impact
of different head tissues, their shape, and the specific montages
used for stimulation (Holdefer et al., 2006; Miranda et al., 2006;
Russell et al., 2014; Huang et al., 2017; Forssell et al., 2021).
Neural activation models provide a detailed understanding of how
electric fields generated by stimulation impact the activation of
neural tissue at different levels of analysis, ranging from individual
cells to the entire brain (Merlet et al., 2013; Deco et al., 2019;
Aberra et al., 2020; Meier et al., 2022; Tran et al., 2022; Wang
et al., 2023). These models offer a more comprehensive explanation
of the effects of stimulation. Neural activation models can be
integrated into a network of brain regions (i.e., brain network

model), and stimulated in-silico (Merlet et al., 2013). To ensure
the accuracy of the models, they are usually calibrated using
empirical data to replicate the phenomenon being studied as
closely as possible. By combining empirical and computational
methodologies, researchers can strengthen their understanding of
the mechanisms underlying electrical stimulation and the effects on
brain function.

Our study utilized a bipolar electrode montage to deliver

alternating currents to the posterior regions of the brain to

modulate alpha power through an IAF-tACS stimulation protocol.

Given the literature mentioned before, we hypothesized to achieve

an increase in alpha power over parieto-occipital areas. To gain

a deeper understanding of the results and explain any variability
observed in them, we constructed and analyzed a spiking neural
network (SNN) model comprising neural populations distributed
throughout large brain networks, hypothesizing that cortical
gyrification can be used to explain the effects of neurostimulation.
Our findings provide insights that could facilitate more precise and
effective application of tACS in the future.

2. Methods

2.1. Empirical methods

2.1.1. Study design
The study consisted of one tACS session and three

magnetoencephalography (MEG) scans, two before (i.e., pre1
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and pre2 sessions) and one after the stimulation (post session).
We initially captured the neurophysiological activity of each
participant through two successive 5-min eyes-closed resting state
MEG recordings, with a 10-min interval between sessions. The
reason to include two MEG recordings before the stimulation was
to account for any possible variability in the individual alpha-peak
frequency (IAF) of the participants. The IAF was derived from each
recording using a fast preprocessing algorithm that we describe
in a later section, and then averaged. Participants were then
randomly assigned to either the verum or sham group, and received
20 min of stimulation at their own IAF with their eyes closed.
Immediately after the stimulation, we performed a third MEG
recording to measure its effects on the participants. We decided
to use a resting-state eyes-closed paradigm given its prominent
alpha activity, and previous work on the same kind of stimulation
(Zarubin et al., 2020; Wang et al., 2022).

2.1.2. Empirical dataset
Eleven female and 16 male healthy participants, with

ages ranging from 22 to 55 years (32.80 ± 8.52 and 32.00 ±

8.98, respectively) were recruited at the Center for Cognitive
and Computational Neuroscience (C3N) associated with
the Complutense University of Madrid (UCM) for the
neurostimulation study. Our study included only right-handed,
native Spanish-speaking participants without any previous
neuropsychiatric history or metallic prostheses that could interfere
with neuroimaging and neuromodulation. Participants with
undistinguishable IAF were also excluded. We followed current
guidelines and safety regulations throughout the research,
and obtained informed consent from every participant before
their participation.

MEG signals were acquired during 5 min of eyes-closed
resting state at 1 kHz sampling rate, using 306 channels
(102 magnetometers and 204 gradiometers) whole-head Elekta
Neuromag system (Elekta AB, Stockholm, Sweden) located in
a magnetically isolated room (VacuumSchmelze GmbH, Hanau,
Germany). Using a Fastrak 3D digitizer (Polhemus, Colchester,
Vermont), the positions of four head position indicator (HPI)
coils attached to the scalp were defined and the shape of each
participant’s head relative to three anatomical locations (nasion
and both preauricular points) was modeled. An online anti-aliasing
filter [(0.1–330) Hz] was applied during the whole session.

Raw data was pre-processed by the Maxfilter software (v.2.2,
correlation threshold = 0.9, time window = 10 s) to remove the
environmental noise using the temporal extension of the signal
space separation (tSSS) method with movement compensation
(Taulu and Simola, 2006). Given the elevated redundancy of
gradiometer data after applying the tSSS (Garcés et al., 2017) only
data frommagnetometers were considered for subsequent analyzes.
Eye, muscle, and jump artifacts were automatically located using
Fieldtrip software (Oostenveld et al., 2011) and reviewed by MEG
signal experts. Finally, the noise-free signal was divided into 4-
second segments and an independent component analysis (ICA)
based on SOBI (Belouchrani et al., 1997) was used to remove
eye-blink and cardiac magnetic field artifacts. After applying ICA,
we eliminated all segments that still contained any eye-blink or

muscle artifacts. Preprocessed MEG data was then used to carry
out source localization using a Linearly Constrained Minimum
Variance (LCMV) beam former (Van Veen and Buckley, 1988).
Because we did not have a T1 MRI for all subjects, a 1 mm
resolution template of healthy adults normalized to the Montreal
Neurological Institute (MNI) 1 mm voxel size template was used to
place the sources inside the brain in a homogeneous grid of 1 cm.
Then both the template and grid were linearly transformed to fit
the head shape of each subject. The lead fields were defined using
a local spheres approach to fit the head shape of each subject in
the vicinity of each sensor. Spatial filter coefficients were estimated
for each subject using the computed lead field and an average of
the covariance matrix for all the segments. Thereafter, this filter
was used to compute the source time series separately for each
segment and source location. Sources were grouped according
to the Automated Anatomical Labeling (AAL) atlas cortical map
(Tzourio-Mazoyer et al., 2002). From the original 4,560 source
locations, only those 2,459 labeled as belonging to an area defined
in the atlas were considered in the following steps. The other
sources were placed in areas not defined in the atlas (i.e., white
matter, CSF, or subcortical regions) and therefore cannot be source
generators of MEG signals (Hämäläinen et al., 1993). From the
reconstructed activity, the power spectrum for each cortical source
was calculated by applying a multi-tapering method of Slepian
sequences (DPSS) (Slepian, 1978; McCoy et al., 1998) between
2 and 45 Hz, then normalizing by dividing the spectra by the
power between 2 and 45 Hz. The individual alpha frequency
(IAF) was determined using a fast-processing algorithm on the
pre1 and pre2 session scans, immediately after their recording.
The data was processed using the same pipeline as described in
the previous paragraph, but some steps were omitted to obtain a
quick result, as the resulting frequency was needed for subsequent
stimulation of the participant. Specifically, no tSSS or movement
compensationmethod was applied, andmanual revision of artifacts
was skipped as well. Independent component analysis (ICA)
was used to remove eye-blink and cardiac activity, while the
remaining contaminated segments were removed manually. The
power spectrum for eachmagnetometer was calculated using DPSS,
and then averaged. The resulting spectra were visually inspected,
and the frequency of the power peak in the alpha band (8–
12 Hz) was defined as the IAF. The IAFs from sessions pre1

and pre2 were averaged to determine the final frequency for the
neurostimulation procedure.

2.1.3. Neurostimulation
The neurostimulation sessions were carried out using a

bipolar tACS stimulation with two conductive rubber electrodes
(7 × 5 cm) located at Cz and Oz (midline central and midline
occipital, respectively) using a microprocessor-controlled current
source NeuroConn DC-StimulatorPlus (Neurocare, Ilmenau,
Germany). The electrodes were covered by sponges and wet
with saline solution. Verum stimulation was performed at
the IAF during a 20-min session with a current intensity of 3
mA peak-to-peak, while those undergoing sham stimulation
only received stimulation during the fade-in and fade-out
periods (30 s each).
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2.1.4. Statistical analysis
To assess the effect of stimulation in areas with maximal

current density, an independent sample t-test was conducted to
compare the pre2-post rate of change in the power of the IAF
(±2 Hz bandwidth) between the verum and sham groups. The
statistical analysis focused on the parieto-occipital regions of the
AAL atlas, including the Calcarine fissure, Cuneus, Occipital lobe,
Parietal gyrus, Angular gyrus, Precuneus, and Paracentral lobule.
The statistical test was right-tailed since we hypothesized that the
verum group would experience an increase in power due to the
neurostimulation session. We chose to use the pre2MEG recording
as a baseline because it was the closest to the neurostimulation
session, and all patients had experienced a similar situation until
that point. Furthermore, we utilized a non-parametric cluster-based
permutation (CBPT) test (Bullmore et al., 1999) to investigate the
pre2-post changes in power. This analysis enabled us to identify
significant differences at the source level without the need for
atlases and frequency bands and accounted for the problem of
multiple comparisons. To align the IAFs of each participant, we
shifted the spectra of each individual. An analysis of variance
(ANCOVA) was conducted at each node, including age and sex as
covariates, and the source-level significance threshold and cluster-
level significance threshold were set at 0.05. Finally, we performed a
Levene test, again on the parieto-occipital regions in the AAL atlas,
averaging the power over the frequencies in which the previous
CBPT analysis revealed significant changes. This analysis aimed to
examine the variability of the effects of tACS.

2.2. Computational methods

2.2.1. Data for simulations
For the computational modeling, a different set of data was

needed, as MRI-T1 or dw-MRI recordings from the participants in
the empirical dataset were not available. We used a dataset owned
by the C3N consisting of 10 healthy subjects (seven females; age 69
± 4.16) with resting-state eyes-closed MEG, MRI-T1 and dw-MRI
recordings. MEG acquisition and preprocessing were performed
following the description in the previous section. T1-MRIs were
recorded using a General Electric 1.5 Tesla magnetic resonance
scanner, using a high-resolution antenna and a homogenization
PURE filter (fast spoiled gradient echo sequence, with parameters:
repetition time/echo time/inversion time = 11.2/4.2/450 ms; flip
angle = 12◦; slice thickness = 1 mm, 256 × 256 matrix, and
field of view = 256 mm). dw-MRIs were acquired with a single-
shot echo-planar imaging sequence with the parameters: echo
time/repetition time = 96.1/12,000 ms; NEX 3 for increasing the
SNR; slice thickness = 2.4 mm, 128 × 128 matrix, and field of
view = 30.7 cm yielding an isotropic voxel of 2.4 mm; 1 image
with no diffusion sensitization (i.e., T2-weighted b0 images) and
25 dw-MRI (b = 900s/mm2).

To obtain the functional connectivity (FC) matrices, source
reconstruction was performed using the minimum norm estimates
method (Hämäläinen and Ilmoniemi, 1994), with the constrained
dipoles variant, by which the current dipoles are oriented
perpendicular to the cortical surface, tomodel the orientation of the

macrocolumns of pyramidal neurons (Tadel et al., 2019). Source-
space signals were then filtered in the alpha (8–12 Hz) band to
calculate functional connectivity between sources using the Phase
Locking Value (PLV, Lachaux et al., 1999). For the calculation of
PLV, the instantaneous phase of each time-series is given by the
Hilbert transform at time points t in every segment n, and then the
following equation is applied:

PLV =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

exp(jφ(t, n))

∣

∣

∣

∣

∣

(1)

Where φ(t, n) is the phase difference of the two time series at
time t and trial n. The resulting source matrices were averaged into
AAL parcellation scheme.

The constrained dipoles method allowed us to obtain the source
space signal at one point, taking into account the real orientation
of the subtended cortical column, an aspect that is crucial to avoid
sign/phase errors on the reconstructed time series. This is useful for
computational purposes but recommended only when the T1-MRI
of the participant is available.

To obtain structural connectivity (SC) matrices, a deterministic
fiber tracking algorithm (Yeh et al., 2013) was used with augmented
tracking strategies (Yeh, 2020) to improve reproducibility using
DSI studio (http://dsi-studio.labsolver.org). The angular threshold
was randomly selected from 15 to 90 degrees. Tracks with lengths
shorter than 15 or longer than 180 mm were discarded. A total of
5 million seeds were placed in the whole brain volume. AAL atlas
was used as the brain parcellation and the connectivity matrix was
calculated by counting the number of connecting tracks passing
through each pair of regions. Additionally, we extracted a mean
track length for each pair of regions.

2.2.2. Spiking population model
We built a spiking neural network with 22 regions extracted

from the AAL atlas reproducing the cingulum bundle of the brain
(Bubb et al., 2018), one of the most prominent white matter
structures interconnecting frontal, parietal, and temporal lobes
(Bubb et al., 2018). Each region was modeled as a balanced fully-
connected network with 80 excitatory and 20 inhibitory neurons.
The dynamics of the membrane potential of each neuron was
described by the adaptive exponential integrate-and-fire (aeif )
model (Naud et al., 2008), while the dynamics of the synapses was
described by the alpha function. Both dynamics were implemented
together in the aeif_cond_alpha_multisynapse class in the NEST
environment package (Gewaltig and Diesmann, 2007; Eppler et al.,
2008). Mathematically, the dynamics of the neuron i in the
population k was described as follows:

Ci
dvki
dt

= −gL,i(v
k
i − EL,i)+ gL,i1T,i exp

(

vki − vth,i

1T,i

)

− wk
i + Iki + Iknoise,i − Iksyn,i + Ikext,i,

τw,i
dwk

i

dt
= ai(v

k
i − EL,i)− wk

i ,

if vki > vvpeak

{

vki → vreset,i

wk
i → wk

reset,i = wk
i + bi

(2)
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where Iki is an external bias current. I
k
noise,i is a current generated

by a Poissonian spike train with a rate of 2.4 kHz that accounted for
the activity received from neurons that were not included in the
population. Iksyn,i is the sum of all synaptic currents, and Ikext,i is the
current produced by an external sinusoidal stimulation. Parameters
without superindex k mean that their values only depend on
whether the neuron is excitatory (i ∈ [1, 80]) or inhibitory (i ∈

[81, 100]). The values of the whole set of parameters and their
description can be found in Table 1. These values were selected
to replicate the somatic dynamics of the regular spiking pattern
of pyramidal cells and the fast-spiking pattern of interneurons in
the cortex for the excitatory and inhibitory neurons in the model,
respectively (Naud et al., 2008).

The synaptic current was expressed as the sum of the
synapses within each population (intra-connectivity) and the
synapses between different populations (inter-connectivity). While
intra-synapses could be both excitatory (AMPA) and inhibitory
(GABA_A), external long-range synaptic projections were assumed
only excitatory (AMPA):

Iksyn,i = Ikintra,i + Ikinter,j,

Ikintra,i =

ne
∑

j=1

Akk
ij g

kk
ij,AMPA(t − δkkij )(v

k
i − EAMPA)

+

ne+ni
∑

j=ne+1

Bkkij g
kk
ij,GABA(t − δkkij )(v

k
i − EGABA),

Ikinter,i = ω

N
∑

k′=1
k′ 6=k

ne
∑

j=1

Akk′

ij gkk
′

ijAMPA(t − δkk
′

ij )(vki − EAMPA),

gkk
′

ij,syn(t) = ḡkk
′

ij,syn

(

t − tk
′∗

j

τsyn

)

exp

(

t − tk
′∗

j − τsyn

τsyn

)

(3)

where A and B are the connectivity matrices for excitatory and
inhibitory projections, δ is the matrix representing the delays in
the synaptic connections, ω is the coupling factor, gkk

′

ij,syn is the
maximum strength of the synapse between presynaptic neuron j

from population k′ and postsynaptic neuron i from population k,
and tk

′∗
j is the time when the presynaptic neuron j in population

k′ spiked.
The local field potential (LFP) in each node was computed as

the sum of all synaptic currents in that node.
The development of the SNNmodels was carried out in Python,

and all scripts are available in the following github: https://github.
com/LCCN/Frontiers2023.

2.2.3. Working point simulations
A common protocol to adjust the model to empirical

observations consists in determining the optimal coupling factor
for which the similarity between the experimental functional
connectivity (eFC) and the functional connectivity resulting from
the simulation (sFC) is maximized. The degree of similarity
is typically determined by the Pearson correlation between the
vectorized upper triangular matrices, and therefore, the best fit
is the one that maximizes this correlation (Cabral et al., 2014;
Nakagawa et al., 2014). However, we considered two additional

TABLE 1 SNN parameters used in simulations.

Parameter Value Unit Description

Exc Inh

C 104 59 pF Capacity of the membrane

vreset −53.0 −54.0 mV Reset value for vm after a spike

EL −65.0 −62.0 mV Leak reversal potential

gL 4.3 2.9 nS Leak conductance

a −0.8 1.8 ns Subthreshold adaptation

b 65.0 61.0 pA Spike-triggered adaptation

1T 0.8 3.0 mV Slope factor

τw 88.0 16.0 ms Adaptation time constant

vth −52.0 −42.0 mV Spike initiation threshold

vvpeak 0.0 mV Spike detection threshold

tref 2.0 ms Duration of the refractory
period

I Variable pA Constant external input
current

ḡAMPA Variable nS Maximum conductance of the
excitatory synapses

ḡGABA Variable nS Maximum conductance of the
inhibitory synapses

ḡnoise Variable nS Maximum conductance of
background activity synapses
(AMPA)

EAMPA 0.0 mV AMPA Excitatory reversal
potential

EGABA −85.0 mV GABA Inhibitory reversal
potential

τsyn,AMPA 3.0 ms Rise time of AMPA excitatory
synaptic conductance

τsyn,GABA 3.2 ms Rise time of GABA inhibitory
synaptic conductance

δkk 1.0 ms Intra-synaptic delay due to
axon length

δkk
′

range ms Inter-synaptic (k 6= k′) delay
due to axon length

conditions: on one hand, to avoid highly synchronized states in the
SNN model, we discarded unrealistically high mean PLV values as
a criterion to select the working point. To enable the exploration of
alpha frequency bands relevant to our study, we selected working
points where the main oscillatory frequency of the nodes fell within
the alpha range (see Supplementary Figure 2). These simulations
were performed three times during 25 s, removing the initial 4s to
avoid transients.

2.2.4. From the current propagation model to the
stimulation of the SNN

We estimated the electric field generated in the brain with
an Oz-Cz stimulation protocol (in line with the empirical
experiment) using ROAST software (Huang et al., 2019). ROAST
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FIGURE 1

Electric field magnitudes computed with ROAST. The protocol used
was the same as in the empirical experiment: Oz-Cz protocol. Left
side colorbar referring to the injected current at the electrodes.
Right side colorbar referring to the resulting electric field magnitude
calculated for each cortical voxel.

uses each of the participant’s MRI-T1 images to segment brain
tissues and generate a personalized FEM volumetric mesh. By
assigning each tissue default values for conductivity and solving the
underlying Laplace’s equation, the software estimates the electric
field propagation through the brain under DC stimulation (Huang
et al., 2013, 2019). An electric field vector (in V/m) per MRI voxel
is the main output of the model (see Figure 1).

Additionally, we took into account the orientation of the
pyramidal cells’ body axis by using an isometric triangular mesh
of the boundary surface between white and gray matter. In this
way, the value of the projections of the electric field to the
normal direction referred to each surface triangle t (i.e., the normal
component of EE with respect to the triangle t, Et⊥) were computed
through the scalar product:

Et⊥ = EEt · n̂t = |Et| cos θt (4)

where n̂t is the unit vector perpendicular to triangle t (see
Figure 2) pointing toward the white matter volume. In this way,
fields aligned with the orthodromic direction (dendritic tuft to
axon) will result in positive values, as opposed to those aligned with
the antidromic direction (Bikson et al., 2004; Merlet et al., 2013).
For each subject, the projections of the electric fields were grouped
for each region k of the AAL, to generate a set of distributions Ek⊥
(see Supplementary Figure 2).

Finally, to implement the tACS within the SNN model, each
region-specific distribution was used to generate a set of sinusoidal
currents with heterogeneous amplitudes and fixed frequency.
Defining a global calibration constant

V

for scaling the stimulation
intensity, the current input for neuron i belonging to node k is:

Ikext,i(t) = Ak
i

V

sin (2π ft) (5)

where Ak
i is a random value obtained from the distribution

related to k.

2.2.5. tACS simulations
Two types of tACS simulations were carried out in this study

with SNNs. First, we performed single-node simulations to test
the effects of different hypothetical shapes on the distribution of
normal components in the underlying neural activity. We explored
the effect of the stimulation frequency (from 4 to 18 Hz), and
amplitude (from 0 to 200 pA) over the underlying nodes’ dynamics.
To characterize the impact of the stimulation, we computed
the power spectral density (PSD) of the simulated population
extracting information regarding the frequency peak of the nodes,
and the value of power at both the peak and the stimulation
frequency. Second, we performed a calibration procedure to find
the scaling factor

V

that maximizes the matching with the empirical
observations. These simulations were performed considering the
cingulum bundle networks (see Spiking population model section)
of the ten subjects included in the computational dataset. Both
types of simulations were performed 3 times for 50 s duration,
removing the initial 4 s of potential transients.

2.2.6. Statistics
We checked for statistically significant differences between

the baseline simulations and the fitted using Wilcoxon’s ranked
comparisons (Wilcoxon, 1945) due to the small sample size, and
correcting significance with a step-down method using Bonferroni
adjustments (Holm, 1979).

To evaluate the impact of different variables on the increase of
alpha power, we performed a stepwise multiple linear regression.
We considered seven candidate variables per region: (i) the electric
field modeled through the distributions of normal components;
(ii) the squared value of the mean (as the effect is expected to
be equivalent for negative and positive values and to linearize
the data); (iii) the skewness, (iv) the kurtosis, and (v) the number
of modes; (vi) the structural connectivity, with the logarithm of
the nodes’ connectivity strength to linearize the exponential shape
observed in the structural connectivity data; and (vii) the network
function before stimulation, using the average PLV value, and
the frequency difference between the stimulation and the node’s
baseline oscillation. Two variables were transformed to get a better
fit for the data. We used the square of the mean of the normal
components of the electric field with the purpose of obtaining.
Additionally, we used the base 2 logarithm of the node strength to
get a better fit to the structural connectivity data.

The values of these variables were normalized in order to get
a meaningful comparison of the resulting coefficients. Due to the
violation of residuals’ normality, we used an iteratively reweighted
least squares algorithm as a robust version of the multiple linear
regression. The weighted function for residuals was a Huber’s T.

3. Results

3.1. Empirical results

3.1.1. Participant demographics
From the 27 participants, six participants were discarded (three

verum and three sham), due to the impossibility to achieve a
proper impedance value for the neurostimulation session (n = 2),
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FIGURE 2

Estimation of the normal component of the electric field on triangle t of the white matter surface (Et⊥), as the dot product between the electric field
in this point (i.e., EEt, computed by Roast), and the normal vector to the surface t (i.e., n̂t, obtained from the triangular mesh). Note that n̂t represents
the direction of the cortical columns subtended to the cortex. Red color indicates a sagittal section of the gray matter, where blue color indicates its
inner and outer surfaces. ROI-specific distributions of the normal components of E (i.e., Ek⊥) are finally used for the stimulation of spiking populations.

TABLE 2 Demographics table for the empirical data.

Verum Sham p-value

N 11 10 –

Age 35±8.44 32.1±9.37 0.273

Sex 8(M)/3(F) 5(M)/5(F) 0.387

IAF(Hz) 10.34±1.09 10.23±1.16 1

an increased wait time between the end of the stimulation and
the beginning of the post recording (n = 2), or the impossibility
to identify the participants’ IAF (n = 2). The demographics of
the participants meeting all the inclusion criteria can be found in
Table 2.

3.1.2. IAF-tACS did not modulate
occipito-parietal activity

While we expected an increase in power over the parieto-
occipital areas after the stimulation, no significant differences were
observed when comparing the rate of change in power between the
verum and sham groups (p = 0.1216).

3.1.3. The stimulation sustained the decay of
alpha power in time

After performing CBPT analysis, it was found in the verum

group a higher rate of change in power for frequencies between
IAF−2.5 Hz and IAF + 5 Hz, with an increase in the power ratio
of 8.02% in the verum group, in a cluster comprised of bilateral
frontal, temporal and occipital cortical sources (p < 0.01; Figure 3).
At low frequencies, the cluster is located in the inferior frontal gyrus
and left temporal pole, spreading to fronto-orbital and temporo-
occipital regions as the frequency increases. Although there was

a significant increase in power observed in the verum group
compared to the sham group, Figure 3 reveals that the stimulation
prevented the decrease in power seen in the sham group. It is
noteworthy that even though the stimulation targeted the IAF, the
significant effects of the stimulation were observed across a broader
frequency band, with the maximum number of significant nodes
detected at IAF + 1 Hz.

3.1.4. Neurostimulation e�ects are highly variable
A post-hoc Levene test was conducted in the frequency band

where the CBPT was found significant in the previous section
(IAF−2.5 Hz, IAF + 5 Hz). The average power ratio in the parieto-
occipital nodes of the brain was used, based on the AAL atlas
(Figure 4B), where no significant changes in power were initially
observed. The verum group showed a significantly larger variance
(p = 0.0388) compared to the sham group, as shown in Figure 4B.
Interestingly, there was no significant increase in the power ratio
in this same region and frequency band (p = 0.1956). Figure 4A
displays the individual spectra of all participants and the mean
spectra of the verum and sham groups in the pre2 and post sessions.
These spectra were obtained in the previously described CBPT
cluster. The graph shows the power depression in the sham group
and the inconsistency of the effect of tACS in the verum group,
with individual spectra showing both increases and decreases in the
power rate.

3.2. Simulation results

3.2.1. Cortical gyrification modulates the e�ects
of tACS: evidence of contradictory outcomes

In order to perform the simulations, we calculated the electric
field generated by the Oz-Cz stimulation protocol over the ten
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FIGURE 3

Power ratio comparison results through CBPT. Upper graph shows the power ratio (power from the post session divided by that of the pre2 session)
over the whole spectrum. Vertical lines delimit the frequency range where the significant cluster was found (IAF − 2.5 Hz, IAF + 5 Hz). The lower part
of the figure shows the distribution of the significant cluster over the brain, and the number of nodes included in the cluster over its di�erent
frequencies.

subjects in the computational sample. Given that the impact of
tACS currents is primarily on pyramidal cells, and that the relative
mismatch between the electric field direction and cell body axis can
influence the efficacy of the stimulation, we computed the normal
component of the electric field in relation to the white matter
surface (see Section Methods). We grouped the components into
regions of the AAL and then analyzed the results for the regions of
the cingulum bundle.

The Oz-Cz stimulation protocol induced currents flowing in
the direction of the anterior-posterior brain axes (see Figure 1 in
Methods). The evaluation of the direction of EE with respect to the
normal vectors of the triangulated surface between white and gray
matter, interestingly showed two types of distributions (Figure 5):
unimodal and bimodal distributions, according to the position and
shape of different brain regions. All regions showed positive (i.e.,
oriented toward white matter) and negative values of Et⊥, meaning
that all regions had at least some pyramidal cells oriented parallel
and some oriented antiparallel to the electric field.

Regions situated along the antero-posterior axis, which are

aligned with the orientation of the electric field such as the cingulate

cortex, insula, and middle frontal gyrus, showed distributions
that tended to be unimodal with a slight skewness, shifting the
mean toward either positive or negative values. We found that the
level of gyrification was related to the strength of the bimodality
observed. For instance, the cingulate cortex, which is defined in the
interhemispheric face of the brain, displayed less bimodality than
themiddle frontal gyrus which tends to have amore intricate shape.
Interestingly, all these regions exhibited a bias toward the same
value in both hemispheres. For instance, both left and right insulas

were positively skewed, anterior cingulate cortices were negatively
skewed, and both middle frontal gyri were negatively skewed.

Bimodal distributions were observed in posterior regions such
as the parietal cortices and the precuneus, where the intricacy
of the gyrification is maximized. These parietal regions have
highly symmetric distributions around zero with two strong
peaks, one positive and another negative. This implies that the
gyri of these regions are mostly defined perpendicular to the
orientation of the electric field. Therefore, it could be expected
that by stimulating with the Oz-Cz protocol, certain cells in these
regions get hyperpolarized, while others get depolarized. Although
some studies (Aberra et al., 2020) have started to unravel the
contradictory effects that an electric field might deliver to the
pyramidal cells into a gyrus, it is yet unknown how these regions
would interact with others inside a network.

3.2.2. The distribution of normal field
components modulates the e�ects of the
stimulation

We utilized spiking neural models to gain insights into the
dynamics of a single population of neurons when exposed to two
sets of anti-phase sinusoidal signals with varying amplitude values,
as derived from the histograms presented earlier. To accomplish
this, we defined a set of distributions that could illustrate the
typical shapes observed in the regions of the cingulum bundle. We
defined three pairs of distributions with different shapes: bimodal
symmetric, bimodal asymmetric, and Gaussian. We centered
one version of these prototypical distributions at mean 0, and
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FIGURE 4

(A) Power spectra in the pre2 (curves in blue) and post (curves in red) sessions of all participants in the significant cluster presented in Figure 3
bottom-right panel. Verum participants are shown on the left and sham participants on the right. Mean power spectra of each group is shown in the
middle. All graphs have the same axis scale. (B) Parieto-occipital regions of the AAL atlas where the variance in the verum group was significantly
higher as well as the violin plots of the average power ratio in the same regions, both in the verum and sham groups. The violin plots were created
using the RST toolbox for MATLAB (Pernet et al., 2013). Levene test showed that the verum group had a significantly larger variance than that of the
sham group (p = 0.0388).

another version at mean 0.05 (see Figure 6, center column). By
treating those distributions as probability densities, we assigned an
electric field component to each neuron in the network. Then, we
simulated the activity of a node being stimulated with the assigned

electric field components, for a defined range of frequencies and
stimulation intensities (the space parameter).

In general terms, the results revealed that the mean of
the distribution was not enough to capture the effects of the
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FIGURE 5

Normal component distributions (i.e., Ek⊥). Histograms showing the accumulated (across subjects) distribution of normal components—to the white
matter surface—of the electric field generated by the Oz-Cz stimulation protocol over the regions of the cingulum bundle, and including all subjects
in the computational sample. Electric field distributions of subcortical regions are not included in the figure.

FIGURE 6

Stimulation of a single node with theoretical distributions. Central column showing the probability density distributions (i.e., curves) and the actual
values extracted for the simulations (i.e., histograms). Vertical dashed lines showing the means of the values extracted for the simulations. In gray, the
distributions with a theoretical mean centered at 0; in green, the right shifted distributions with a theoretical mean at 0.05. Lateral heat maps showing
the results of simulating a single spiking node with the values extracted from the theoretical distributions within a range of frequencies and
stimulation intensities.
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FIGURE 7

Stimulation intensity fitting. Procedure used to fit the intensity of stimulation to the results of the empirical experiment. The scatter shows the
percentage of alpha band power rise for thirty simulations per intensity value and subject in the computational sample. The alpha band power rise is
measured in the regions of the CBPT cluster described in the empirical section, and considering a frequency band (± 0.5 Hz) around the trial-specific
IAF measured in our models.

FIGURE 8

Predictors of alpha rise. Scatter plots showing the average alpha power variation in the simulated regions (circles) as a function of the variables
included in the multiple linear regression model. In size, the mean node strength of the region, and in color the average of normal components of
the electric fields pertaining to each region.

stimulation at the target node. For the distributions with zero
mean, we observed that whenever entrainment was reached (1:1
synchronization state), the resulting oscillatory frequency of the
node raised above the frequency of stimulation (Figure 6, right
columns). Two levels of this behavior were found in the parameter
space. With enough stimulation intensity, and frequencies close to
the node’s natural frequency of oscillation, we found a region in
which the stimulation produced an oscillatory dynamic at twice
the stimulation frequency (2:1 synchronization state). This region
was wider for the symmetric bimodal distribution than for the
other two (Figure 6, top left). Indeed, for the asymmetric bimodal
and the Gaussian (Figure 6, center and bottom left, respectively),

the 2:1 synchronization effect was found just for stimulation
frequencies lower than the node’s own oscillatory dynamic. This
2:1 response is due to the opposite and alternating polarizing
effects that the stimulation exerts over the neurons, some of
them were receiving a depolarizing current, while others were
receiving a hyperpolarizing current. Therefore, in one period of
the tACS wave two different sets of neurons become depolarized,
generating neuronal discharges at a doubled oscillatory frequency.
Surrounding this 2:1 response, we found a region of the parameter
space in which the induced dynamics were ∼50% faster than
the stimulation. In terms of power, the highest increases were
found at the natural frequency of the node. Additionally, a slight
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decrease could be observed at the borders of the doubled-frequency
Arnold’s tongue.

For the positively shifted distributions (Figure 6, right
columns), we found the emergence of the classical Arnold’s
tongues, in which the frequency of stimulation equals the
frequency of the node for enough stimulation intensity (1:1
synchronization states). Also, the 2:1 synchronization state region
of the parameter space mentioned previously was found for these
distributions, as well as an additional region with an ∼20% slower
dynamic than the stimulation frequency, that expands from the
nodes’ frequency to higher frequencies with lower stimulation
intensity threshold.

After comparing the three pairs of distributions, we have
reached a conclusion that although they had the same mean, the
bimodal symmetric distribution had more intense entrainment
and increase in power than the bimodal asymmetric and Gaussian
distributions. Hence, the probability distribution shape, in addition
to the external frequency and stimulation intensity, plays an
essential role in the emergence of different dynamical states
discussed earlier.

3.2.3. The mean of the distribution is the main
predictor of alpha power rise

To investigate the sources of variability observed in the
empirical results, we constructed a spiking neural network
model consisting of 22 regions of interest using the data
from our computational dataset. We then implemented a tACS
stimulation protocol using Oz-Cz pad electrodes. We calculated
the distributions of normal components per subject and used
them as probability density distributions to assign a component
to each neuron. In this section, we calibrated the impact of tACS
currents over the regional dynamics of our models (i.e., stimulation
intensity) by fitting the calibration constant

V

to a value in which a
group-averaged rise of 8.02% in alpha power is found in the same
cluster of regions that emerged from the empirical experiment.
Once calibrated, we used a robust multiple linear regression model
to evaluate the impact of different variables in the power rise.

The calibration process, similar to empirical results, revealed
a variable effect of the stimulation on the subjects included in
the computational sample (Figure 7). We found a fit for

V

=

35 (see Supplementary Figure 3 to observe the detailed effect on
each region, Supplementary Figure 4 for the simulated LFPs during
baseline and stimulation stages, and Supplementary Figure 5 for
single node dynamics). At this level of intensity, three subjects
increased significantly their alpha power from baseline [∼ 40%
rise; W = 0, p < 0.05, RBC = 1, CLES = 0.85], while
the rest of the sample did not exhibit statistically significant
changes (i.e., alpha power fluctuated around zero). However,
moderate reductions in alpha power were observed among these
subjects (∼ 10−−25% decrease).

With the calibrated computational model, we performed a
stepwise multiple linear regression (MLR) to evaluate the impact
of different variables in the increase of alpha power for the
regions included in the model. We considered seven candidate
variables regarding structural connectivity, electric field modeling,
and network function before stimulation (see Figure 8). The values

of these variables were standardized in order to get a meaningful
comparison of the resulting coefficients. One variable was discarded
during the stepwise process due to non-significance: the difference
between the stimulation frequency and the baseline frequency
of the node (coefficient = 0.043, SE = 0.037, p = 0.236). The
rest of the variables showed statistically significant coefficients.
The most relevant coefficient was related to the mean of the
distribution of the electric field’s normal component that was
directly related to the change in alpha power (coefficient =
0.44, SE = 0.039, p < 0.0001). Other measures describing the
distribution had also statistically significant coefficients, including
the skewness (coefficient =−0.256, SE = 0.049, p< 0.0001), kurtosis
(coefficient=-0.137, SE=0.053, p=0.009), and the number of modes
(coefficient = −0.0687, SE = 0.029, p = 0.017). Additionally,
regarding connectivity variables the functional connectivity of a
region previously to the stimulation was a better predictor of alpha
rise (coefficient = −0.2, SE = 0.034, p < 0.0001) than the structural
connectivity (coefficient=-0.1, SE=0.037, p=0.008).

From the model coefficients, it could be derived that all the
significant variables, except the squared mean of the distribution,
could be responsible for the slight lowering of alpha power in
certain simulated subjects (e.g., subjects five to seven) as negative
coefficients. Given the relatively small magnitude of alpha lowering
with respect to the rise, we wanted to discern more clearly whether
those variables were directly related to a reduction in power
or whether they were involved in softening a rising effect. To
do this, we performed an additional MLR model using just the
data from regions whose power lowered with the stimulation
(see Supplementary Figure 6). This model showed that only the
functional connectivity (coefficient = −0.0423, SE = 0.007, p <

0.0001) could predict the lowering in power, with the protective
effect of structural connectivity (coefficient = 0.024, SE = 0.01, p
= 0.015). All other candidate variables did not reach significance.

4. Discussion

Non-invasive brain stimulation has been proposed as a
candidate tool for the treatment of brain disorders, and specifically,
tACS has shown the potential to interact andmodulate endogenous
rhythms shaping brain dynamics and cognition. However, the
mechanisms underlying the effects of this technique remain elusive.
In this study, we replicated an IAF-tACS stimulation protocol with
square patches at Oz-Cz positions, intending to rise alpha power
in occipito-parietal regions. Additionally, we used computational
modeling to dig into the mechanisms that might be mediating the
effectiveness of its application.We calculated a current propagation
model through head tissues into the brain and extracted the
components of the electric field that are orthogonal to the white
matter surface (i.e., the normal component of the electric field) to
take into account the effect of the electric field orientation. Finally,
we used this information to build an SNN model in which we
could systematically test different aspects of brain activity under
stimulation. This study provides a deeper understanding of the
variables affecting brain dynamics under stimulation.

Our empirical results were in line with previous research
findings showing an increase in power that involved many brain
regions, with the exception of some occipito-parietal ones (Kasten
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et al., 2019). This is an unexpected finding, opposite to what
we hypothesized, as the stimulation was delivered over occipito-
parietal regions, where the alpha power tends to bemore prominent
and the induced current density is maximized. At the same time,
we observed an increased variability of the power change over
the same areas in the verum group. Based on the results of our
computational model, these unexpected findings could be related
to the distributions of normal components of the electric field
found in our study for parietal regions, as we hypothesized. In these
cases, the reduced effect found in certain areas could potentially
be explained by a bimodal distribution of the electric field with
respect to the pyramidal neurons’ body axis. This would result
in a mean of Et⊥ close to zero, which our simulations showed
to be the best predictor of power increase. These distributions
might be particularly important to consider when translating tACS
application results across different species (Beliaeva et al., 2021),
as significant differences in cortical gyrification between species
may confound the results. Other studies that have focused on
analysing occipito-parietal regions have reported contradictory
results (Zaehle et al., 2010; Zarubin et al., 2020), with some
reporting increases in alpha power after tACS stimulation, while
others report decreases.

Brain stimulation studies have revealed significant intersubject
variability in the effects of applied protocols (Krause and
Cohen Kadosh, 2014; Kasten et al., 2019; Wischnewski et al., 2023).
This variability was also observed in both our empirical study
and simulations. In the empirical study, we found subjects in the
stimulation group that responded in three different ways: rising
alpha power, getting the same power, and lowering it. Interestingly,
a similar result was found in the simulations, in which three
subjects raised significantly their alpha power while others kept the
same value or lowered it. The MLR model, in combination with
the distributions of normal components, could explain why some
subjects exhibited enhancements in power while others did not.
For instance, high functional or structural connectivity protects a
region from entraining with the stimulation.

To explain why some subjects reduced alpha power, we
performed a secondMLRmodel focusing on lowering alpha-power
values, and the best predictor was found to be the mean functional
connectivity of a region: higher values of PLV predicted larger
reductions. This is in line with previous research suggesting that the
stimulation entrainment competes with the internal entrainment of
the network between neighbors (Krause et al., 2022). Therefore, the
stimulation could reduce the internal entrainment of the network,
by modulating the regional oscillatory activity, and leading to a
reduction in power.

An additional factor, not captured by the MLR models, may
influence the rise/decay of the alpha power: the inter-regional
communication through synaptic coupling. Previous research on
information transmission in neural networks have suggested that
communication between regions, in addition to the degree of
coherence (PLV), depends on the conduction delay, determined
by axon length, and the frequency mismatch between them
(Pariz et al., 2021; Sánchez-Claros et al., 2021). The interplay of
these two factors may enable or disable communication pathways
trough regions. In a favorable scenario of effective communication,
the power rise could be transmitted inter-regionally, and

contribute to the power increase of connected regions (see
Supplementary Figure 7). Consequently, it is reasonable to infer
that from our neural network models may emerge subnetworks
with optimized inter-regional communication that would benefit
alpha band power rise. Nevertheless, a more comprehensive
analysis is needed to investigate this possibility, thus paving the way
for further research.

Optimizing the dosage and montages in brain stimulation is a
current challenge that must be faced to achieve the desired effects
from the intervention (Wischnewski et al., 2023). The complexity
of this process is importantly limited by the stimulation hardware
at use and implies the availability of structural images of the brains
to be stimulated. However, in the process of optimization, it is often
disregarded the orientation of the electric field with respect to brain
tissue to focus on the maximization of the delivered field module
and the spatial accuracy, despite the empirical and computational
evidence that is raising awareness regarding the importance of this
concept (Kabakov et al., 2012; Modolo et al., 2018; Aberra et al.,
2020; Wang et al., 2023). In this study, we presented a simple
way of employing the distributions of normal components, which
could be integrated into the optimization protocols to take into
consideration the orientation of the pyramidal cells’ body axis
in tACS.

The SNN simulations of theoretical distributions showed
differential effects depending on the shape of the distributions of EF
normal components while sharing approximately the same mean.
In contrast, further regression analysis showed that although it
does not explain the whole variance, the absolute mean of the
distribution was the best predictor for alpha rise in a region.
It should be noticed that the fitted value to empirical data of
stimulation intensity used for regression was in the lower range
of the theoretical experiments, in which the different results for
distribution shapes were less prominent. This could suggest that
using the mean of the distribution as in previous studies (Merlet
et al., 2013) could be an acceptable approximation to model the
effects on power, although missing a certain level of accuracy.
Importantly, we assumed spatial homogeneity in the distribution
of excitatory and inhibitory neurons in our SNN models, being
this common practice in whole-brain modeling (Deco and Jirsa,
2012; Nakagawa et al., 2014; Stefanovski et al., 2019; Kazemi and
Jamali, 2022). However, future studies should consider spatial
inhomogeneity in their methodology to capture a higher degree of
diversity in regional dynamics.

In conclusion, this study contributes to the understanding of
the tACS mechanisms that modulate brain activity by combining
empirical and computational approaches. We investigated the
variables affecting brain dynamics under stimulation revealing
unexpected findings. Additionally, the orientation of the electric
field with respect to brain tissue was identified as a crucial factor
in optimizing the dosage and montages for brain stimulation.
This study rises awareness on the relevance of acquiring MRI
data from the participants to effectively design the stimulation
protocols. Furthermore, clinical trials involving this kind of
technology as a treatment, such as those developed for depression,
anxiety disorders or schizophrenia among others, could benefit
from taking into account the direction of the elicited electric
fiends in the brain in order to increase the likelihood of
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success of their neuromodulatory approaches. One limitation
of our study is the fact that the empirical and computational
datasets are different, as we did not have MRI scans of the
participants that underwent neuromodulation. Thus, a further
study combining empirical and computational approaches on
the same sample of subjects would be of interest to confirm
the observations made in this research. Non-invasive brain
stimulation techniques, and specifically tACS, are potential tools
for the treatment of brain disorders, however further research
is necessary to fully understand and control the effects of these
techniques on brain dynamics and cognition. Computational
models would help in shaping stimulation protocols, providing a
model driven approach for the application of tACS achieving more
specific targets of brain signals and potentially improving results
of neuromodulation.
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