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Background: K-complex detection plays a significant role in the field of sleep 
research. However, manual annotation for electroencephalography (EEG) 
recordings by visual inspection from experts is time-consuming and subjective. 
Therefore, there is a necessity to implement automatic detection methods based 
on classical machine learning algorithms. However, due to the complexity of 
EEG signal, current feature extraction methods always produce low relevance to 
k-complex detection, which leads to a great performance loss for the detection. 
Hence, finding compact yet effective integrated feature vectors becomes a 
crucially core task in k-complex detection.

Method: In this paper, we  first extract multi-domain features based on time, 
spectral analysis, and chaotic theory. Those features are extracted from a 0.5-
s EEG segment, which is obtained using the sliding window technique. As a 
result, a vector containing twenty-two features is obtained to represent each 
segment. Next, we  explore several feature selection methods and compare 
their performance in detecting k-complex. Based on the analysis of the selected 
features, we identify compact features which are fewer than twenty-two features 
and deemed as relevant and proceeded to the next step. Additionally, three 
classical classifiers are employed to evaluate the performance of the feature 
selection models.

Results: The results demonstrate that combining different features significantly 
improved the k-complex detection performance. The best performance is 
achieved by applying the feature selection method, which results in an accuracy of 
93.03%±7.34, sensitivity of 93.81%±5.62%, and specificity 94.13±5.81, respectively, 
using a smaller number of the combined feature sets.

Conclusion: The proposed method in this study can serve as an efficient tool for 
the automatic detection of k-complex, which is useful for neurologists or doctors 
in the diagnosis of sleep research.
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1. Introduction

Besides diverse psychophysiological monitoring and medical 
prevention, sleep estimation hinges on EEG can also play a critical role 
in the monitoring of sleep disorder disease (Li et al., 2017; Shi et al., 
2021). Generally, sleep of human can be split into six stages including 
wake (stage 0), light stages (stages 1 and 2), delta or deep stages (stages 
3 and 4), and rapid eye movement (REM) (Zorick and Smith, 2016). 
k-complex, one of the hallmarks of stage 2, is a crucially important 
waveform for sleep analysis (Yücelbaş et al., 2018; Horie et al., 2022). 
Pursuant to the American Academy of Sleep Medicine (AASM), 
k-complex is defined as “a well-delineated negative sharp component 
immediately followed by a positive wave with a duration larger than 
0.5 s” (Berry et al., 2015). In community, the most common strategy 
of detecting k-complex is the expert annotation-based detection of 
k-complex in EEG signals, which is also considered as the gold 
standard. Therefore, how to effectively detect k-complex is a challenge. 
However, the golden standard method is a tedious, time-consuming 
and expensive task, because it needs the expertise of the clinicians 
(AL-Salman et al., 2018; Khasawneh et al., 2022). Consequently, a 
large number of methods for k-complex have been proposed to 
alleviate the burden of neurologists (Hassan and Bhuiyan, 2017; 
Dumitrescu et al., 2021; Zhang et al., 2022).

Among these methods, the entire procedure typically consists 
of three parts: feature extraction, feature selection, and classification. 
The waveforms of EEG signals during sleep stages include sleep 
spindles, spikes, vertex sharp waves, alpha bursts, and so on. 
Because the amplitude of those waveforms varies significantly, it is 
challenging to detect k-complex using some features directly. 
Hence, one major issue in the detection system is extracting proper 
features that effectively discriminate between k-complex and non-k-
complex signals. Recent studies have employed feature sets 
including time domain (AL-Salman et al., 2022), frequency domain 
(Hassan and Subasi, 2016), and chaos theory features (Nawaz et al., 
2020) for EEG analysis. Zacharaki et al. (2013) proposes a two-step 
methodology based upon the fundamental morphological features 
of k-complex. In this method, the candidate waves are extracted, 
then it is confirmed as k-complex or not based on annotated 
k-complex. Krohne et  al. (2014) develops a semi-automatic 
k-complex detection algorithm based on the wavelet transformation 
and various feature thresholds, achieving a positive true mean rate 
of 74% and a positive predictive value of 65%. Erdamar et al. (2012) 
presents an efficient algorithm combined wavelet and teager energy 
operator, it also relies on the amplitude and duration properties of 
the k-complex waveform. The results achieve up to 91% using ROC 
analysis. AL-Salman et  al. proposes an ensemble model that 
combined fractal and frequency features based on dual-tree 
complex wavelet transform (DT-CWT) and achieves an average 
accuracy rate of 97.3% using three classification techniques 
(AL-Salman et  al., 2019a). The researchers present an efficient 
method based on fractal dimension (FD) of time-frequency images 
coupled with undirected graph features. The results indicate that the 
proposed method yields better detection results with an average 
accuracy of 97% (AL-Salman et al., 2019b). Latreille et al. finds that 
awake-like EEG activity before the onset of k-complex followed by 
microarousals. They also indicate highlight region-specific sleep-or 
arousal-promoting responses following k-complex (Latreille et al., 
2020). Tokhmpash et al. (2021) decomposes the EEG signals and 

then extracts various features from the sub-bands. The empirical 
results show the high efficiency of the proposed method in the 
analysis of EEG signals. Through a large number of k-complex 
detection approach based on features is proposed, systematic 
analysis of the relevance of the different features has not been fully 
carried out.

In addition to feature extraction, several classifiers have been used 
for the detection of k-complex. Vu et al. (2012) presents a k-complex 
detection method using hybrid-synergic machine learning, and the 
results based on tenfold cross-validation indicates that both the 
accuracy and the precision of this proposed model are at least as good 
as a human expert’s performance. The researchers develop an 
automatic k-complex detection method using a fuzzy neural network 
approach, which combines a fuzzy C-means algorithm and a neural 
network classifier (Ranjan et  al., 2018). The paper detects the 
k-complex using a support vector machine based on amplitude and 
duration measurements, achieving a 91.40% of accuracy (Hernández-
Pereira et al., 2016). Parekh et al. (2015) utilizes a fast non-linear 
optimization algorithm to detect k-complex, and achieves with F1 
scores averaging 0.57 ± 0.02. Wessam et al. proposes a least square 
support vector machine (LS-SVM) classifier based on multi-domain 
features to identify k-complex obtaining average accuracy, sensitivity, 
and specificity of 97.7, 97, and 94.2%, respectively (AL-Salman et al., 
2021). The detection algorithms typically can only detect EEG data 
into k-complex or non k-complex. However, it cannot deeply explore 
the complex relationships between features and k-complex or the 
underlying mechanisms of k-complex.

Apart from feature extraction and detection methods, feature 
selection also plays a crucial role in improving the performance of the 
considered task (Hernández-Pereira et al., 2016; Chen et al., 2022; 
Yang et al., 2022). As some of the extracted features may be redundant, 
feature selection is essential to remove the redundant and irrelevant 
features, which can decrease computational overhead (Hall, 1999; 
Dash and Liu, 2003; Zhao and Liu, 2007). In literature (Hancer et al., 
2020), the research introduces a comprehensive survey on various 
feature selection methods from the perspective of clustering. Du et al. 
(2017) proposes a robust unsupervised method to remove redundant 
and irrelevant features. The results demonstrate that the proposed 
method performs better compared to some unsupervised feature 
selection methods. Yang and Nataliani (2018) presents the feature-
reduction fuzzy c-means (FRFCM) by computing individual feature 
weight to reduce irrelevant feature components. The comparison of 
results demonstrate that FRFCM had good performance in terms of 
effectiveness and deficient ness in practice. Therefore, feature selection 
methods are employed to obtain a subset of features that accurately 
describe the given data and improve or maintain the detection 
performance and generalization capacity.

The primary intention of this study consists of: (1) to compare the 
influence of distinctive features and effective classifiers for k-complex 
detection; (2) to explore the effect of feature selection methods. Under 
those goals, we investigate and compare the ability of the detection 
k-complex based on time domain features, frequency domain features, 
and chaos theory features, etc.

The paper is organized as follows: the materials and methods are 
described in Section 2, which includes feature extraction, feature 
selection, and detection. In section 3, we present the experimental 
results and the relevant discussions. Conclusions are presented in 
Section 4.
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2. Materials and methods

In the current research, the main objective is to develop an 
integrated method that yields optimal performance for k-complex 
detection task. Therefore, the pipeline of our experiments involves 
several key steps, namely data acquisition, pre-processing, feature 
extraction, feature selection, and detection methods. The original EEG 
signals are filtered and subsequently divided into segments using a 
sliding window technique. The window size is 0.5 s with overlap of 
0.4 s. Then, the feature extraction methods are employed to calculate 
the feature vectors for each segment. The extracted features are served 
as the input to different feature selection methods. To evaluate the 
effectiveness, different classifiers are tested and compared. The detailed 
description is presented in subsection2.1 to subsection2.4. The entire 
flowchart of the proposed method is depicted in Figure 1.

2.1. Data acquisition and pre-processing

The EEG data used in this research is obtained from a sleep 
laboratory of a Belgium hospital.1 All sleep recordings acquired from ten 

1 https://zenodo.org/record/2650142

subjects (28.1 ± 9.95 years old, which consist of 4 males and 6 females) is 
recorded with electrophysical signals such as electroencephalograph 
(EEG), electrooculograms (EOG), and electromyography (EMG) 
(Devuyst et al., 2010). The 30-min EEG signal is band-pass filtered with 
4th order butterworth filter at 0.5 Hz to 30 Hz to smooth the raw signal 
and removed the environment noise caused by muscle activity and eye 
movement. In the current study, the Cz-A1 channel of EEG electrodes 
with the sampling frequency of 200 Hz is carried out to analyze.

For the DREAMS k-complex database, the recordings are given by 
two experts who independently score the k-complex according to the 
manual. In this paper, we choose the annotations marked by the expert 
1 as a benchmark. Considering that k-complex wave last for about 0.5 s 
to 2 s, each 30-min EEG signals was divided into segments using the 
sliding window technique. The window size was selected as 0.5 s with a 
stepping of 0.1 s based on the previous studies (AL-Salman et al., 2019b, 
2021). The feature vectors obtained from 0.5 s EEG segments are input 
classifiers to detect the k-complex and the non k-complex. The waves 
containing k-complex and non-k-complex were illustrated in Figure 2.

2.2. Feature extraction

The main objective during the feature extraction stages for 
k-complex detection system is to extract features from EEG segments 

FIGURE 1

The k-complex detection flowchart of the proposed methods.
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that effectively capture the characteristics of the k-complex. Hence, 
finding a compact but effective set of features is deemed a crucial step 
in the k-complex detection task. The objective of this investigate is to 
evaluate the performance of different feature extraction schemes and 
find an optimal feature combination. Concretely, we analyze three 
different feature extraction methods, namely, time domain features, 
spectral domain features, and chaotic features. The first two feature 
sets consist of temporal and frequency features, which are listed in 
Tables 1, 2. The last one is based on chaotic features of EEG signals, 
which is listed in Table 2. All of these considered features explain in 
the following content.

2.2.1. Time features
Considering that the k-complex wave of EEG signals has a 

specifical changing trend in the time domain different from the 
non-k-complex wave, time domain features of EEG signals are 
determined (Günes et al., 2011; Lajnef et al., 2015). The widely-used 
time domain features in this paper are summarized in Table 1.

2.2.2. Spectral features
Similar to time features, a variety of spectral analysis methods 

based on classical FFT are used to extract frequency domain features 
(Hassan and Bhuiyan, 2016; AL-Salman et  al., 2018). Some 
traditionally ones are listed in Table 2.

2.2.3. Chaotic feature
Considering that the characteristics of EEG signals are chaotic, 

not only the time domain or frequency domain features, the chaotic 
features are derived from nonlinear dynamical analysis, which are also 
applied to investigate the dynamic characteristics of EEG signals 
(Peker, 2016; AL-Salman et al., 2018). The details of chaotic features 
are described in Table 2.

2.3. Feature selection

Feature selection is another crucial issue in the detection 
system for k-complex, and its adoption is based on several reasons, 

FIGURE 2

An filtered EEG signal [(A) is EEG signals with k-complex, and 
(B) represents EEG signals without k-complex].

TABLE 1 The features extraction of the k-complex defined by the time domain.
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Where, EEG n� �, n N� �1 2, , , , is the value of a time series. N  is the number of data points 
in EEG.
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which is as follows. Firstly, it can enhance the detection 
performance using the most relevant and informative features. 
Secondly, it is helpful in reducing costs and improve the efficiency 
of the detection process. Lastly, it facilitates effective 
discrimination and better understand of the relationship between 
k-complex and features. To estimate the quality of a feature 
selected, a correlation-based method was often utilized, the 
detection performance was also regarded as another evaluation 
criterion. In this paper, five feature selection methods, namely 
ReliefF, Correlation-based feature selection, Search-based feature 
selection (including two methods: consistency measures and 
classifier error rate measures), and INTERACT, are carefully 

explained and utilized to determine the effective feature subsets 
of the chosen dimensionality.

2.3.1. ReliefF
ReliefF, as a feature weighting algorithm, calculates the weight 

describing the ability to draw a distinction of classes (Nawaz et al., 
2020). Features are ranked based on weights, which are obtained 
according to the ability to distinguish the samples according to their 
distance in the feature space. If the weight of the feature is larger than 
a user-specified threshold (0.7 is selected in this paper), it will 
be selected to form the final feature subsets. The formula for updating 
the weight presented in Eq. 2.1.

TABLE 2 The spectral domain features and chaotic features of the k-complex.

Numbers Features Formula Explanation

Spectral 
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Chaotic 

features

f 20 Correlation Dimension CD
C r
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�
� �

�
lim

ln

ln0

C r� � represents the correlation 

integral

f 21 Box Dimension BD
N r
rr

�
� �

� ��
lim

lg

lg /0 1

N r� � represents the number of 

boxes
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GD

p

q rr
i i
q

� �
�� ��

�
lim

lg

.lg0 1

P p p pn� � �1 2, , ,  means 

probability vector, and q  is 

preselected parameter

Here, fk represents the frequency pin based on FFT, and E k� �  represents the spectrum amplitude for EEG  signals. f1 is the first pin and f2 is the last pin between selected band by scanning 
the frequency pin from left to right.
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Weight Weight
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�

�

�
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1
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.

FF
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(2.1)

where WeightRF represents the weight for features based ReliefF, 
num  is sampling times, f  denotes feature to calculate the weight, SF 
means near hits, which contained k cluster centroid belonging to the 
class of f , and MF  means near misses, which contained k cluster 
centroid not belonging to the class of f . diff f A B, ,� �  is the distance 
between two samples (A B, ) for a given feature ( f ). The scheme is 
illustrated in Figure 3.

2.3.2. Correlation-based feature selection
Correlation-based feature selection (CFS) is a member of the most 

well-known and simplest filter algorithms (Hall, 1999). As a fully 
automatic algorithm, it does not determine or calculate any thresholds 
or the number of features selected. The weight of feature subsets is 
ranked according to the correlation based on the heuristic evaluation 
function. If the features are in a low correlation with the class, they will 
be regarded as irrelevant and ignored. And feature subsets are deemed 
as selected features if one is height association with the class among 
all feature combinations. The correlation can be  derived from 
(Eq. 2.2).

 

Metric
num corr

num num num corr
CFS

fl

ff
�

� �� �
.

. .1
 

(2.2)

Here, MetricCFS  is the metric coefficient based on CFS, num  
represents the number of feature subsets, corrfl  denotes the mean 
coefficient of correlation between the features and label variable, and 
corrff  is the average correlation coefficient between feature subsets. 
The correlation coefficient in this method is Pearson’s correlation and 
all variables have been standardized.

The features are extracted using raw training data. Then, the 
correlation coefficients between (feature, label) and (feature, feature) 
are calculated using Pearson’s correlation. The feature subsets are 
searched based on the best first search to find optimal features. The 
scheme of CFS is shown in Figure 4.

2.3.3. Search-based feature selection
Search-based Feature Selection (SFS) method traverses 

all the subsets of features and tries to find the best performance 
among all candidate subsets based on some evaluation 
measures (Dash and Liu, 2003). Though this procedure needs to 
search all feasible subsets for features, it is not require the 
stopping criterion or pre-specified threshold. If the total number 
of features is N , 2N  denotes the number of all candidate subsets. 
The scheme of SFS is depicted in Figure 5. The algorithm is given 
as follows.

Algorithm: SFS.
Input: feature sets S, threshold δ .
Output: Feature subset T

 1. δ=0
 2. T � � �

/*traverses for all features subsets*/

FIGURE 3

The scheme of ReliefF. The dimension of feature subsets is reduced based feature selected of ReliefF, and the selected features are used for further 
analysis.
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 3. for all features combinationSi in S
 4. δi=thresholdCal(Si)5.if � �i �
 6. � �� i and T = Si

Return T
We employ two kinds of evaluation measures to evaluate the ability 

based on subset features to distinguish the different classes. The details 
of each evaluation measures are presented in the following paragraph.

2.3.3.1. Consistency measures
The consistency-based filter evaluates the attributes of selected 

features according to the inconsistency rate (Zhao and Liu, 2007). 
If the inconsistency rate of current selected features falls below the 
pre-selection features, current selected features are regarded as the 
selected features. The consistency measures was achieved 
as follows:

Step 1: The discrimination of inconsistent instances. If di  and 
d j  are feature vectors of two instances with identical values 
except for their class labels, they are considered as one 
inconsistent instances.

Step 2: Inconsistency count. The set of inconsistent-instances is 
divided into 2 groups (k-complex or non-k-complex) based on their 
corresponding class label. The inconsistency count is calculated by 
subtracting the largest count of different class labels from the number 
of occurrences of a feature in the data.

Step 3: Inconsistency rate. The inconsistency rate is obtained by 
dividing the sum of all the inconsistency counts in a feature subset by 
the total number of patterns.

2.3.3.2. Classifier error rate measures
As one of the traditional wrapper methods, the classifier error rate 

measures selected feature subsets according to the predicting accuracy. 
The selected feature is updated if the accuracy level is higher.

2.3.4. Interact
Let us consider the situation that some features might have a wake 

correlation with the labels, while the features may be  a strong 
correlation if they were combined with other features. For this case, 
the INTERACT method is proposed to search for interacting features 
(Zhao and Liu, 2007). As a filter-based method, it employs the 
backward search strategy to remove the features deemed as irrelevant.

The core parts employed by this method can be divided into two 
steps. The details are illustrated in Figure  6. In the first step, the 
features are ranked in the descending order taken into account their 
symmetrical uncertainty (SU) values. Let l  denotes the class label and 
f  means the feature vector. Let H f� � and H f l,� � denote entropy and 
joint entropy, respectively. The SU between features and labels can 
be derived from Eq. 2.4. In the second step, features are evaluated 
using consistency contribution (c-contribution) from the end of the 
ranked feature listed in the first step. Once the c-contribution is larger 
than the specific threshold, the feature will be selected, otherwise, it 
is removed.

 
SU

,
� �

� � � � � � � �
� � � � �

�

�
�
�

�

�
�
�

2
H f H l H f l

H f H l  
(2.4)

2.4. Detection

Feature combinations obtained from the feature selection 
techniques are further assessed using classifiers under 5-fold cross-
validation. In this paper, the detection algorithms in Figure 1 are listed: 
Linear Discriminant Analysis (LDA) tries to maximize the ratio of the 
between-class variance and the within-class variance. Typically, LDA 
is generally used to classify patterns between two classes; linear support 
vector machine (SVM) is a statistical classification algorithm, which 

FIGURE 4

The scheme of CFS. The dimension of feature subsets is reduced based feature selected of CFS.
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FIGURE 6

The scheme of INTERACT method. The dimension of feature subsets is reduced based feature selected of INTERACT.

FIGURE 5

The scheme of SFS. The dimension of feature subsets is reduced based feature selected of SFS.
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has been widely used in many recognition fields; and decision tree 
(DT), which has a fast computation time for a real-time system and a 
strong interpretation ability for features, has also a promising result.

2.5. Performances metrics

In all used methods, the adopted metrics including sensitivity, 
specificity, and average classification accuracy can be calculated from the 
confusion matrix determined by the parameters presented in Table 3.

The sensitivity, specificity, and average classification accuracy are 
calculated from the equation as follows.

Sensitivity is also called as true positive rate, measuring the 
proportion of the actual positive predication and estimates the 
performance of the detection method.

 
sensitivity �

�
TP

TP FN  
(2.4)

Specificity is called true negative rate, measuring the proportion 
of the actual negative prediction and also reflects the performance of 
the classification method.

 
specificity �

�
TN

TN FP  
(2.5)

Accuracy indicates the rate of rightly classified cases.

 
accuracy �

�
� � �
TP TN

TP FN FP TN  
(2.6)

Fscore, as one of the most important measurements for detection, 
is used to reflect the importance between the rate of true k-complex 
and the detected k-complex. � �1 represents that we focus on the rate 
of true k-complex, and if 0 1� �� , the rate of detecting k-complex has 
a larger influence.

 

Fscore
TP

TP FN FP
�

�� ��
�� �� � � �

1

1

2

2 2

�

� �
 

(2.7)

Kappa coefficient is generally used to evaluate the agreement 
between two classification results. In this paper, it is employed to 
evaluate the agreement between the different feature selection model 
and the detection model. It can be defined as Eq. 2.8.

 

kappa

accuracy

TP FN TP FP
FP TN FN TN

TP FN FP TN
�

�

�� � �� � �
�� � �� �
� � �� �2

11
2

�

�� � �� � �
�� � �� �
� � �� �

TP FN TP FP
FP TN FN TN

TP FN FP TN  

(2.8)

Here, TP represents the number of k-complex marked by experts 
and also predicts k-complex. TN is the number of non-k-complex 
labeled by experts and can be detected as non-k-complex using our 
proposed method. FN means that the number of k-complex is marked 
by experts but detects as non-k-complex. FP is the number of non-k-
complex labeled by experts but is predicted as k-complex.

J1 Value analyzes the separability according to the Fisher criteria, 
which can illustrate the effectiveness of features. The calculation of J1 
value is obtained from Eq. 2.9.

 
J S Sw m1

1� � ��
tr

 
(2.9)

Here, Sw and Sm represent the within-class and between-class 
scatter matrix, respectively. tr(S) means the trace of square matrix S.

3. Results and discussion

Considering that 22 features are defined to represent the 
k-complex detection, we will perform a comparison on these feature 
vectors. For the convenience of comparison, the experiments are 
conducted to evaluate the performance of features. We calculate the 
spearman correlation coefficient, significance, and J1 values between 
different feature sets. Besides, detection ability of different features is 
also reported to capture the distinctness between k-complex and non 
k-complex.

3.1. evaluating the effectiveness of the 
feature sets

To illustrate the effectiveness of different types of features, 
we adopt the spearman correlation coefficient and significance as the 
metrics in this experiment. The results are shown in Table 4; Figure 7. 
A larger correlation coefficient suggests a better feature for the 
detecting of k-complex. Additionally, value of p is also calculated 
using a one-way analysis of variance to verify statistically significant 
between k-complex and non-k-complex. The statistical results show 
that the performance of various types of features to detect k-complex 
are significantly difference with p < 0.05.

Independent sample test of time domain features between 
k-complex and non-k-complex is presented in Table 4. As seen from 
the Table 4, the features {f1, f2, f10}, highlighted in bold, have a high 
correlation coefficient (>0.7) and the difference is statistically 
significant (p < 0.05). Meanwhile, there are significant differences in 
detecting the k-complex for features {f7, f8, f9, f11} with a moderate 
level of relation. On the contrary, the statistical test shows no 
significant differences for other features.

Individually, the significance analysis and the correlation 
coefficient with different subjects are also investigated, which is 
displayed in Figure  7. Seven spectral features and three chaotic 
features are extracted from each segment, and then are fed to verify 
the statistical test. Obviously, the feature {f14} exhibits a high 
correlation with mean value of 0.7709, while the feature {f13} shows a 
moderate level of relation with a mean value of 0.4379. However, it is 
clear that the remaining spectral features have low correlation. In 
terms of significance analysis, a further test reveals a significant 

TABLE 3 Confusion matrix.

Predicted k-complex

yes no

Actual k-complex
Yes True positive (TP) False negative (FN)

No False positive (FP) True negative (TN)
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difference for features {f13, f14} with p < 0.005. Additionally, features 
{f16, f17} have low correlation, while some of subjects exhibited 
significant difference with p < 0.05. On the other hand, no significant 
differences are found for others. Furthermore, the results of chaotic 
features analysis are presented in Figure 7B. A hypothesis test using 
value of p is conducted to determine the significant features in this 
regard. The significance level of features {f21, f22} is found to 
be  smaller than 0.005, indicating a significant difference between 
different features sets. Moreover, these features demonstrate a high or 
moderate level of relation. Based on the results, the extracted features 
{f13, f14, f21, f22}, using the statistical test method, achieve higher 
values compared with other features.

Twenty-two features are tested to evaluate the effectiveness of 
k-complex detection in EEG signals. The separability of these different 
features are assessed based on J1 value in this experiment. The higher 

J1 value indicates greater separability between features. The value of 
J1 value and comparison for different features is presented in Figure 8. 
According to the obtained results, it is evident that the features {f1, f2, 
f10, f11, f13, f14, f21, f22} have achieved higher J1 values, which 
indicates that these features effectively characterize the k-complex. 
This finding is consistent with the inferences drawn from Table 4; 
Figure 7. Furthermore, it is worth noting that significant differences 
exist between the results obtained from the time domain features and 
the chaotic features.

3.2. Methodology comparison based 
different types of features

To evaluate the effectiveness of each feature type for k-complex 
detection, a single feature is utilized at a time to determine which 
features effectively reflect the presence k-complex. The detection 
accuracy is then tested and conducted by performing the traditional 
machine learning algorithm. The results are presented in Figure 9. 
All the features are ranked and sorted in descending order based 
on their importance in terms of detection accuracy. It is evident 
that the top-ranked features vectors {f1, f2, f3, f7, f10, f11, f12, f14, 
f16, f21, f22} perform better than the others to reflect the 
distinctness of k-complex. This result is consistent with the previous 
finding shown in Table 4, especially for the highly correlated feature 
vectors {f1, f2, f10}. These evidence indicate that the time features 
are slightly more important than spectral features and chaotic 
features. Furthermore, it is also observed that the highest accuracy 
for k-complex detection reaches a maximum value, with an average 
accuracy of 74.28%. This also verifies the conclusion that the 
proposed feature vectors have the potential to capture the 
characteristics of k-complex, and can contribute to the k-complex 
detection task, effectively.

Based on the previous description, the results of different features 
are obtained from several detection methods for the k-complex 
detection. For the sake of clarity, the results are analyzed in terms of 
accuracy, sensitivity, specificity, kappa coefficient, and F-scores, 

FIGURE 7

Correlation coefficient and significance test for the different domain features with features of k-complex and non-k-complex (if the value of p below 
than 0.005, it is marked with **, and if the p-value is below than 0.05, it is marked with *. (A) is for spectral feature, and (B) is for chaotic features).

TABLE 4 Correlation coefficient and significance test for the time domain 
features with features of k-complex and non-k-complex.

No. of 
features

Correlation 
coefficient

p-value Result

f1 0.7488 0.0000 S

f2 0.7983 0.0000 S

f3 0.1921 0.1212 NS

f4 0.1447 0.2345 NS

f5 0.1801 0.1136 NS

f6 0.1427 0.2611 NS

f7 0.4682 0.0002 NS

f8 0.4303 0.0025 NS

f9 0.3914 0.0087 NS

f10 0.8122 0.0000 S

f11 0.5147 0.0006 NS

f12 0.1852 0.1097 NS

If value of p < 0.05 and correlation coefficient > 0.6 significant(S); otherwise not significant 
(NS). It is also noted that the features with statistically significant are highlighted in bold.
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which are presented in Figure 10. From the figure, all of the accuracy 
results obtain by the feature selection models outperform than that 
achieved without any feature selection process for any of the 
detection algorithm, which is 82.36±10.06%, 85.01±9.04%, and 

85.85%±9.52% for LDA, LSVM, and DT detection algorithm, 
respectively. In particular, the feature selection method of the 
SFS-classifier achieved the best accuracy with 93.03%±7.34% using 
the DT algorithm. In the case of LSVM and DT detection algorithm, 

FIGURE 9

The accuracy of multi-domain features based on decision trees model for each features. Each box represents the 25–75th percentiles, and central line 
is the median value, the tiny vertical lines extend to the most extreme data not considering as outliers, which are plotted individually.

FIGURE 8

Comparison of J1 value between different features and subjects for k-complex detection.
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the sensitivity of SFS-classifier achieved is slightly worse than without 
the feature selection process, and other methods obtained better 
results compared with the methods without feature selection process. 
The model combined CFS and DT is the best option for sensitivity of 
93.81±5.62%. From the view of kappa, the performance of feature 
selection methods have similar results for LDA, and for other 
classifiers, the results are slightly higher than methods without the 
feature selection process. Among the feature selection models being 
tested, the application of feature selection methods turns out to have 
better performance than that without any feature selection process. 
These results confirm that the performance of the k-complex 
detection task is better when using feature selection, although there 
is no classifier that clearly outperforms the others.

3.3. Comparison with the existing methods 
based the same database

To evaluate the performance of the proposed methods, 
we compare the proposed method with other existing methods of the 
k-complex detection. All the selected studies are conducted using the 
same databases as described in subsection 2.1. Table 5 presents the 
comparisons among the proposed method and others. A semi-
automatic k-complex detection algorithm-based wavelet 
transformation is proposed to identify pseudo k-complex and reject 
false positives using the feature threshold method, and achieves a 
mean sensitivity of 74% (Krohne et  al., 2014). A fuzzy decision 
combined with hjorth parameters is proposed, and the average 
sensitivity and specificity of 86 and 82% are achieved compared to the 

visual human scoring (Migotina et al., 2010). Ranjan et al. (2018) 
proposes a fuzzy neural network approach to detect the k-complex, 
the results show that an average of accuracy and specificity of 87.65 
and 76.2%, respectively. The algorithm to extract fractal dimension 
based on the box counting method is used to detect the k-complex, 
achieving the average accuracy, sensitivity, and specificity of 91, 87, 
and 92% (AL-Salman et al., 2019b). A Multitaper-based k-complex 
detection method is proposed by Oliveira et al. (2020), and a mean 
sensitivity of 85.1% is achieved. An efficient method for k-complex 
detection algorithm coupled with a RUSBoosted tree model is 
presented, and achieving the average accuracy, sensitivity, and 
specificity of 92.18, 92.41, and 92.41%, respectively (Li and Dong, 
2023). In general, the proposed method is more excellent than others 
in almost all metrics. According to those comparison, it is clearly 
demonstrated that the proposed method obtains an acceptable 
performance and is effective and suitable to detect k-complex in 
EEG signals.

4. Conclusion

This paper focuses on evaluating the performance of multi-
domain features, feature selection methods, and detection algorithms 
in the detection of k-complex based on EEG signals. The suitable 
combinations of these techniques have the potential to improve the 
development of sleep analysis. Most existing papers compare single 
feature extraction methods, single selection algorithm, or a single 
detection algorithm. Few works comprehensively compare for the 

TABLE 5 Performance comparisons between the proposed method and other different detection methods with the same datasets.

Methods Accuracy (%) Sensitivity (%) Specificity (%)

Semi-automatic k-complex detection algorithm based wavelet transformation / 74 /

A fuzzy decision combined with hjorth parameters / 86% 82%

Fuzzy neural network approach 87.65 / 76.2

Box counting method 91% 87% 92%

Multitaper-based method / 85.1 /

RUSBoosted trees method based TQWT 92.18 92.41 92.41

Proposed methods 93.03±7.34 93.81±5.62 94.13±5.81

It is noted that the best performance are highlighted in bold compared with other methods.

FIGURE 10

Comparison of feature selection methods and without feature selection method using three detection algorithm (A) is for LDA algorithm, (B) is for 
LSVM algorithm, and (C) is for DT algorithm. No selected means that without any feature selection process.
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entire process including feature extraction, selection and detection. 
Hence, this paper aims to provide a comprehensive analysis of 
k-complex detection from this perspective.

Considering that k-complex is a high-amplitude wave 
compared to the relatively low background activity of the N2 sleep 
stage, and the samples were taken only from the N2 stage in some 
situations. However, it should be noted that detecting k-complex 
from N3 stages (slow waves with high amplitude, which is similar 
to k-complex) may have some disadvantages. At the same time, 
even though the number of N3 makes up a small proportion 
compared with other sleep stages, it also has some influence on 
the overall performance. Therefore, the sliding window technique 
is utilized to segment the whole EEG signals. The results 
demonstrate that when feature selection methods are applied, 
there is a significant improvement in performance compared to 
the performance without feature selection process. Additionally, 
feature selection methods can effectively decrease the 
dimensionality of the features.

It is believed that the methods described in this paper may turn 
out to be useful for investigating the k-complex. Moreover, the utility 
of feature selection methods and detection models illustrates that 
k-complex detection and feature analysis are more interesting. 
Furthermore, these results also denoted that combinations of 
techniques can be employed in real-time detection of EEG signals. It 
is worthwhile that further discuss on the principles of feature selection 
methods in our future studies.
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