
TYPE Original Research

PUBLISHED 21 July 2023

DOI 10.3389/fnins.2023.1227422

OPEN ACCESS

EDITED BY

Feng Liu,

Tianjin Medical University General

Hospital, China

REVIEWED BY

Yang Yang,

Anhui Normal University, China

Zongya Zhao,

Xinxiang Medical University, China

*CORRESPONDENCE

Yong Zhang

zzuzhangyong2013@163.com

RECEIVED 23 May 2023

ACCEPTED 04 July 2023

PUBLISHED 21 July 2023

CITATION

Wang W, Kang Y, Niu X, Zhang Z, Li S, Gao X,

Zhang M, Cheng J and Zhang Y (2023)

Connectome-based predictive modeling of

smoking severity using individualized structural

covariance network in smokers.

Front. Neurosci. 17:1227422.

doi: 10.3389/fnins.2023.1227422

COPYRIGHT

© 2023 Wang, Kang, Niu, Zhang, Li, Gao,

Zhang, Cheng and Zhang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Connectome-based predictive
modeling of smoking severity
using individualized structural
covariance network in smokers

Weijian Wang, Yimeng Kang, Xiaoyu Niu, Zanxia Zhang, Shujian Li,

Xinyu Gao, Mengzhe Zhang, Jingliang Cheng and Yong Zhang*

Department of Magnetic Resonance Imaging, The First A�liated Hospital of Zhengzhou University,

Zhengzhou, China

Introduction: Abnormal interactions among distributed brain systems are

implicated in the mechanisms of nicotine addiction. However, the relationship

between the structural covariance network, a measure of brain connectivity, and

smoking severity remains unclear. To fill this gap, this study aimed to investigate

the relationship between structural covariance network and smoking severity in

smokers.

Methods: A total of 101 male smokers and 51 male non-smokers were

recruited, and they underwent a T1-weighted anatomical image scan. First,

an individualized structural covariance network was derived via a jackknife-

bias estimation procedure for each participant. Then, a data-driven machine

learning method called connectome-based predictive modeling (CPM) was

conducted to infer smoking severity measured with Fagerström Test for Nicotine

Dependence (FTND) scores using an individualized structural covariance network.

The performance of CPM was evaluated using the leave-one-out cross-validation

and a permutation testing.

Results: As a result, CPM identified the smoking severity-related structural

covariance network, as indicated by a significant correlation between predicted

and actual FTND scores (r = 0.23, permutation p = 0.020). Identified networks

comprised of edges mainly located between the subcortical–cerebellum network

and networks including the frontoparietal default model and motor and visual

networks.

Discussion: These results identified smoking severity-related structural

covariance networks and provided a new insight into the neural underpinnings of

smoking severity.

KEYWORDS

connectome-based predictive modeling, structural covariance, nicotine addiction,

smoking severity, machine learning

Introduction

Nicotine addiction or smoking, characterized by compulsive tobacco seeking and

smoking, is one of the leading causes of preventable disease worldwide, contributing to

cancer and respiratory and cardiovascular diseases (Branstetter et al., 2016; Shen et al., 2018).

Every year, more than 5 million people die of tobacco use (Wen et al., 2021). It is of great

clinical significance to investigate the underlying neural substrates of nicotine addiction.

However, the underlying mechanisms of smoking are still unclear.

In recent years, studies with modern neuroimaging have identified that abnormal

interactions among distributed brain regions are implicated in the mechanisms of nicotine
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addiction (Fedota and Stein, 2015). In neuroimaging studies,

the interaction between brain regions is usually measured with

synchronized low-frequency fluctuations of the blood oxygen level-

dependent (BOLD) signal between brain regions in the absence

of explicit task, termed as resting-state functional connectivity

(FC) (Biswal et al., 1995; Molecular Psychiatry). Altered FC

among large-scale brain networks is well documented in smokers.

For example, relative to non-smokers, chronic smokers show

reduced FC within frontal–parietal executive control networks

(Weiland et al., 2015), and connections within this network are

predictive of smoking status (Pariyadath et al., 2014). Structural and

functional deficits within frontostriatal circuits are also reported

in smokers (Yuan et al., 2016), where the striatum mainly

regulates the rewarding effect of smoking (Barrett et al., 2004)

and motivation to smoke (Le Foll et al., 2014). In addition

to functional interaction, brain regions also exhibit structural

interactions, such as structural covariance. As another brain

connectivity metric, structural covariance measures gray matter

morphological similarity (measured with correlation) between

brain regions reflecting synchronized maturation (Alexander-

Bloch et al., 2013; Yun et al., 2015). Compared with FC, structural

covariance represents more stable and highly heritable brain

connectivity features (Lerch et al., 2006; Evans, 2013). As a

complementary metric of brain connectivity, structural covariance

provides a specific and distinctive measurement of network-level

brain features (Subirà et al., 2016). Brain disorders are found to

be accompanied by a rearranged architecture of the structural

covariance network (Mitelman et al., 2005; Alexander-Bloch et al.,

2013; Han et al., 2022a,b; Xue et al., 2023). However, to the best

of our knowledge, there is no study investigating the association

between structural covariance network and smoking severity in

nicotine addiction.

Recently, a machine learning method called connectome-based

predictive modeling (CPM) is proposed to predict individual

behavior from whole-brain connectivity data (“connectomes”)

(Finn et al., 2015; Shen et al., 2017). Unlike the traditional brain-

behavior models such as correlation or regression models, CPM

avoids over-fitting and increases the likelihood of generalization

in novel samples. This approach is used to identify connectome

fingerprints of specific behaviors, showing potential to identify

novel treatment targets (Finn et al., 2015; Shen et al., 2017). To date,

CPMhas been used to identify connectome fingerprints of IQ (Finn

et al., 2015), individual anxiety (Wang et al., 2021), and creativity

anxiety (Ren et al., 2021). In addition, CPM identifies connectome

fingerprints of carving intensities in Internet gaming disorder

(Zhou et al., 2022), dissociable neural substrates of opioid and

cocaine use (Lichenstein et al., 2021), and connectome fingerprints

of cocaine abstinence (Yip et al., 2019).

In this study, we aimed to identify the structural covariance

network predictive of smoking severity in smokers with CPM.

A total of 101 smokers and 51 non-smokers were recruited,

and they underwent T1-weighted anatomical image scans. First,

we obtained an individualized structural covariance network

for each participant via a jackknife-bias estimation procedure

(Das et al., 2018; Han et al., 2022a,b). Then, CPM was

conducted to infer smoking severity measured with Fagerström

Test for Nicotine Dependence (FTND) scores (Heatherton et al.,

1991) using the individualized structural covariance network.

We expected that CPM could significantly predict FTND

scores using the individualized structural covariance network

over chance.

Methods

Samples

This study was approved by the Research Ethics Committee

of the First Affiliated Hospital of Zhengzhou University. All

study procedures were performed in accordance with the 1975

Declaration of Helsinki, and written informed consent was

obtained from all participants before the experiment.

A total of 101 smokers and 51 non-smokers were recruited

through online platforms and advertisements. All the subjects

were right-handed male smokers. The smokers met the DSM-

IV criteria for nicotine dependence, smoked at least once daily

in the past 2 years, and had no period of smoking abstinence

longer than 3 months (Shen et al., 2018). The Fagerström

Test for Nicotine Dependence (FTND) was used to measure

nicotine dependence (Heatherton et al., 1991). Non-smokers are

those who did not currently smoke and had no history of

consumption of cigarettes (or nicotine products). In addition,

all the participants must meet the following inclusion criteria:

(1) physical and neuropsychiatric diseases; (2) currently using

or a history of psychotropic medications; (3) other current

drug abuse (except nicotine); and (4) contraindications for

MRI scanning.

Data acquisition

Three-dimensional high-resolution T1-weighted sagittal

images were obtained with 3D magnetization prepared rapid

gradient echo (3D-MPRAGE) on 3-Tsela German Siemens Prisma.

The scanning parameters were as follows: repetition time =

2,000ms, voxel size = 1 mm3, inversion time = 900ms, echo time

= 2.06ms, flip angle= 9 degrees, FOV= 256× 256 mm2, slices=

192, and slice thickness= 1.0 mm.

Voxel-based morphometry analysis

Gray matter volume (GMV) was measured using a voxel-based

morphometry analysis (VBM) (Ashburner and Friston, 2000). This

procedure was conducted following the standard pipeline of the

CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat12/): Structural

images were first segmented into the gray matter, white matter,

and cerebrospinal fluid, normalized into Montreal Neurological

Institute space and resampled to 1.5 mm3. Finally, the gray matter

maps were smoothed using 6mm full width at half maximum

Gaussian kernel (FWHM) (Ashburner, 2009; Han et al., 2021). The

total intracranial volume (TIV) and image quality rating (IQR)

were calculated (Brown et al., 2019; Han et al., 2022a,b, 2023).
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Construction of individualized structural
covariance network

Following previous studies (Das et al., 2018; Han et al., 2022a,b),

an individualized structural covariance network was constructed

using the following steps. First, a group-level N × N (N, the

number of brain regions) structural covariance network was

constructed (SCN) for smokers. Specifically, mean GMV values

of brain regions defined in the automated anatomical labeling

atlas (AAL) were extracted, and pairwise Pearson’s correlations

between them were calculated. Thus, a group-level 116 × 116 SCN

was obtained. Second, for each subject, individualized SCN was

derived via a jackknife-bias estimation procedure that determined

an individual’s contribution to the group-level SCN (Miller, 1974;

Das et al., 2018).

Connectome-based predictive modeling

We constructed a CPM to predict FTND scores from

individualized SCN in smokers. In brief, in the training dataset,

structural covariance edges and FTND scores were correlated

using Pearson’s correlation. The whole network was divided into

positive and negative predictive networks according to the sign of

significant Pearson’s correlation coefficients (p < 0.01). Then, the

sum of significant edges in each network was obtained and entered

into a linear regression model to establish the linear relationship

between the edges and FTND scores. The resultant polynomial

coefficients including slope and intercept were applied to the test

dataset to predict FTND scores. In this study, leave-one-out cross-

validation (LOOCV) was adopted. The performance of CPM was

assessed by calculating Pearson’s correlation between the predicted

FTND scores and true ones.

To assess whether the performance of CPM (Pearson’s

correlation coefficients between the predicted FTND scores and

true ones) was significantly higher than chance, a permutation

testing was performed (5,000 times). In each run, FTND scores

and connections were randomly shuffled, and CPM was rerun with

the shuffled data. The significance was defined as the proportion

of sampled permutations that were greater or equal to the true

prediction correlation (Shen et al., 2017).

Sensitivity analysis

We also explored whether our results were biased by

confounding factors including TIV or IQR. To this end, Pearson’s

correlation coefficients between predicted FTND scores and TIV or

IQR were calculated.

Results

Demographics and clinical characteristics

Demographics and clinical characteristics are included in

Table 1. There were no significant differences in terms of age,

education level, and IQR between smokers and non-smokers.

TABLE 1 Demographics and clinical characteristics.

Smokers
(N = 101)

Non-smokers
(N = 52)

p

Male, No. (%) 100% 100% -

Age, mean (SD) 35.01 (7.26) 39.94 (7.60) 0.103a

Educational level,

mean (SD), y

14.88 (1.97) 15.37 (2.65) 0.204a

FTND 5.92 (3.51) - -

Smoking years 19.37 (3.18) - -

Cigarettes smoked per

day

15.56 (7.12) - -

IQR 2.06 (0.11) 2.04 (0.09) 0.323a

FTND, Fagerström Test for Nicotine Dependence; IQR, Image Quality Rating; atwo sample t-

test.

Performance of CPM

Combining positive and negative structural covariance

networks, CPM significantly predicted the FTND scores (r =

0.23, permutation p = 0.020, Figure 1A). We further investigated

whether a negative or positive network alone could predict the

FTND scores. The results showed that a negative network could

significantly predict FTND scores (r= 0.19, permutation p= 0.036,

Figure 1B) while a positive network could not (permutation p

> 0.05).

Smoking severity-related network anatomy

The identified positive and negative networks are presented

in Figure 2. The positive network included 95 edges, and

the negative network included 103 edges. The node size in

Figure 2 was proportional to the degree. Highest-degree nodes

in the positive network were mainly located in the cerebellum,

thalamus, hippocampus, and superior occipital gyrus, and those

in the negative network were mainly located in the striatum,

hippocampus, cingulate gyrus, and orbitofrontal cortex. The top 10

nodes with the highest degree in the positive and negative networks

are listed in Table 2.

Next, the edges in positive and negative networks were

summarized into within and between canonical neural networks

as defined in previous studies (Finn et al., 2015; Han et al.,

2022a,b). The number of edges between and within the networks

are presented in Figure 3. The edges in the positive network

weremainly distributed within the subcortical–cerebellum network

between the subcortical–cerebellum network and the visual

network. The edges in the negative network were mainly located

between the subcortical–cerebellum network and those including

the frontoparietal network, default model network (DMN), and

motor and visual network.

Sensitivity analysis

We did not observe any significant correlation between

factors including TIV and IQR and predicted FTND scores (all
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FIGURE 1

Performance of connectome-based predictive modeling (CPM). (A) The correlation between predicted FTND scores using combined networks and

true ones. (B) The correlation between predicted FTND scores using the negative network and true ones. FTND, Fagerström Test for Nicotine

Dependence.

FIGURE 2

Identified positive and negative networks. For the positive network, increased structural covariance edges predict more smoking severity measured

with Fagerström Test for Nicotine Dependence scores. For the negative network, decreased structural covariance edges predict more smoking

severity measured with Fagerström Test for Nicotine Dependence scores. The size of nodes is proportional to the number of edges attached to them

(degree).

p-values > 0.05), excluding their effects on the performance

of CPM.

Discussion

In this study, we successfully predicted smoking severity

from the individualized structural covariance network using CPM

and identified smoking severity-related networks. The combined

and negative network could significantly predict the FTND

scores, suggesting their close association with smoking severity.

The identified negative network mainly comprised of structural

covariance edges between the subcortical–cerebellum network

and the networks including frontoparietal and motor and visual.

In this network, the putamen, pallidun, hippocampus, cingulate

gyrus, and orbitofrontal cortex had the highest degree reflecting

their vital roles in this network. These results elucidate the

neuronal substrates of smoking severity establishing the connection
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TABLE 2 Top ten nodes with the highest degree in positive and negative network.

Network Nodes Degree Network Nodes Degree

Positive Right superior cerebellum 20 Negative Right pallidum 27

Right supramarginal gyrus 11 Left pallidum 22

Left cuneus 8 Left putamen 17

Vermis 8 Right putamen 17

Right superior occipital gyrus 6 Right hippocampus 7

Left superior cerebellum 6 Left superior temporal gyrus 7

Right olfactory 5 Left middle cingulate gyrus 6

Left hippocampus 5 Left posterior cingulate gyrus 6

Left thalamus 5 Left cuneus 6

Vermis 5 Right orbitofrontal cortex 5

FIGURE 3

Positive and negative networks are summarized into within and between canonical neural networks. MF, medial frontal network; FP, frontoparietal

network; DMN, default model network; SC, subcortical-cerebellum network; VA, visual association network.

between structural covariance network and smoking severity for

the first time.

Our results reveal that individualized structural covariance

across multiple brain networks is predictive of smoking severity.

With CPM, previous studies have also identified severity-

related functional networks, such as nicotine addiction, cocaine,

Internet gaming disorder, and opioid use disorder (Yip et al.,

2019; Lichenstein et al., 2021; Lin et al., 2022; Zhou et al.,

2022). As a state feature, functional connectivity may oscillate

across different states and is susceptible to many confounding

factors (Evans, 2013; Gorgolewski et al., 2013). In this study,

we identified severity-related structural covariance networks

in smokers. Compared with functional connectivity, structural

covariance measures brain connectivity on a larger time scale

and is hypothesized to represent trait-like connectivity features

(Subirà et al., 2016). In spite of substantial concordance between

functional connectivity and structural covariance, they are different

and complementary metrics of brain connectivity (Subirà et al.,

2016). However, to the best of our knowledge, there are

only two studies investigating altered structural covariance in

addiction-related disorders, namely Internet gaming disorder

and alcohol dependence (Chen et al., 2021; Ottino-González

and Garavan, 2022). The former elucidates the association

between decreased structural covariance connections within

DMN and addiction severity in Internet gaming disorder

(Chen et al., 2021). The latter investigates altered graph-

theoretic metrics of the structural covariance network in adults

with alcohol dependence and heavy-drinking adolescents and

suggests that the structural covariance network profile can be

an early marker of alcohol dependence in adults (Ottino-

González and Garavan, 2022). However, both of them investigate

structural covariance network aberrance at the group level.

With the help of a newly proposed method, for the first time,

we investigated the association between structural covariance

network and smoking severity at the individual level. We found

that the combined and negative networks could significantly

predict the FTND score while the positive network could

not. These results are consistent with the study by Lin

et al. (2022) investigating functional connectivity networks

underpinning smoking severity. These results suggest that

smoking severity is associated with impaired coordination among

brain networks.
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Our results revealed that decreased structural covariance

connections between the subcortical–cerebellum network and

other networks played vital roles in the mechanisms of nicotine

addiction. The subcortical–cerebellum network defined in this

study contains regions, such as the hippocampus, amygdala,

striatum, thalamus, orbitofrontal gyrus, anterior insula, and

cerebellum (Finn et al., 2015). Among these brain regions, the

pallidum, putamen, hippocampus, and orbitofrontal gyrus had the

highest degree indicating their important roles in the identified

negative network. All these regions are implicated in the brain

reward system that is consistently hypothesized to underlay the

mechanism of addiction (Hyman et al., 2006; Haber and Knutson,

2010). For example, the putamen plays a vital role in the

development of nicotine addiction due to the high concentration of

nicotinic acetylcholine receptors which makes it a potential target

for nicotine (Das et al., 2012). In the putamen, hyperactivity, when

exposed to environmental cues triggering craving and gray matter

volume abnormalities, is reported in smokers compared to non-

smokers (Das et al., 2012; Pan et al., 2013; Franklin et al., 2014).

In addition, gray matter volume is significantly correlated with

pack years, suggesting it is a potential biomarker of the cumulative

effect of smoking (Bu et al., 2016). In the hippocampus, preclinical

studies consistently suggest that its function is enhanced by initial

exposure to drugs, and the synaptic alterations by stimulants can

facilitate the learning of drug-associated memories and eventual

addiction to the drug (Avchalumov and Mandyam, 2021). Recent

evidence indicates the involvement of the cerebellum in addictive

behavior (Kühn et al., 2012). Tissue volume loss in the cerebellum

is reported in smokers (Kühn et al., 2012), and the decreased

connections between the cerebellum and DMN are also reported

in smokers relative to non-smokers (Wetherill et al., 2015; Shen

et al., 2018). In the cerebellum, repeated drug exposure enhances

the susceptibility of its connections with the frontal gyrus that is

related to impaired executive control of the prefrontal cortex on

drug-seeking behavior (Miquel et al., 2009). In accordance with

these findings, our results further underscore the vital role of the

subcortical–cerebellum network in the smoking severity.

Other networks including frontoparietal, DMN, andmotor and

visual networks are also implicated in the mechanisms of addiction

severity. The frontoparietal network is implicated in representing

and maintaining goals during motivated behavior (Koechlin and

Hyafil, 2007; Badre, 2008) and has a prominent role in inhibitory

control of impulsive responses (Jentsch and Taylor, 1999).

People with substance dependence and behavioral addictions

show hypoactivation during motor response inhibition tasks and

cognitive self-regulation (Luijten et al., 2014). In addition, its weak

connections with the striatal system during a response inhibition

task are associated with greater dependence severity in alcoholics

(Courtney et al., 2013). The dysfunction of the frontoparietal

network contributes to the transition from voluntary/goal to a

more habitual drug-seeking behavior (Everitt and Robbins, 2005).

The dysfunction of DMN and the abnormal interactions between

DMN and other networks are hypothesized to contribute to craving

and relapse in substance abuse (Zhang and Volkow, 2019). For

example, as a central component of the valuation system of the

brain, the medial prefrontal cortex is involved in the dysregulation

of the reward and motivation circuits in addiction (Volkow et al.,

2003; Bartra et al., 2013). The weaker connectivity between the

putamen and Medial prefrontal cortex during an inhibition task

is associated with greater alcohol dependence severity (Courtney

et al., 2013). Altered connections between the midline core DMN

and subcortical regions, such as the amygdala and the striatum,

are responsible for the cognitive, emotional, and reward-related

dysregulation in substance abuse (Koob and Volkow, 2016). In

addition, connections between the subcortical–cerebellum network

and the motor and visual networks are also found to be associated

with smoking severity. Exposure to nicotine/cannabis can result

in long-lasting dysregulation of somatosensory processing and less

motor cortical plasticity (Smolka et al., 2006). In addition, previous

studies have revealed that the activations of motor- and vision-

related brain regions in response-related cues are correlated with

smoking severity (Yalachkov et al., 2009) and are predictive of

relapse (Kosten et al., 2006). In accordance with these findings, our

results suggest that decreased connections between the subcortical–

cerebellum network and these other networks underlay the neural

underpinnings of smoking severity.

Several limitations in this study should be mentioned. First, our

findings are drawn from one dataset with a moderate sample size,

and whether these findings can be reproduced in other independent

datasets with a larger sample size needs to be assessed. Second,

only male smokers are included in this study, and future studies

could investigate whether our findings hold true in female smokers.

Third, we investigated the smoking severity-related structural

covariance network using cross-sectional data, and whether and

how the identified networks progress with increased severity need

to be elucidated using longitudinal data in future.
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