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Introduction: Recent studies showed that the myelin of the brain changes 
in the life span, and demyelination contributes to the loss of brain plasticity 
during normal aging. Diffusion-weighted magnetic resonance imaging 
(dMRI) allows studying brain connectivity in vivo by mapping axons in white 
matter with tractography algorithms. However, dMRI does not provide 
insight into myelin; thus, combining tractography with myelin-sensitive 
maps is necessary to investigate myelin-weighted brain connectivity. 
Tractometry is designated for this purpose, but it suffers from some serious 
limitations. Our study assessed the effectiveness of the recently proposed 
Myelin Streamlines Decomposition (MySD) method in estimating myelin-
weighted connectomes and its capacity to detect changes in myelin 
network architecture during the process of normal aging. This approach 
opens up new possibilities compared to traditional Tractometry.

Methods: In a group of 85 healthy controls aged between 18 and 68  years, 
we estimated myelin-weighted connectomes using Tractometry and MySD, 
and compared their modulation with age by means of three well-known 
global network metrics.

Results: Following the literature, our results show that myelin development 
continues until brain maturation (40  years old), after which degeneration 
begins. In particular, mean connectivity strength and efficiency show an 
increasing trend up to 40  years, after which the process reverses. Both 
Tractometry and MySD are sensitive to these changes, but MySD turned out 
to be more accurate.

Conclusion: After regressing the known predictors, MySD results in lower 
residual error, indicating that MySD provides more accurate estimates of 
myelin-weighted connectivity than Tractometry.
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Introduction

The study of brain connectivity is pivotal to unraveling brain 
properties in healthy individuals as well as to facilitating early diagnosis 
of neurodegenerative diseases (Sporns, 2016). Diffusion-weighted 
magnetic resonance imaging (dMRI) has emerged as a powerful tool for 
the characterization of brain structural connectivity; dMRI is sensitive 
to the microscopic motion of water molecules within tissues and, 
exploiting this information, it allows inferring in vivo the macroscopic 
trajectories of major white-matter fiber bundles in the brain, called 
streamlines, using tractography algorithms (Basser et al., 2000; Jeurissen 
et  al., 2019). The map of anatomical connections estimated with 
tractography can be  conveniently summarized as a graph, called 
connectome (Sporns et al., 2005), in which nodes represent gray matter 
nuclei and edges correspond to the axonal fibers connecting them. The 
number of streamlines between anatomical regions has been extensively 
adopted as a proxy for the strength of connections in the connectome 
(Bullmore and Bassett, 2011; Jones et al., 2013; Shi and Toga, 2017; 
Sotiropoulos and Zalesky, 2019); however, recent studies have 
questioned the quantitative nature of this measure (Jones, 2010; Yeh 
et al., 2020; Smith et al., 2022; Zhang et al., 2022) and several alternatives 
have been proposed to address this limitation.

Tractometry is a very popular and widely used technique which 
attempts to infer microstructure properties of the underlying neuronal 
tissues by evaluating a given quantitative microstructural map in the 
voxels along streamline trajectories (Bells et al., 2011). This strategy 
has been applied also to myelin-sensitive maps, e.g., myelin water 
fraction (MWF), magnetization transfer ratio (MTR), myelin volume 
fraction (MVF), and longitudinal relaxation rate (R1), with the aim of 
estimating the myelin content of different bundles and thus providing 
a more complete characterization of brain connectivity (von 
Keyserlingk and Schramm, 1984; Bartzokis et al., 2010; Mohammadi 
et al., 2015; Cercignani et al., 2017; Mancini et al., 2018; Melie-Garcia 
et al., 2018; Boshkovski et al., 2021, 2022). However, despite their 
widespread use, Tractometry-based methods present serious 
drawbacks when multiple fiber bundles traverse the same voxels, since 
all of them would be  associated with the very same scalar values 
estimated in those voxels. Extensions have been proposed to provide 
more detailed microstructure estimates along distinct directions 
inside each voxel, such as quantitative anisotropy (Yeh et al., 2010) and 
fixel-based analyses (Raffelt et al., 2017), but these approaches still 
cannot decouple different microstructural properties of distinct fiber 
bundles sharing the same direction inside a given voxel, e.g., corpus 
callosum. Hence, Tractometry-based methods do not offer truly 
bundle-specific estimates of the microstructural properties of distinct 
bundles (Schiavi et al., 2022), and this limitation is evident in the 
construction of the connectome.

Microstructure informed tractography (Daducci et al., 2016), was 
proposed as a possible solution to overcome these limitations and 
provide more veridical and biologically informative estimates of brain 
connectivity. The basic idea is to estimate microstructural features of 
white-matter fibers by fitting the whole set of streamlines 
reconstructed with tractography, called tractogram, to the measured 
MRI data and modulating their individual contributions such that 
they accurately explain the measurements. Different algorithms have 
been developed (Smith et al., 2013; Daducci et al., 2014; Pestilli et al., 
2014; Smith et al., 2015; Schiavi et al., 2020; Ocampo-Pineda et al., 
2021) but, despite differences between them, they are all based on 
dMRI; hence, they cannot provide any insight into the actual 

myelination of different bundles (Beaulieu, 2002; Tax et al., 2021). 
Recently, the Convex Optimization Modeling for Microstructure 
Informed Tractography (COMMIT) (Daducci et  al., 2014) was 
extended to enable its use with myelin-sensitive maps and provide 
researchers with an effective means to study the myelination of 
individual bundles. However, this novel Myelin Streamline 
Decomposition (MySD) technique (Schiavi et  al., 2022) has been 
tested only with few and selected anatomical bundles, and no 
evaluation was performed to assess its effectiveness in describing 
myelin-weighted global connectivity.

The study of myelination in the brain is essential due to its profound 
impact on neural function. Myelin acts as an insulator, significantly 
increasing the speed and efficiency of electrical signal transmission 
within the nervous system, facilitating information processing and 
precise neuron communication (Morell and Quarles, 1999; Sampaio-
Baptista and Johansen-Berg, 2017). Myelination is crucial during early 
development and continues to influence learning, memory, and 
cognitive function throughout life (von Keyserlingk and Schramm, 
1984; Bartzokis et al., 2010; Billiet et al., 2015; Cercignani et al., 2017; 
Faizy et al., 2020; Meissner et al., 2021; Lebel et al., 2022). Understanding 
myelination mechanisms and regulation provides insights into 
neurological conditions, including demyelinating diseases (Tozer et al., 
2003; Horsfield, 2005; Cunniffe and Coles, 2019; Kamagata et al., 2019; 
Granziera et  al., 2020; Hara et  al., 2020; Boshkovski et  al., 2022). 
Therefore, studying myelination is crucial for comprehending neural 
communication and its implications for human health.

The literature on the study of myelin network architecture across 
the lifespan is limited, and the existing methods have primarily relied 
on Tractometry to assess connections with myelin-sensitive maps (Lebel 
et al., 2012; Callaghan et al., 2014; Yeatman et al., 2014; Meissner et al., 
2021). In this article, we  leveraged the ability of MySD to provide 
bundle-specific estimates of myelination with the aim to accurately 
characterize changes in the myelin network architecture over the lifespan. 
In fact, existing studies on connectivity alterations during normal brain 
aging were mainly focused on dMRI and limited attention has been 
given to possible myelin-specific changes (Nomura et al., 1994; Sullivan 
et al., 2001; Salat et al., 2005; Westlye et al., 2010; Kochunov et al., 2011, 
2012; Lebel et al., 2012, 2022; Yeatman et al., 2014; Ota et al., 2017; Slater 
et al., 2019; Buchanan et al., 2020). We evaluated the effectiveness of 
MySD by comparing its estimates to a classical Tractometry-based 
approach; we  also performed our analysis on dMRI-based 
microstructural maps as a reference to corroborate previous findings 
and provide additional insights. With this study, we aim to test a viable 
alternative to Tractometry that overcomes its inherent limitations. 
Our approach combines global tractography with myelin-sensitive 
maps in a more robust and accurate manner, effectively addressing 
the shortcomings of both counting the number of streamlines and 
traditional Tractometry methods.

Methods

Subjects and MRI protocol

We performed the analysis on 85 healthy controls: 46 females 
(median age (IQR) [range] 32.12, (27.55; 43.77), [21.62–62.00]) and 
39 males (median age (IQR) [range] 34.00, (27.39, 49.97, 18.15–
69.00)). All subjects underwent MRI on a 3 T system (Prisma; Siemens 
Healthcare, Erlangen, Germany) with a 64-channel head and neck coil.
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The acquisition protocol included: 3D FLAIR (repetition time [TR]/
echo time [TE]/inversion time [TI] = 5000/386/1800 ms, 1 mm isotropic 
spatial resolution); 3D MP2RAGE (TR/TI1/TI2 = 5000/700/2500 ms, 
1 mm isotropic spatial resolution); and multi-shell dMRI with b-values 
700/1000/2000/3000 s/mm2 and 6/20/45/66 diffusion directions per 
shell, respectively, as well as 12 measurements at b-value 0 s/mm2 with 
both anterior-to-posterior and reversed phase encoding (TR/TE/pulse 
duration [δ]/time between pulses [Δ] = 4500/75/19/36 ms, 1.8 mm 
isotropic spatial resolution). Three variants of a 3D FLASH (RF spoiled 
GRE) sequence were used with 1.33 mm isotropic resolution, matrix 
size 192 × 186 × 120, PPF = 6/8; SPF = 6/8, GRAPPA_R = 2 in each phase 
encoding direction: T1-weighted (TR/TE = 11/4.92 ms, alpha = 15°), 
Proton Density weighted (TR/TE = 25/4.92 ms, alpha = 5°), 
MT-weighted [TR/TE = 25/4.92 ms, alpha = 5°, Gaussian MT pulse 
Delta_f = 2.2KHz as in Helms et al. (2008)]. B1 maps to correct for 
effects of radio frequency transmit inhomogeneities on the quantitative 
maps were acquired employing the steady state free precession based 
B1-TRAP approach (Ganter et al., 2013).

Anatomical images processing

We used MRtrix3 with FreeSurfer algorithm (Tournier et  al., 
2019) to segment the MP2RAGE images into five separate masks 
corresponding to the main tissue types in the brain (white matter, 
cortical gray matter, subcortical gray matter, cerebrospinal fluid, 
pathological tissue), which was used to guide tractography with 
anatomical information; using these masks, we also calculated the gray 
matter-white matter interface. In addition, to define the connectome 
nodes, we further segmented the cortical and subcortical tissues with 
FreeSurfer 6.0 (Fischl, 2012) into 85 regions of interest [42 per 
hemisphere + brainstem (Iglesias et  al., 2015)], as defined in the 
Desikan–Killiany atlas (Desikan et  al., 2006; Iglesias et  al., 2015). 
Finally, we  used the boundary-based linear registration tool 
implemented in FSL (Jenkinson et al., 2002) to register all previous 
masks to the diffusion space.

Myelin images processing

Myelin volume fraction (MVF) maps were estimated as 
MVF MTsat= α , where MTsat is defined as the portion of free water 
saturated during a single MT pulse, and the calibration constant α was 
estimated based on the procedure described in Mohammadi et al. 
(2015). The splenium of the corpus callosum from 26 healthy subjects 
(mean age 27.9 ± 1.3 years) was used as region of interest and the value 
α = 0.2161 was obtained as the median normalization factor required 
to constrain the splenium g-ratio to 0.7 across subjects, as previously 
reported using the electron microscopy technique (von Keyserlingk 
and Schramm, 1984).

Diffusion images processing

dMRI data was pre-processed to reduce artifacts from noise 
(Veraart et al., 2016a,b), eddy currents (Andersson and Sotiropoulos, 
2016), motion and EPI distortions (Andersson et al., 2003; Smith 
et al., 2004) using MRtrix3 (Tournier et al., 2019) and FSL (Woolrich 

et al., 2009; Jenkinson et al., 2012). Images were also corrected for B1 
field inhomogeneity using the N4 algorithm implemented in ANTs 
(Tustison et al., 2010). The Spherical Mean Technique (Devan et al., 
2020) was applied to data with b-value ≤ 2,000 s/mm2 to estimate the 
intra-neurite volume fraction (INVF) map.

To reconstruct the whole brain tractograms, we  followed the 
procedure described in Bosticardo et al. (2021). Briefly, we generated 
3 million streamlines using the iFOD2 algorithm with anatomical 
priors (Smith et  al., 2012) on the fiber orientation distributions 
estimated with multi-shell multi-tissue constrained spherical 
deconvolution (Jeurissen et al., 2014), seeding from the gray matter-
white matter interface and propagating the streamlines with the 
backtrack option using a cut-off value of 0.05 and a maximum angle 
of 30°. To reduce the incidence of false positives (Campbell and Pike, 
2014; Zalesky et al., 2016; Maier-Hein et al., 2017; Buchanan et al., 
2020), we set the power parameter of iFOD2 to 3, as in Bosticardo 
et al. (2021), and we filtered the tractograms with COMMIT2 (Schiavi 
et  al., 2020) to remove spurious connections or those that are 
incompatible with the measured data.

Connectome estimation

We constructed the connectomes using the 85 regions of interest 
from the gray matter parcellation as nodes and the 3 million 
streamlines estimated with tractography as edges. To determine the 
edge weights, we applied Tractometry (Bells et al., 2011) and COMMIT 
(Daducci et al., 2014) to both diffusion (i.e., INVF) and myelin (i.e., 
MVF) scalar maps. It’s worth noting that the adaptation of COMMIT 
to handle MVF data is known as MySD. For calculating the edge 
weights with Tractometry, we employed MRtrix3 (Tournier et al., 
2019) to sample the INVF and MVF maps along the streamlines. 
Subsequently, we  computed the median of the values along the 
streamlines’ trajectories and calculated the mean of the weights for 
streamlines belonging to the same bundle, following the approach 
proposed by Boshkovski et al. (2021). In the case of COMMIT, we first 
fitted the streamlines to the INVF and MVF maps with the aim to 
estimate an individual weight for each streamline which corresponds 
to its overall contribution to the corresponding microstructural map. 
Then, the connectivity strength of each bundle was estimated 
aggregating the weights of those streamlines belonging to it, as 
described in Schiavi et al. (2020).

Figure 1 visually summarizes the main steps just described.

Network metrics

We used the Brain Connectivity Toolbox1 to extract from each 
weighted connectome three network metrics that are widely used in the 
literature (Rubinov and Sporns, 2010; Fornito et  al., 2016): mean 
strength, which corresponds to the strength of the connection between 
gray matter regions on average; global efficiency, which is the average 
of inverse shortest path length; modularity, which expresses how easily 
the brain connection segregates into different clusters.

1 https://github.com/aestrivex/bctpy
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Global network metrics offer a comprehensive perspective on the 
relationships between brain regions, surpassing what can be inferred 
from myelination within a white matter mask without the use of a 
connectome. Additionally, these network metrics highlight the 
delicate balance between information integration (connections 
between different regions) and information segregation (localized 
processing), which cannot be captured by white matter myelination at 
the voxel-wise level (Fornito et al., 2016).

Statistical analysis

To evaluate the sensitivity of the two methods concerning myelin-
weighted network changes during brain aging, we  used a robust 
regression model, available in R2 (Koller and Stahel, 2011). We know 
from the literature that the ratio of gray matter to white matter changes 
throughout life (Gunning-Dixon et al., 2009; Giorgio et al., 2010; Lebel 

2 https://www.r-project.org

et  al., 2012, 2022); since we  wanted to study white-matter 
microstructural changes due to age, we considered the white-matter 
volume as independent variable in our model. Considering that 
gender is significantly related to brain volume, we  checked the 
collinearity of the model using collinearity diagnostic in R (Belsley 
et  al., 2005). Then, we  tested associations between age, age2, and 
network metrics with gender and white-matter volume as independent 
variables. To further compare the validity of the two methods 
(COMMIT and Tractometry), we tested the same model in predicting 
the age effect using internal k-fold cross-validation (Berrar, 2018). 
Specifically, we  randomly split the dataset into k = 5 sub-groups. 
We estimated the statistical model on k-1 sub-groups (80% of the 
subjects). We tested this model on the remaining 20% of the subjects 
to estimate the mean square errors (MSE). The MSE indicates the 
mean quadratic discrepancy between the observed and the estimated 
data. We  repeated the steps described above five times. Then, 
we averaged the MSEs as follows to get the cross-validation error:

 
CrossValidation error

n
MSE

i

n
i =

=
∑1

1

,

FIGURE 1

Pipeline for the construction of myelin-weighted brain graphs. We combined the myelin-sensitive MVF map with streamlines reconstructed from the 
diffusion image using two methods. Tractometry, which samples each streamline at n points to which it assigns the voxel-wise value of the underlying 
microstructural map and computes the average, and MySD, which solves a linear system for each voxel of the microstructural map by assigning a 
contribution to each streamline relative to the scalar value measured in the map. We used the same procedures to reconstruct the diffusion-weighted 
brain graph using INVF scalar map. MTsat, Magnetization Transfer saturation; DWI, Diffusion Weighted Image; MVF, Myelin Volume Fraction; INVF, intra-
neurite volume fraction.
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where n is the number of folds (n = 5 in our case).

Results

Myelin-weighted connectomes

In Figure 2, the orange line in the plots displays the predicted 
network metrics in relation to age derived from the connectome 
obtained using the Tractometry-based approach, while the gray points 
depict the raw values of network metrics. On the other hand, the green 
line represents the predicted network metrics with respect to age 
extracted from connectomes generated using the MySD method, 
along with the raw values depicted as gray dots. The observations from 
these plots indicate that the global mean connectivity strength and 
efficiency (panel A and panel C, respectively), computed from the 
myelin-weighted connectomes produced by both modalities, exhibit 
a curve resembling an asymmetric inverted U-shape as a function of 
age. These curves reach their peak around the age 40 years, which 
aligns with previous experimental findings using different myelin 
sensitive values (Yeatman et al., 2014).

The upper section of Table 1 presents the outcomes of statistical 
analyses conducted to compare the effectiveness of the methodologies 
in capturing myelin changes at different age stages. Consistent with the 
plots depicted in Figure  2, the results demonstrate that both 
Tractometry (top left of the table) and MySD (top right of the table) are 

sensitive to alterations in global efficiency and mean connectivity 
strength of myelin-weighted networks. However, MySD proves to 
be  more precise in identifying myelin changes compared to 
Tractometry, as evidenced by the model’s superior goodness of fit. As 
depicted in Figure  2D, the estimated model based on MySD data 
exhibits goodness of fit at least twice as high as the one obtained with 
Tractometry (page-square = 0.031, R2 = 0.606; page-square = 0.035, R2 = 0.257, 
respectively for global efficiency and page = 0.023, page-square = 0.009, 
R2 = 0.781; page = 0.022, page-square = 0.015, R2 = 0.392, respectively for mean 
strength). Additionally, our findings highlight that white-matter 
volume is necessary for explaining the observed data (p < 0.05), and the 
collinearity with sex does not impact the results (variance inflation 
factor < 2). Furthermore, the mean squared errors (MSEs) obtained 
from the five-fold cross-validation test indicate that the Tractometry-
based approach yields MSE values twice as high as those computed 
with MySD (MSE = 0.886, MSE = 0.441, respectively for efficiency and 
MSE = 0.822, MSE = 0.361, respectively for mean strength). 
Consequently, the discrepancy between the tested and predicted data 
using Tractometry-based approach is at least twice as large as the 
discrepancy when using MySD. Thus, after accounting for the known 
predictors through regression, MySD demonstrates a significantly 
lower residual error. This suggests that MySD potentially offers more 
precise estimations of myelin-weighted connectivity compared to 
Tractometry. As the age distribution in the dataset was not uniform, 
we  repeated the analysis by splitting the sample to match the age 
distribution of the whole dataset in each subgroup; however, results do 

FIGURE 2

The line in the plot shows the predicted values of network metrics [(A) Mean strength, (B) modularity, (C) efficiency] of interest in dependence of age, 
while raw network metrics values are reported as gray dots. Based on the model to assess the impact of age in the global network metrics considering 
sex and WM volume as covariates, we predicted the global network metrics for age in range 20–70. We fixed sex as males and WM volume as the 
average value found in our sample. In orange are reported the predicted network metrics from the model fitted on Tractometry weighted 
connectomes, while in green are reported the network metrics computed using MySD. In panel (D) we reported the plot of the adjusted R2 values for 
each model. High R2 indicates that a lot of variance in the data is explained by the model. As first observation we can say that myelin-weighted network 
metrics peak around forty in all the models. On the other hand, we see a bigger R2 in case of MySD indicating its capacity to offer more precise 
estimates of myelin-weighted connectivity in comparison to Tractometry. COMMIT, Convex Optimization Modeling for Microstructure Informed 
Tractography; MySD, Myelin Streamlines Decomposition; MVF, Myelin Volume Fraction.
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not change our conclusions, but for the sake of completeness we report 
them in the Supplementary Figure S1, Supplementary Tables S1, S2.

Diffusion-weighted connectomes

The lines in the plots depicted in Figure 3 show the predicted 
network metrics extracted from the microstructure-weighted 
connectomes of the INVF map using Tractometry (plots colored 
orange) and COMMIT (plots colored green). Raw network metric 
values are represented as gray points. Like the analysis using MVF 
map, the results show that the mean connectivity strength, and the 
global efficiency (panel A and panel C, respectively) extracted from 
the INVF-weighted connectomes calculated using both Tractometry 
and COMMIT, exhibit a curve resembling an inverted U-shape as a 
function of age that peaks around the age range of 40–50 years 
(Gunning-Dixon et al., 2009; Melie-Garcia et al., 2018; Slater et al., 
2019; Lebel et al., 2022).

The outcomes of the statistical analysis conducted on the 
diffusion-weighted connectomes can be  found at the bottom of 
Table 1. As seen above, the results show that both methods are 
sensitive to changes occurring in the diffusion-weighted network 

concerning global efficiency and mean connectivity strength. 
However, as depicted in Figure 3D, the values of the goodness of the 
fit of the model, are twice as high for analyses conducted on data 
calculated using COMMIT (bottom right table) as compared to data 
calculated using Tractometry-based approach (bottom left table) 
(page < 0.001, page-square < 0.001, R2 = 0.635; page < 0.001, page-square < 0.001, 
R2 = 0.264, respectively for efficiency and page < 0.001, page-

square < 0.001, R2 = 0.741; page = 0.001, page-square = 0.001, R2 = 0.368, 
respectively for mean strength). Aligned to the previous analysis, 
this is reflected in the estimate of MSE (reported in Table 1), which 
is twice lower in the analysis conducted on connectomes using 
COMMIT compared to Tractometry (MSE = 0. 361, MSE = 0.822, 
respectively for efficiency and MSE = 0.255, MSE = 0.747, 
respectively for mean strength). By incorporating the known 
predictors through regression, COMMIT demonstrates a 
significantly reduced residual error, thereby affirming its capacity 
to offer more precise estimates of diffusion-weighted connectivity 
in comparison to Tractometry.

Lastly, it is important to note that when applying the statistical 
model to modularity computed from MySD connectomes, 
we observed the lowest R2, indicating a lot of variability not explained 
by the predictors used in the model. In contrast, the statistical model 

TABLE 1 In the upper part of the table are reported the results of the robust regression model applied to data from myelin-weighted connectomes 
using Tractometry (on the left) and MySD (on the right) between network metrics age and age2, accounting for sex and white-matter volume as 
covariates, while in the bottom part of the table are reported the results of the robust regression model applied to data from diffusion-weighted 
connectomes using Tractometry (on the left) and COMMIT (on the right) between network metrics age and age2, accounting for sex and white-matter 
volume as covariates.

MVF 
Tractometry

Efficiency Modularity Mean 
strength

MVF COMMIT 
(i.e., MySD)

Efficiency Modularity Mean 
strength

Age value of p 0.080 0.715 0.022* Age value of p 0.071 0.760 0.023*

Age estimate 7.5e−4 -4.9e-4 8.0e-2 Age estimate 1.1e-2 −3.1e-4 3.9e−1

Age2 value of p 0.035* 0.787 0.015* Age2 value of p 0.031* 0.673 0.009*

Age2 estimate −1.1e-5 4.3e-6 −1.0e-3 Age2 estimate -1.6e-4 5.0e-6 −5.4e-3

Sex value of p 0.349 0.155 0.780 Sex value of p 0.654 0.484 0.091

Sex estimate 1.8e-3 8.8e-3 −4.3e-2 Sex estimate −1.3e-2 −3.3e-3 1.3

WM volume value of p 0.002* <0.001* <0.001* WM volume value of p <0.001* 0.037* <0.001*

WM volume estimate 3.7e-8 −1.7e-7 5.4e-6 WM volume estimate 1.5e-6 5.9e-8 5.7e-5

R2 0.257 0.216 0.392 R2 0.606 0.035 0.781

MSE 0.886 0.905 0.765 MSE 0.441 1.029 0.251

INVF 
Tractometry

Efficiency Modularity
Mean 

strength
INVF COMMIT Efficiency Modularity

Mean 
strength

Age value of p < 0.001* 0.964 0.001* Age value of p < 0.001* 0.250 < 0.001*

Age estimate 6.2e-3 5.6e-5 4.2e-2 Age estimate 7.6e-2 −1.3e-3 2.6

Age2 value of p < 0.001* 0.835 0.001* Age2 value of p < 0.001* 0.213 < 0.001*

Age2 estimate −7.0e-5 −3.0e-6 −4.8e-3 Age2 estimate −8.9e-4 1.7e-5 −3.1e-2

Sex value of p 0.849 0.183 0.757 Sex value of p 0.225 0.603 0.719

Sex estimate −1.38e-3 7.6e-3 −4.1e−1 Sex estimate −1.0e-1 2.8e-3 9.3e-1

WM volume value of p < 0.001* < 0.001* < 0.001* WM volume value of p <0.001* 0.507 < 0.001*

WM volume estimate 1.7e-7 -1.6e-7 1.9e-5 WM volume estimate 5.0e-6 2.1e-8 1.8e-4

R2 0.264 0.252 0.368 R2 0.635 0.017 0.741

MSE 0.822 0.826 0.747 MSE 0.361 1.127 0.255

We marked the results with significant value of p with asterisks.
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with modularity calculated on Tractometry connectomes is significant 
(R2 = 0.216 and R2 = 0.252, respectively, for MVF and INVF). In this 
case, the differences in the white-matter volume (p < 0.001) explain 
differences in network modularity, while age does not appear to have 
a significant impact on this network metric.

Discussion

In this work, we exploited the application of MySD, a new and 
promising COMMIT-based method, to study changes in global brain 
network properties across the age span. We  compared MySD to 
Tractometry (Bells et  al., 2011), a commonly used method that 
integrates axonal and myelin properties with diffusion-based 
tractography to investigate myelin-weighted connectomes.

Our results show that the changes occurring in myelin network 
architecture due to aging have critical effects on network connection 
strength and efficiency (Figures 2A,C; Table 1). Specifically, we found 
that efficiency and mean strength extracted from myelin-weighted 
connectomes reach their highest point of development around 
40 years of age; after this peak, the natural degeneration of axonal 
microstructure begins.

The literature on myelin network architecture during brain aging 
is not extensive (Yeatman et al., 2014; Lebel et al., 2022). Moreover, 
studies investigating this issue have focused on analyzing myelin 
relative to specific bundles or ROIs rather than globally 

(Gunning-Dixon et al., 2009; Bartzokis et al., 2010; Callaghan et al., 
2014; Yeatman et al., 2014; Billiet et al., 2015; Melie-Garcia et al., 
2018; Lebel et al., 2022). These studies show that, as found in our 
results, myelin changes follow an asymmetrical inverted U-shaped 
curve with a peak around 40 years of age (Yeatman et al., 2014). 
Thus, late-maturing brain tissues, such as myelin, are subject to 
retrogenesis, i.e., they are particularly vulnerable to degeneration 
during brain aging (Yeatman et al., 2014). Moreover, these tissues 
follow the reverse sequence to maturation during degeneration 
(Yeatman et al., 2014).

The curves shown in the plots presented in Figures 2, 3 highlight 
the distinction in tissue maturation between myelin-weighted 
connectomes and diffusion. Myelin plays a crucial role during the 
developmental years, which, unfortunately, we have not included in 
our sample. In fact, for myelin, we can see that the peak of network 
metrics slightly precedes the peak of the network metrics extracted 
from diffusion-weighted connectomes. Although our results show that 
changes in myelin are less striking with respect to axonal density, 
we showed that the MySD method identifies and quantifies myelin 
degeneration besides providing more reliable estimates of connectivity 
estimates. The obtained results are promising. The ability to measure 
the actual myelin volume fraction for each bundle, at a global level, is 
of paramount importance, especially in neurodegenerative diseases. 
Applying this method to patient data will provide the opportunity to 
examine the effects of demyelination credibly and accurately on 
brain structure.

FIGURE 3

The line in the plot shows the predicted values of network metrics [(A) Mean strength, (B) modularity, (C) efficiency] while raw network metrics values 
are reported as gray dots. Based on the model to assess the impact of age in the global network metrics considering sex and WM volume as covariates, 
we predicted the global network metrics for age in range 20–70. We fixed sex as males and WM volume as the average value found in our sample. In 
orange are reported the predicted network metrics from the model fitted on Tractometry weighted connectomes, while in green are reported the 
network metrics computed using COMMIT. In panel (D) we reported the plot of the adjusted R2 values for each model. High R2 indicates that a lot of 
variance in the data is explained by the model. As first observation we can say that myelin-weighted network metrics peak around forty in all the 
models. On the other hand, we see a bigger R2 in case of COMMIT indicating its capacity to offer more precise estimates of diffusion-weighted 
connectivity in comparison to Tractometry. COMMIT, Convex Optimization Modeling for Microstructure Informed Tractography; INVF, intra-neurite 
volume fraction.
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In the broader context of our study, which explores the overall 
architecture of the myelin-weighted connectome, MySD outperforms 
traditional Tractometry-based approaches in detecting myelin 
network changes during normal aging. This disparity may stem from 
differences in their inherent definitions. Tractometry, for instance, 
combines microstructural maps with the reconstructed tractogram by 
sampling the streamlines at n points, with each point assigned the 
voxel-wise value derived from the underlying microstructural map. 
Subsequently, the average of these values is calculated along the 
specific streamline’s pathway. While such methods offer valuable 
macroscopic insights, they present an issue when multiple fiber 
populations interdigitate within a voxel. In such cases, the same value 
is projected to all fibers passing through that voxel, potentially 
introducing bias into the results. To address this concern, Boshkovski 
et al. proposed using the median instead of the average. This approach 
is highly recommended for two primary reasons: (i) the median is less 
influenced by outliers, and (ii) it does not assume a normal distribution 
of values along the bundle. For a comprehensive perspective, we also 
present results of Tractometry using the mean instead of the median 
for INVF in Supplementary Table S3, showing consistent outcomes. 
In contrast, COMMIT addresses this issue by deconvolving specific 
microstructural features for each fiber, allowing the recovery of 
individual streamlines’ contributions to the measured signal.

In our diffusion-based analyses, we selected the INVF map from 
SMT due to its stability in handling crossing fibers, a common 
occurrence in neuronal structures. A previous study investigating the 
effects of aging on network metrics used the ICVF map from Neurite 
Orientation Dispersion and Density (NODDI) (Buchanan et  al., 
2020). Both INVF and ICVF maps are sensitive to axonal density, and 
their values within the white matter (WM) are highly correlated 
(r = 0.87). To bolster the robustness of our study, we  conducted 
identical analyses using the ICVF map from NODDI, as presented in 
Supplementary Table S4.

One limitation of this study is the age range of the subjects 
(18–68 years), which may not capture typical myelin network changes 
(Lebel et al., 2022). While our results reveal changes during brain 
development and myelin degeneration, the full curve’s symmetry is 
unclear due to the dominance of older subjects. A broader age range 
could provide a better understanding. Additionally, we  excluded 
sex*age interaction from our model due to unequal age distribution 
between males and females.

We know from previous studies that the ratio of gray matter to 
white matter changes with aging (Westlye et al., 2010; Lebel et al., 
2022). Global network metrics are closely dependent on white matter 
volume. Smaller volumes of white matter, regardless of the cause, lead 
to (1) tracking problems for tractography which likely reconstructs 
fewer streamlines and, consequently, to (2) lower values of global 
efficiency and mean connectivity strength of the final connectomes. 
For this reason, we used white matter volume as a possible confounder 
in the analyses.

The primary aim of this study was to evaluate the effectiveness and 
robustness of the MySD method in generating myelin-weighted global 
connectomes, an application not previously explored in clinical 
settings. To accomplish this, we chose a relatively straightforward 
context, namely aging, where previous research has well-demonstrated 
the sensitivity of diffusion methods. Therefore, our specific emphasis 
on myelin in this study adds a level of detail that might otherwise 
be overlooked.

Nonetheless, we firmly believe that highlighting MySD’s sensitivity 
to changes in the myelin structure of the network could significantly 
impact the study of demyelinating pathologies. In cases where 
diffusion alone may not be sufficient to detect this phenomenon, this 
emphasis on MySD could prove crucial. Furthermore, in future 
investigations, the incorporation of longitudinal data, along with the 
examination of local changes in myelin-weighted structural 
connectivity, has the potential to substantially enhance the 
study’s impact.

To conclude, this study underscores the importance of considering 
age’s role in brain connectivity research, emphasizing its non-linear 
nature. Different age groups exhibit unique connectivity patterns, 
necessitating non-linear age models and age-specific investigations for 
accurate connectivity estimates. Proper age adjustment in analyses 
ensures more reliable and meaningful interpretations of brain 
connectivity results.

Conclusion

In this study, we showcased MySD’s robustness and sensitivity to 
myelin network changes in normal brain aging, highlighting its 
accuracy and capability to overcome Tractometry limitations. 
Applying this approach to neurodegenerative diseases could offer 
valuable insights into demyelination effects.
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