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Orientation detection is an essential function of the visual system. In our previous
works, we have proposed a new orientation detection mechanism based on
local orientation-selective neurons. We assume that there are neurons solely
responsible for orientation detection, with each neuron dedicated to detecting
a specific local orientation. The global orientation is inferred from the local
orientation information. Based on this mechanism, we propose an artificial
visual system (AVS) by utilizing a single-layer of McCulloch-Pitts neurons to
realize these local orientation-sensitive neurons and a layer of sum pooling
to realize global orientation detection neurons. We demonstrate that such a
single-layer perceptron artificial visual system (AVS) is capable of detecting
global orientation by identifying the orientation with the largest number of
activated orientation-selective neurons as the global orientation. To evaluate
the effectiveness of this single-layer perceptron AVS, we perform computer
simulations. The results show that the AVS works perfectly for global orientation
detection, aligning with the majority of physiological experiments and models.
Moreover, we compare the performance of the single-layer perceptron AVS with
that of a traditional convolutional neural network (CNN) on orientation detection
tasks. We find that the single-layer perceptron AVS outperforms CNN in various
aspects, including identification accuracy, noise resistance, computational and
learning cost, hardware implementation feasibility, and biological plausibility.
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1. Introduction

A hyper-complex neural network, consisting of approximately 10!! neurons and over
101 interconnections, facilitates the timely reception and processing of information from
the eyes, ears, nose, and skin within our brain (Todo et al., 2019). Visual stimuli account
for more than 80 percent of the information received when our eyes are open, and nearly
50 percent of nerve fibers are directly or indirectly associated with the retina (Medina and
Hanlon, 2009; Lee et al., 2020). The visual system primarily focuses on contrast, color, and
movement changes, all of which have the potential to influence human behavior (Vanston
and Strother, 2017). Therefore, studying the visual system is crucial for unraveling the
workings of the brain. Between 1950 and 1980, Canadian neurophysiologist David Hubel and
Swedish neuroscientist Torsten Wiesel conducted meticulous and scientific investigations
into the visual mechanism. Their research and experiments on cortex cells in rabbits and
monkeys led to the observation of several biological phenomena: (1) visual cortex cells
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exhibit specific responses to rectangular light spots and slits,
and (2) there are simple cortical cells in the visual cortex that
respond exclusively to stimuli of particular angles within their
receptive fields (Hubel and Wiesel, 1959, 1962, 1968; Hubel, 1982).
These neurons possess orientation selectivity, firing preferentially
in response to specific orientations while exhibiting little to no
response to others. Orientation detection constitutes a fundamental
function of the visual system, aiding us in recognizing our
surroundings and making judgments and decisions. However,
our understanding of orientation selectivity and its role in
global orientation detection for objects of various sizes, shapes,
and positions remains limited (Gazzaniga, 2000; Veeser and
Cumming, 2017). To address this issue, we presented a novel and
comprehensive mechanism elucidating global visual orientation
detection in our previous paper (Li et al., 2021). Based on this
mechanism, we introduced a single-layer perceptron Artificial
Visual System (AVS) for global orientation detection. This AVS
implements local orientation-selective neurons using a single-layer
perceptron composed of McCulloch-Pitts neurons. Each neuron
is responsible for detecting a specific orientation angle within
a two-dimensional local receptive field. The design of weights
and thresholds for the single-layer perceptron is straightforward,
drawing upon our knowledge of perceptron and local orientation-
detective neurons. The global orientation of an object can be
inferred by identifying the orientation-selective neuron with
the highest number of activations. To validate the effectiveness
of the single-layer perceptron AVS in determining the global
orientation of objects, we conducted computer simulations using
an image dataset. The results of these simulations demonstrate
that the single-layer perceptron AVS is highly effective, accurately
discerning the global orientation of objects regardless of their
size, shape, or position. These findings align with the majority
of physiological experiments and models. Moreover, to highlight
the superiority of the single-layer perceptron AVS, we compared
its performance with that of a traditional Convolutional Neural
Network (CNN) in global orientation detection tasks. Remarkably,
the single-layer perceptron AVS outperformed the CNN in
all aspects, including identification accuracy, noise resistance,
computational and learning costs, hardware implementation
feasibility, as well as biological soundness and reasonability.

2. System

2.1. Single-layer perceptron

McCulloch-Pitts artificial neuron model was proposed in the
1940s (McCulloch and Pitts, 1943). It is a simple model of biological
nerve cells. The structure of the McCulloch-Pitts model is shown
in Figure IA. In this model, the neuron receives input signals
X1, X2,..., X, from other neurons. The importance of these input
signals is usually represented by the weights of the connections
between neurons, wy, Wy,..., w,. The neuron multiplies the received
input values with the corresponding weights, sums them to get
value ) wjx;, and compares it with a threshold 6. When the sum
exceeds the threshold, the neuron fires to output y = 1; otherwise,
y = 0 (McCulloch and Pitts, 1943). When several such neurons
are combined into a system, as shown in Figure 1B, we call it a
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FIGURE 1
(A) McCulloch-Pitts neuron model; (B) a single-layer perceptron.

perceptron, or a single-layer perceptron, which consists of a single
layer of the McCulloch-Pitts neurons connected to a set of inputs
from other neurons with their own weights (Rosenblatt, 1958).

2.2. Local orientation-selective neuron

In this subsection, we use the single-layer perceptron to realize
local orientation-selective neurons. We postulate the existence
of numerous simple neurons that possess orientation detection
capabilities. Each neuron is solely responsible for detecting a
specific orientation within a small area known as the local receptive
field of the overall visual field. For the sake of simplicity, lets
consider a 3 x 2 local receptive field. Within this field, there are
four possible orientation angles: 0°, 45°, 90°, and 135°, that can
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The perceptrons for the four types of orientation-selective neurons in a 3 x 2 local receptive field. (A) 0°-selective neuron, (B) 45°-selective neuron,

be detected. By employing four McCulloch-Pitts neurons, we can
realize four distinct types of orientation-selective neurons that can
detect two-dimensional objects with orientation angles of 0°, 45°,
90°, and 135°, respectively. In the actual visual system, the primary
pathway for transmitting visual information follows the sequence:
photoreceptor — bipolar cell — ganglion cell — lateral
geniculate nucleus (LGN) — primary visual cortex (Kandel et al.,
1991). Considering a two-dimensional visual field, or the receptive
field, we assume that it can be divided into M x N regions. Each
region corresponds to the smallest visually distinguishable area.
When light falls on a region, the corresponding photoreceptor, or a
bunch of photoreceptors, converts the light signals into electrical
signals, which are then transmitted to bipolar cells. To simplify
the neural computation, we focus solely on the ON-response
mechanism. Consequently, if a photoreceptor receives light, its
corresponding ON-response bipolar cell outputs 1; otherwise, it
outputs 0. For the sake of simplicity, we directly connect the
photoreceptors to the orientation-selective ganglion neurons. Each
type of orientation-selective ganglion neuron accepts signals from
the corresponding bipolar cell or photoreceptor, based on its
specific orientation selectivity. By considering x5 as the reference
point, we can establish the corresponding connections for the four
types of orientation-selective neurons within a local receptive field
consisting of six (3 x 2) regions, as depicted in Figure 2.
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By examining Figure 2, we can determine that the size of the
local receptive field is set as 3 x 2, and the orientation-selective
neurons respond to two inputs. Within the 3 x 2 local receptive
field, the input signals are labeled from x; to xg, with x5 serving
as the reference point. Consequently, the 0°-selective neuron only
responds to inputs x5 and xg, the 45°-selective neuron exclusively
responds to x3 and xs, the 90°-selective neuron solely responds to
X7 and x5, and the 135°-selective neuron responds solely to x; and
xs5. As the photoreceptors output 1 when they receive light, and 0
otherwise, and the weights (from w; to ws) are all set to 1, a neuron
will only fire if both of its input signals from the photoreceptors are
1 simultaneously. Thus, we can set the threshold as 1.5 and adopt a
step function as the activation function f:

. 1, (wix; + WjXxj = 1.5) )

B 0, (wix; + wjxj < 1.5)

where x; and x; represent the two effective inputs, w; and w; are
their corresponding weights. The effective input information varies
for different orientation-selective neurons. As a result, we connect
each corresponding region to four distinct orientation-selective
neurons. Figure 3 illustrates an example of the connections between
the photoreceptors and the four different orientation-selective
neurons within a local receptive field. In Figure 3A, for a 3 x 2 local
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receptive field, only one region, the reference region, is connected
to all orientation-selective neurons. The other four photoreceptors
are connected to their corresponding orientation-selective neurons.
Each orientation-selective neuron focuses on specific outputs from
the photoreceptors and accepts the corresponding orientation
information. If we represent the neural connections within a local
receptive field in the form of a perceptron, the perceptron AVS
can be visualized as shown in Figure 3B. It is worth noting that by
considering only four orientations, the system takes advantage of
the symmetrical relationships:

0° and 180°: These orientations are mirror images of each other.
Any pattern or object rotated by 180° will look identical to the
original pattern.

45° and 225°: Similarly, these orientations are mirror images of
each other. Any pattern or object rotated by 225° will look identical
to the original pattern.

90° and 270°: These orientations are perpendicular to each
other. A pattern or object rotated by 90° becomes the same as the
original pattern.

135° and 315°: These orientations are also perpendicular and
mirror images of each other. A pattern or object rotated by 315°
will look identical to the original pattern.

By considering only one orientation from each symmetrical
pair, the system avoids redundancy and reduces computational
complexity while still being able to capture the essential
information needed for orientation detection.

2.3. Global orientation detection system

In this subsection, we describe the overall process of global
orientation detection using the single-layer perceptron AVS.
The system for two-dimensional global orientation detection
is presented in Figure 4. Let’s consider an object with a 135°
orientation as an example. In Figure 4, the positions of the
corresponding photoreceptors that are activated by this object are
highlighted. The photoreceptors that receive light are shown in
yellow, while the others are colored gray. This image, divided
into 5x4 regions, can be further divided into 9 independent
local receptive fields of size 3 x 2. Each local receptive field’s
photoreceptors are then connected to four different orientation-
selective neurons. Therefore, there are a total of 36 orientation-
selective neurons connected to the photoreceptors for this 5 x
4 image. Figure4 illustrates three local receptive fields and
their corresponding orientation-selective neurons. The three local
regions are enclosed in colored frames. The activated orientation-
selective neurons are depicted in red, while the inactivated ones are
shown in blue. During an orientation detection process, the inputs
in each local receptive field are transmitted to the four orientation-
selective neurons. The local orientation information is computed
independently by the four types of orientation-selective neurons.

The corresponding orientation-selective neurons are activated
based on the effective local orientation information. For example,
in the first local receptive field, only a 0°-selective neuron and
a 90°-selective neuron are activated by the inputs. In the last
local receptive field, no neurons are activated. By arranging the
orientation-selective neurons according to their corresponding
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FIGURE 3
The neural connections in a local receptive field, (A) the
connections between photoreceptors and orientation-selective
neurons, (B) the perceptron form of the connections between
photoreceptors and orientation-selective neurons.

positions, the arrangements are displayed in the lower part of
Figure 5. This arrangement allows us to easily determine the
positions of activated neurons and the number of different types of
activated neurons. The activations of the four types of orientation-
selective neurons are shown in the bar chart. Since the global
orientation can be determined based on the number of most
activated orientation-selective neurons, the type of neurons with
the highest activation count corresponds to the global orientation
of the object. From the bar chart, we can observe that five 135°-
selective neurons are activated five times, which is the highest
activation count. Therefore, the detection result is that this object
has a 135° orientation. The complete system for two-dimensional
global orientation detection based on the single-layer perceptron
is depicted in Figure 5. It consists of three layers: the photoreceptor
layer, the local orientation-selective neuron layer, and the sum layer.
The connections between the photoreceptor layer and the local
orientation-selective neuron layer are not fully connected. Each
local orientation-selective neuron accepts specific inputs based on
the distribution characteristics of different input groups in the local
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FIGURE 4

The mechanism of the single layer perceptron AVS for two-dimensional global orientation detection.
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receptive field. Neurons are defined as four different orientation-
selective neurons. Finally, the outputs from the same type of local
orientation-selective neurons are combined in a summer, where
they are simply summed. This step calculates the sum of effective
inputs, which corresponds to counting the number of activated
neurons of that type. The four final output results represent the
counts of activated neurons for the four types. In this system,
effective connections and active neurons are highlighted in red.
The output value of an active neuron is 1, while that of an inactive
neuron is 0. The four results are consistent with the results shown
in Figure 4.

3. Simulation results

To validate the effectiveness of the single-layer perceptron
AVS for global orientation detection, several computer experiments
were conducted using a dataset consisting of 49,694 binary images.
Each image was 1024 pixels in size (32 x 32) and contained
various numbers of light spots arranged into regular objects with
central or axial symmetry at specific orientation angles. For each

Frontiersin Neuroscience

image, we applied the four different orientation-selective neurons
to each local receptive field for local orientation detection. The
activations of each type of neuron were then used to infer the global
orientation. To account for edge information and the 3 x 2 size
of each local receptive field, the 32 x 32 images were padded with
zeros on the boundary (right, left, and top), resulting in image sizes
of 34 x 33. This allowed for the division of each image into 1,024
(32 x 32) local receptive fields. Consequently, a total of 4,096 (4
x 1024) orientation-selective neurons were involved in orientation
detection. In the first experiment, a 1 x 10 line at a 135° orientation
was placed in the images (Figure 6A). The activations of the four
types of orientation-selective neurons were recorded, including the
overall activations (Figure 6B) and individual activations of the 0°-
selective, 45°-selective, 90°-selective, and 135°-selective neurons
(Figure 6C). As shown in Figures 6B, C, only the 135° orientation-
selective neuron was activated, while the others remained inactive.
Therefore, the orientation-selective neuron (135°) with the highest
activation count could be used to determine the global orientation
of the line. By varying the lengths, angles, and positions of the line,
it was consistently observed that only the 135° orientation-selective
neuron was activated, regardless of these variations.
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FIGURE 5
The single-layer perceptron AVS for two-dimensional global orientation detection.

In the next experiment, a 135° 4 x 10 pixel bar was used
as the stimulus (Figure 7A). The activations of the four types
of orientation-selective neurons were recorded, including the
overall activations (Figure 7B) and individual activations of the 0°-
selective, 45°-selective, 90°-selective, and 135°-selective neurons
(Figure 7C). Interestingly, it was observed that 28 0°-selective
neurons, 20 45°-selective neurons, 29 90°-selective neurons, and
36 135°-selective neurons were activated by the 135° 4 x 10
pixel bar. This allowed for the correct determination that the
bar was placed at a 135° orientation. Furthermore, by varying
the lengths, widths, angles, and positions of the bar, it was
consistently observed that the 135°-selective neurons had the
highest activation count, indicating the correct recognition of the
bar’s orientation. These experiments confirmed key experimental
observations from previous studies and provided explanations
for those observations (Hubel and Wiesel, 1959, 1962, 1968;
Kondo et al, 2016). They could prompt neuroanatomists and
neurophysiologists to reexamine their findings or reconsider their
experimental designs.

Additionally, the performance of the single-layer perceptron
AVS for global orientation detection was evaluated using a larger
image dataset, where objects of various sizes (2 to 48 pixels) were
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placed at different positions and angles. Each experiment was
repeated 30 times, and the average results are presented in Table 1.
The results demonstrate that regardless of the object’s size and
position, its orientation angle can be accurately recognized by the
single-layer perceptron AVS.

To compare the global orientation detection performance
of the single-layer perceptron AVS with other methods, CNNs
were selected due to their widespread application and success in
object detection, segmentation, and recognition in images. Figure 8
illustrates the architectures of the single-layer perceptron AVS
(a) and the CNN (b) used in the experiments. The CNN used
in the experiments follows a typical architecture for handwritten
character recognition (Saito, 2018). It consists of 7 layers:

1. Convolutional layer: It employs 30 filters of size 3 x 3 to generate
30 feature maps of size 32 x 32.

2. Pooling layer: It performs 2 x 2 maximum pooling on the feature
maps.

3. Affin layer: This layer includes a fully connected network that
maps the inputs from the previous layer (8,192 inputs from the
30 x 16 x 16 feature maps) to a hidden layer of size 100, and then
to an output layer of size.

06 frontiersin.org
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FIGURE 6
Simulated responses of the local orientation detective neurons to a line stimulus of 1 x 10 at a 135° orientation (A), overall activations (B) and
individual activations of 0°-selective neurons, 45°-selective neurons, 90°-selective neurons, and 135°-selective neurons (C).

4. The activation function of nodes in Affin layer is standard
sigmoid function. The learning was performed on both
convolution layer and Affin layer.

Since the input images are 32 x 32 pixels, the CNN has a total
of 1024 inputs. The convolutional layer produces 30 feature maps
of size 32 x 32. After applying 2 x 2 maximum pooling, the inputs
to the fully connected network are reduced to 8,192 (30 x 16 x 16).
The fully connected network then maps these inputs to the hidden
layer of size 100 and finally to the output layer of size 4.

On the other hand, the single-layer perceptron AVS has only

two layers:

1. Perceptron layer: It consists of four types of orientation-selective
neurons, with a total of 4096 (4 x 32 x 32) local orientation

Frontiersin Neuroscience

detection neurons. This layer generates four sets of 32 x 32 local
orientation feature maps.

2. Summing pooling layer: This layer sums the four sets of local
orientation feature maps to produce four output values.

In comparison to the CNN with 820,004 parameters, the single-
layer perceptron AVS only has 12 parameters (4 x 3) for the
local orientation detection neurons. This significant reduction in
parameters results in substantial savings in computational cost.

Therefore, the single-layer perceptron AVS offers a simpler
architecture with a smaller number of parameters, making
it computationally efficient compared to the CNN. In the
experiments, the CNN was trained for global orientation detection
using a dataset of 15,000 samples, while 5,000 samples were used for
testing. The objects in the dataset varied in size from 2 pixels to 256
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FIGURE 7

Simulated responses of the local orientation detective neurons to a bar stimulus of 4 x 10 at a 135° orientation (A), overall activations (B), and
individual activations of 0°-selective neurons, 45°-selective neurons, 90°-selective neurons, and 135°-selective neurons (C).
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pixels, had different shapes, and were randomly placed. The CNN
was trained using back-propagation with the Adam optimizer.
Figure 9 displays the learning results of the CNN, showing the loss
and accuracy during the training process. From the learning curves,
it can be observed that the CNN successfully learned the task
of orientation detection, achieving a high identification accuracy
0f 99.997%. This performance indicates that the CNN performed
also well in comparison to the single-layer perceptron AVS, which
achieved 100% accuracy without the need for training.

The single-layer perceptron AVS possesses several advantages
over CNN in various aspects:

Parameter efficiency: The single-layer perceptron AVS requires
fewer parameters compared to CNN. While CNNs become deeper
with millions of parameters that need to be calculated and
optimized, the single-layer perceptron AVS remains compact.

Frontiersin Neuroscience

Prior knowledge utilization: The single-layer perceptron AVS
can leverage prior knowledge about the system and task, allowing
for learning from good initial values. In contrast, CNNs typically
start from random initial values and lack the ability to incorporate
prior knowledge directly.

Convergence guarantee: The perceptron is specifically designed
to solve linearly separable binary classification problems. The
perceptron algorithm iteratively updates its weights to find a
linear decision boundary (hyperplane) that can classify linearly
separable binary classification problems correctly. The fact that
the local orientation detection problem can be solved by the
perceptron (Figure 2) means that the local orientation detection
problems are linearly separable and the data points representing
different local orientations can be separated by a hyperplane in
the feature space. Therefore, the single-layer perceptron AVS for
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TABLE 1 Accuracy analysis of orientation detective system.

Object type Orientation angle
45°  90° 135°
2 pixels No. of samples 992 961 992 961
Correct numbers 992 961 992 961
Accuracy 100% 100% 100% 100%
3 pixels No. of samples 960 960 960 960
Correct numbers 960 960 960 960
Accuracy 100% 100% 100% 100%
4 pixels No. of samples 928 841 928 841
Correct numbers 928 841 928 841
Accuracy 100% 100% 100% 100%
8 pixels No. of samples 1,699 2,249 1,699 2,249
Correct numbers 1,699 2,249 1,699 2,249
Accuracy 100% 100% 100% 100%
12 pixels No. of samples 2,379 3,411 2,379 3,411
Correct numbers 2,379 3,411 2,379 3,411
Accuracy 100% 100% 100% 100%
16 pixels No. of samples 1,319 1,489 1,319 1,489
Correct numbers 1,319 1,489 1,319 1,489
Accuracy 100% 100% 100% 100%
32 pixels No. of samples 1,284 1,645 1,284 1,645
Correct numbers 1,284 1,645 1,284 1,645
Accuracy 100% 100% 100% 100%
>48 pixels No. of samples 2,515 1,275 2,515 1,275
Correct numbers 2,515 1,275 2,515 1,275
Accuracy 100% 100% 100% 100%

orientation detection is guaranteed to converge within an upper
bound on the number of iterations. CNNs, on the other hand, often
require significant learning time and are prone to getting stuck in
local minima as it is shown in Table 2.

Interpretability and explainability: The learning process
of the single-layer perceptron AVS is more transparent and
understandable compared to CNN. The results and predictions
of the single-layer perceptron AVS are traceable and explainable,
whereas CNN learning is often considered a black box with
non-transparent results.

The
implementation of the single-layer perceptron AVS is simpler

Simple  hardware  implementation: hardware
and more efficient compared to CNN, as it requires only two
layers instead of the hundreds of layers typically found in CNNs.
The single-layer perceptron AVS stays true to the concept of
locally-sensitive, orientation-selective neurons, while CNNs often
overlook this essential concept.

Biological plausibility: The single-layer perceptron AVS aligns
closely with the visual system concepts proposed by Hubel
and Wiesel, making it more biologically sound for orientation
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detection and other visual tasks. In contrast, CNNs, despite their
similarities in connecting units to local receptive fields, do not
fully incorporate the concept of orientation-selective neurons and
cannot be regarded as true “neural” networks.

Adding noise to test the noise resistance of CNN and the
single-layer perceptron AVS is a common practice in evaluating
the robustness of these systems to noisy inputs. Noise resistance
is an important characteristic for any image processing or pattern
recognition system as it determines how well the system can handle
inputs with random variations. In our experiments, for each image
in the testing dataset, noise is generated by randomly selecting
a certain percentage of pixels. The percentage of pixels selected
ranges from 5 to 30%. For each selected pixel, if it was originally
0, it is changed to 1, and if it was originally 1, it is changed to 0.
The images with noise were fed to both systems, and their noise
resistance was compared.

Table 3 summarizes the noise resistance results. It can be seen
that when subjected to a 5% noise level, CNN’s identification
accuracy dropped to 90%, while the single-layer perceptron AVS
dropped to 96%. As the noise level increased to 30%, CNN’s
identification accuracy dramatically decreased to 35%, whereas the
single-layer perceptron system maintained a 43% identification
accuracy, demonstrating superior noise resistance. In summary,
the single-layer perceptron AVS exhibits advantages in parameter
efficiency, utilization of prior knowledge, convergence guarantee,
interpretability, and hardware implementation efficiency compared
to CNN. It also shows higher noise resistance in the presence of
noisy inputs.

4. Conclusion and discussion

This paper proposed a novel orientation detection mechanism-
based single-layer perceptron AVS. By introducing the concept of
local receptive fields and implementing local orientation detective
neurons with a single-layer perceptron, the system achieved
global orientation detection by determining the most activated
orientation detective neuron. The effectiveness of the system was
demonstrated through extensive computer experiments, showing
excellent recognition accuracy regardless of object size, location,
and orientation. The mechanism and the mechanism-based AVS
exhibit desirable properties that can be applied to various artificial
visual perception systems and are reminiscent of the human
visual system. They can serve as a framework for understanding
fundamental phenomena in visual perception, such as direction
perception, movement direction perception, movement speed
perception, and binocular vision perception. Additionally, they
provide a functional framework for visual computing in the
primary visual cortex, shedding light on how visual input is
processed and organized across different stages of the visual system.

Furthermore, the mechanism and the mechanism-based AVS
offer insights into encoding sensory information in cortical
circuits, which can extend to other sensor systems like smell,
taste, and touch. Although the mechanism and AVS are based
on simplified models and overlook certain detailed functions
of the visual system and the brain, they provide a quantitative
explanation for many known neurobiological visual phenomena
and experiments. They may also prompt neuroanatomists and
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FIGURE 8
The architecture of the single-layer perceptron AVS (A) and CNN (B) used in experiments.
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FIGURE 9
Learning results of loss (A) and accuracy (B) of the CNN.

TABLE 2 Comparison between CNN and the single-layer perceptron AVS.

Parameters Learning cost Reasoning Bio-soundness Noise resistance
CNN >7 820.004 High Black Box Low Low
AVS 2 12 No Reasonable High High ‘

TABLE 3 Accuracy of CNN and AVS.

Noise
CNN 99.887% 90.783% 74.441% 59.108% 47.547% 39.866% 35.343%
AVS 100% 96.571% 85.562% 71.490% 59.716% 49.924% 43.452% ‘

neurophysiologists to reevaluate their observations or conduct new
experiments to uncover corresponding structures and functions.
Conversely, advancements in biological sciences can contribute
to further modifications of the mechanism and the mechanism-
based AVS. The paper also compared the performance of the
single-layer perceptron AVS with traditional CNNs for orientation
detection tasks, demonstrating the superiority of the single-layer
perceptron AVS in terms of recognition accuracy, noise immunity,
computation and learning costs, hardware implementation,
reasoning, bio-soundness, and other aspects. Overall, the proposed
mechanism and the mechanism-based AVS offer a promising
approach to orientation detection and lay the foundation for future
research and advancements in the field of visual perception. But,
we must point out that the proposed system lacks generality, which
means it is limited in its application to only visual perceptions,
such as orientation perception, movement direction perception,
movement speed perception, binocular vision perception and other
sensor systems like smell, taste, and touch.
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