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Conventional histology of the brain remains the gold standard in the analysis
of animal models. In most biological studies, standard protocols usually involve
producing a limited number of histological slices to be analyzed. These slices are
often selected into a specific anatomical region of interest or around a specific
pathological lesion. Due to the lack of automated solutions to analyze such single
slices, neurobiologists perform the segmentation of anatomical regions manually
most of the time. Because the task is long, tedious, and operator-dependent, we
propose an automated atlas segmentation method called giRA�, which combines
rigid and a�ne registrations and is suitable for conventional histological protocols
involving any number of single slices from a given mouse brain. In particular,
the method has been tested on several routine experimental protocols involving
di�erent anatomical regions of di�erent sizes and for several brains. For a given
set of single slices, the method can automatically identify the corresponding
slices in the mouse Allen atlas template with good accuracy and segmentations
comparable to those of an expert. This versatile and generic method allows
the segmentation of any single slice without additional anatomical context in
about 1 min. Basically, our proposed giRA� method is an easy-to-use, rapid, and
automated atlas segmentation tool compliant with a wide variety of standard
histological protocols.
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1 Introduction

In the last few decades, conventional histology has benefited from the expansion of light

microscopy (Wilt et al., 2009; Ghaznavi et al., 2013; Milligan et al., 2019), in conjunction

with the development of a wide range of biological staining techniques (Kuan et al., 2015;

Kim et al., 2017; Erö et al., 2018; Tward et al., 2020; Wang et al., 2020). Cutting and

acquisition protocols have become more and more sophisticated over time, providing a

broad variety of procedures. This made it possible to observe the brain in an unprecedented

way (Vandenberghe et al., 2016; Erö et al., 2018; Milligan et al., 2019; Tward et al., 2020).

However, the resulting data remain massive and difficult to analyze for most of the labs. This

is the case for the mouse brain in preclinical studies (Milligan et al., 2019).

Automated tools for analyzing these tissues, allowing the detection of biological objects

and identification of the anatomical regions of interest (ROIs) to which they belong,

are essential. Object segmentation has seen a tremendous upturn with the expansion of

deep neural networks (Ronneberger et al., 2015; Falk et al., 2019). However, accurately

identifying ROIs is still challenging and usually requires a brain atlas or expert knowledge

of neuroanatomy.
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As a result, many histological protocols are focused on specific

anatomical regions, lesion areas, or pathological biomarkers, only

on several well-chosen slices of interest within the brain (Lebenberg

et al., 2010; Mesejo et al., 2012; Kim et al., 2015, 2017; Niedworok

et al., 2016; Pagani et al., 2016; Renier et al., 2016; Ye et al., 2016;

Dudeffant et al., 2017; Stolp et al., 2018; Zeng, 2018; Chen et al.,

2019; Eastwood et al., 2019; Pallast et al., 2019; Bayraktar et al., 2020;

Hérard et al., 2020; Sen et al., 2020; Song et al., 2020; Lam et al.,

2022; Yee et al., 2022). It is prone to many drawbacks: this tedious

work often yields non-reproducible operator-dependant results,

suffers from inter- and intra-individual variability, and requires

special attention in the statistical analysis design.

Digital mouse brain atlases aimed both to establish a rigorous,

precise, and common reference of delineation for anatomical

ROIs and, more importantly, to use them as a segmentation tool

(Dauguet et al., 2007; Lein et al., 2007; Lau et al., 2008; Dubois et al.,

2010; Johnson et al., 2010; Papp et al., 2014; Kuan et al., 2015; Tward

et al., 2020; Wang et al., 2020).

A digital atlas being tree-dimensional (3D), the experimental

volume needs to be reconstructed so that their respective

dimensionality matches. But it is possible to reconstruct the

organ in 3D using registration techniques when all or enough

serial slices are cut and digitized (Ourselin et al., 2001; Modat

et al., 2014; Agarwal et al., 2016; Niedworok et al., 2016; Fürth

et al., 2018; Eastwood et al., 2019). This is the main issue to

tackle, which cannot be achieved in most of the studies since

protocols are not designed to yield 3D histology. One solution

to overcome the lack of histological material is to use blockface

photography (Toga et al., 1994) as a whole-brain template to

achieve 3D reconstruction of several histological modalities of

the same sample (Dauguet et al., 2007; Dubois et al., 2010;

Vandenberghe et al., 2016). Indeed, 3D histology protocols are

time-consuming, expensive, and neurobiologists often acquire only

a limited number of slices. Therefore, the delineation of anatomical

regions is mostly performed manually on the experimental data

and/or the identification of their corresponding atlas slice is based

on prior anatomical knowledge (Lebenberg et al., 2010; Ye et al.,

2016; Iglesias et al., 2018; Pichat et al., 2018; Balakrishnan et al.,

2019; Chen et al., 2019; Chon et al., 2019; Henderson et al., 2019;

Pallast et al., 2019;Wu et al., 2019; Yates et al., 2019; Bayraktar et al.,

2020; Hérard et al., 2020; Lam et al., 2022; Rodarie et al., 2022).

Furthermore, with the expansion of artificial intelligence

techniques used to automatically segment brain slices, the need for

reliable annotated database creation has dramatically increased in

the last 5 years (de Vos et al., 2017, 2019; Krebs et al., 2017; Li

and Fan, 2017; Rohé et al., 2017; Sokooti et al., 2017; Yang et al.,

2017; Balakrishnan et al., 2018, 2019; Krepl et al., 2021; Sadeghi

et al., 2022; Carey et al., 2023). Hence, automated, rapid, and

adaptable atlas segmentation tools are still lacking but mandatory,

for instance, when dealing with the segmentation of so-called single

brain slices (devoid of 3D reference) needing to locate the 2D plane

of each slice within a 3D atlas template volume. As the mouse

brain has an elongated shape, most of the studies observe mouse

brains in the coronal incidence (Bohland et al., 2010; Berlanga

et al., 2011; Renier et al., 2016; Vandenberghe et al., 2016; Stæger

et al., 2020), and we therefore focused on this incidence. Three

parameters enable the exact location of a single slice plane within

the atlas volume: (1) the z-position of the slice along the rostro-

caudal (antero-posterior, AP) axis orthogonal to the coronal plane;

(2) the tilting angle ϕ around the dorso-ventral (infero-superior,

IS) axis; and (3) the tilting angle β around the transversal (left-

right, LR) axis (Figure 1). Some tools, such as cutting matrices, can

be used to obtain a quasi-perfect coronal cutting incidence, i.e.,

with ϕ and β tilting angles close to zero and therefore negligible,

but usually, ϕ and β tilting angles lead to discrepancies when

comparing “real life” slices and atlas ones.

Some studies focused on identifying possible tilting angles ϕ

and β to refine 2D-plan location within the 3D atlas space (Xiong

et al., 2018), while others proposed automated methods or user-

friendly softwares to handle 2D slices within a 3D space toward

z-position-oriented estimation (Puchades et al., 2019; Tappan et al.,

2019). These strategies present a more or less accurate estimation of

both tilting angles and are not fully automated since they all include

manual processing to estimate the z-position. Basically, manual

processing limits the use of such methods on a large scale for the

study of mouse cohorts, in particular. More recently, a feature-

based method called AMaSiNe was proposed to automatically

estimate z-position, ϕ, and β (Song et al., 2020). Authors evaluate

them with precision (< 100 µm), and segmentation results

have been validated on two specific small regions only (primary

visual area and dorsal lateral geniculate complex). However, the

method is non-reproducible for the analysis of a single slice. In

addition, the method is only robust from a minimum of three

slices. Finally, a completely different approach has been proposed,

using deep neural networks (Sadeghi et al., 2022; Carey et al.,

2023). These methods require a large number of slices to train

the network and rely on manual ground truth definition. Such

estimates are prone to inter- and intra-individual error; their result

is subjective and usually performed only on a relatively small

part of the dataset. Moreover, the large variety of histological

staining, along with the different imaging modalities, makes it

very difficult to build up an exhaustive database to train a fairly

generic neural network. Most of the existing methods are either

very complex and not user-friendly (codes without interface)

to be implemented by neurobiologists or require knowledge in

neuroanatomy to be used appropriately, both greatly reducing their

scope of application.

The method we propose is intended to be generic enough to

be used by anyone and benefits from a user-friendly interface.

The fully automatic mode we propose gives reliable results, and

the user can still adjust parameters. We focused on the estimation

of the z-position of single coronal slices. Our automated method

is reproducible and can align and segment any number of single

slices within a digital 3D atlas. Moreover, we developed a dedicated

multi-slices extension to meet ROI-driven histological protocols,

resulting in a set of slices from the same brain. Our method is

based on a linear registration algorithm as well as an independent

and multimodal similarity criterion. The Block Matching (BM)

algorithm (Ourselin et al., 2001) was chosen as a robust strategy

to register data from different modalities. This method was later

included in the NiftyReg library (Modat et al., 2014) and is

still well used in many applications (Niedworok et al., 2016;

Iglesias et al., 2018; Balakrishnan et al., 2019; Borovec et al., 2020;

Mancini et al., 2020). Normalized Mutual Information (NMI)
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FIGURE 1

The three parameters used to exactly evaluate the 2D location of a coronal mouse brain slice within a template from an atlas: (A) the z-position along
the AP axis, (B) the possible tilting angle ϕ around the IS axis, and (C) the possible tilting angle β around the LR axis.

(Studholme et al., 1998) was chosen as a robust similarity metric

adapted to multimodality. This metric has proven its efficiency

in many biomedical image processing applications (Jefferis et al.,

2007; Geha et al., 2008; Dorocic et al., 2014; Costa et al., 2016).

The idea of the method is to explore registrations between the

experimental single slice and the ones from the atlas template,

with increasing degrees of freedom. The NMI criterion is used to

propose a generic evaluation framework of the relative similarity

between slices after each step of registration. Basically, the method

combines similarity information coming from Rigid and Aff ine

registration, which explains the acronym we defined for this

method: giRAff. We chose to refer to the Allen mouse Brain

Atlas (ABA), a digital atlas widely used in neurobiology (Lein

et al., 2007; Lau et al., 2008; Kuan et al., 2015). Also, we

focused on histological slices covering the cortex, excluding the

main olfactory bulb and the cerebellum. Most of the biological

samples come from healthy subjects, but we also present some

preliminary results on a pathological subject (Alzheimer’s disease

mouse model).

In addition, high-performance computing strategies were

used to reach our goal of segmenting a large number of

histological slices. Indeed, as registrations have a relatively high

computational cost, calculations were distributed on hundreds of

CPU cores through the dedicated tool SomaWorkflow (Laguitton

et al., 2011). Finally, to make the method easy-to-use, it

was implemented within the user-friendly open-source software

interface BrainVISA (Cointepas et al., 2001; Lebenberg et al.,

2010).

2 Materials and methods

2.1 Materials

2.1.1 Digital mouse brain atlas
In this study, we used the template and atlas from the

Allen mouse Brain Atlas (ABA) (© 2015 Allen Institute

for Brain Science. Allen Brain Atlas API. Available from:

brain-map.org/api/index.html). It is composed of two perfectly

aligned datasets: a template that represents the average anatomy

of the mouse brain and labels that represent the theoretical

delimitation of anatomical regions delineated by an expert

on the template data. This template was built as an average

autofluorescence of 1,675 serial two-photon tomography C57Bl/6J

mouse brains, for which we considered each coronal slice Ta ǫ B

independently. B is the ensemble of slices describing the template

volume considered a succession of independent slices in a given

incidence (here coronal). The slice thickness is et = 100 µm and

the in-plane resolution is 10 × 10 µm2. In this study, we aimed to

register 2D template images onto experimental histological slices.

The purpose is to identify in the single slice of interest all the regions

defined in the ABA reference corresponding slice.

2.1.2 Histological dataset
In this study, we aim to segment single 2D mouse brain

coronal slices Ir , digitized from two different and independent

histological modalities (see Supplementary material S0 for

detailed protocols).

The first modality (so-called autofluorescence) is the

autofluorescence of six clarified half mouse brains (M1-M6)

imaged using light sheet fluorescence microscopy (Renier

et al., 2016) that are considered as a succession of 2D coronal

slices Ir devoid of cutting artifacts by nature. Those data were

initially acquired with a resolution of 4 × 4 × 3 µm3 and

resampled to 25 × 25 × 100 µm3 to generate a standard

histological dataset.

The second modality (so-called cresyl violet) is cresyl violet-

based Nissl staining of seven mouse whole brains produced

in our laboratory (Vandenberghe et al., 2016) cut in the

coronal incidence (Ir) using a microtome and digitized with

a flatbed scanner. This second dataset includes six C57Bl/6J

wild-type mouse brains (M7-M12) and one APP/PS1dE9

amyloid mouse brain (M13), a transgenic mouse model of

Alzheimer’s disease (Dudeffant et al., 2017). The slice thickness

is er = 20 µm (one every four slices) and the in-plane resolution

is 25 × 25 µm2. Regarding the cutting protocol, no specific

instructions were given to prevent tilting angles. The cresyl

violet data arose from our laboratory routine protocols in

conventional histology.
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2.2 Methods

2.2.1 Preprocessing
The template slices were first resampled in 2D to make

the pixel size identical to the experimental data. Thus, the

same number of pixels were used in the registration process

by BM.

All images were resampled at 25 × 25 µm2 for registration.

This resampling was chosen as a compromise between a pixel size

small enough to apply the registration in a reasonable time and

large enough to preserve sufficient details in the image for the

registration algorithm. In such a conventional histology study, data

are commonly resampled at an in-plane resolution of 25× 25 µm2

(Renier et al., 2016) or 50× 50 µm2 (Song et al., 2020).

The template slices were also manually centered to correspond

to the experimental images. This gave a good initialization,

minimizing the amplitude of the displacements induced by the

registration process and maximizing the tissue overlap at an

equivalent field of view.

2.2.2 The giRA� method for one single slice
The giRAff method estimates the z-position of a single mouse

brain slice within an atlas volume at a given incidence and

considers zero or negligible tilting angles. This estimated z-position

is associated with a transformation resulting from the registration

between the corresponding template slice at the z-position and

the experimental slice. The estimation of the z-position is given

by the optimum of a similarity criterion estimated between the

experimental slice considered and a set of registered slices from

the template. The final result is the atlas segmentation of the single

experimental slice considered through the registered and identified

corresponding label slice.

The method is based on the atlas from the ABA and the linear

registration method by Block Matching (BM) based on the Crossed

Correlation (CC) similarity metric with the default parameters

given by Ourselin et al. (2001), designed for such a histological

dataset. NormalizedMutual Information (NMI) is the independent

metric that quantifies the similarity between the registered

template slices and the experimental single slice considered

in pairs.

Given an incidence (here coronal), consider Ir an experimental

single slice to be segmented by atlas and Ta a slice from an

ensemble B of slices describing the template volume considered

as a succession of independent slices, such as {Ta ǫ B}. Let La
be a slice from an ensemble A of slices describing the labels

considered as a succession of independent slices, such as {La ǫ

A}, A and B being in the same geometry and perfectly aligned.

Let N be the number of considered template slices in a given

incidence (along the AP, IS, or LR axis), a ǫ N
∗, going from

1 to N, the considered template slice number. Each template

slice (from B) has its corresponding slice containing the labels

(from A). Assume z = â, the estimated position of the slice

Ir within the template, i.e., the corresponding slice containing

the labels. We chose to register template images (test) onto the

experimental data (reference) to preserve the native geometry of

the single slice (experimental) given as input by a user. Hence,

labels will be mapped in the end onto the single slice to match its

initial configuration.

The exploratory process for each image Ta ǫ B is carried out in

three steps (Figure 2), with RIG and AFF representing the rigid and

affine transformation space, respectively:

(1) Rigid registration using BM (transformation θ̂RIG) between Ir
(reference) and Ta (test) from B, followed by an NMI similarity

calculation SRIG between the registered image Ta · θ̂RIG and Ir ,

SRIG(Ir ,Ta; θ̂RIG) = NMI(Ir ,Ta ◦ θ̂RIG) (1)

with θ̂RIG = argmax
θRIG∈RIG

(
CC(Ir ,Ta ◦ θRIG)

)

(2) Affine registration using BM (transformation θ̂AFF) between Ir
(reference) and Ta · θ̂RIG (test) registered in rigid (initialization),

followed by NMI similarity calculation SAFF between the

registered image Ta · θ̂RIG · θ̂AFF and Ir ,

SAFF(Ir ,Ta; θ̂AFF) = NMI(Ir ,Ta ◦ θ̂RIG ◦ θ̂AFF) (2)

with θ̂AFF = argmax
θAFF∈AFF

(
CC(Ir ,Ta ◦ θRIG ◦ θAFF)

)

(3) Calculation of the weighted average Sw from the two similarity

values SRIG and SAFF:

Sw(Ir ,Ta, θ̂RIG, θ̂AFF) = (1− w) SRIG(Ir ,Ta; θ̂RIG)

+w SAFF (Ir ,Ta; θ̂RIG, θ̂AFF) (3)

with 0 ≤ w ≤ 1 the rigid-affine weighting.

From the weighted average Sw calculated for each slice Ta from

B, a search of the maximum of similarity is performed to determine

the slice number z from B,maximizing this similarity criterion from

the N template slices:

z(Ir ,B) = argmax
Ta∈B

(Sw(Ir ,Ta, θ̂RIG, θ̂AFF)) (4)

Thus, the result of the giRAff method can be summarized

as follows:

giRAff(Ir ,B) = (z, θ̂RIG, θ̂AFF) (5)

The rigid and affine transformations θ̂RIG and θ̂AFF

estimated by BM are successively applied at the slice

Lâ from the atlas at the position â = z to superimpose

the registered image containing the labels L̂â on Ir , the

experimental image.

L̂â(z, θ̂RIG , θ̂AFF) = Lz ◦ θ̂RIG ◦ θ̂AFF (6)

The transformation matrices θ̂RIG and θ̂AFF are applied to

the slice Lâ with the nearest neighbor interpolation to preserve

the initial values of the labels. The experimental single slice

Ir is then automatically segmented by the ABA. Quantitative

region-based analysis can then be carried out on it thanks to

the method.
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FIGURE 2

Atlas segmentation process of a single brain slice Ir by the giRA� method using template slices Ta ǫ B, theoretical example of NMI curve plots with
SRIG (green), SAFF (red) and Sw (yellow), z the template slice number corresponding to a slice Ir estimated by the giRA� method, θ̂RIG the rigid
transformation, θ̂AFF the a�ne transformation, B the ensemble of template slices, and La ǫ A the ensemble of label slices matching the template ones.

2.2.3 The giRA�m extension for a multi-slices
case
2.2.3.1 Relative scaling factor between brain samples

Two mouse brains are often considered to be roughly the

same size, but this is not the case in practice. Two factors

influence the size of the organ, in particular: inter-individual

variability (natural) and the extraction, cutting, and staining

protocol to which the sample is subjected before analysis (non-

natural).

Let us consider a multi-slices case, i.e., a series of single

histological slices from the same mouse brain not enabling its

3D reconstruction. Let dr be the constant inter-slice distance

between single slices from the experimental volume. Let dt be

the inter-slice distance between slices from the template volume.

To realistically estimate the corresponding distance dr depending

on dt in the template, the differences in brain volumetrics must

be taken into account. Not taking them into account would

lead to a deviation in the estimation of successive slice positions

(Figure 3A). For this reason, a relative scaling factor γ (RSF)

was introduced, which reflects the size difference between an

experimental brain and the atlas template volume on the axis to

which the considered incidence plane is orthogonal (Figure 3B).

The affine registration automatically corrects the scaling factors

in the other two directions (α, β) relative to the plane of

incidence considered. This RSF γ is relative because no modality

accounts for an absolute reference geometry: it is relative between

two modalities.

Thus, assume:





0 < γ < 1 ⇔ shrinkage

γ = 1 ⇔ same size

1 < γ < +∞ ⇔ enlargment

The distances dr and dt are defined as a function of γ and the

two slice thicknesses er for the experimental data and et for the

template data:

dr = γ
er

et
dt (7)

Let r ǫ N∗ be the slice number from the experimental data

ranging from r = 1 to r = M, and t the slice number estimated to
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FIGURE 3

Shrinkage case of the experimental volume compared to the template volume, and its impact in a multi-slices study in the coronal incidence along
the AP axis, for slice thicknesses er and et from the experimental and template volumes, respectively, as well as an inter-slice distance d between
each considered slice from the experimental volume. (A) Study of five slices from a first T1 estimate without consideration of shrinkage between
volumes (mismatch). (B) Study of five slices from a first estimate T1 considering the shrinkage between volumes using RSF γ (correction).

be the most similar in the template by the giRAff method, ranging

from t = 1 to t = N. The equation of the affine line linking slice

numbers from the two volumes to each other can thus be deduced:

t̂(r) = γ
et

er
(r − 1) + t̂1 (8)

with t̂1 the y-intercept corresponding to the result of the giRAff

method applied to the first slice of the experimental volume studied

(r = 1).

2.2.3.2 Operating mode
For each considered experimental single slice from a multi-

slices set, similarity values with all the template slices are computed

by the giRAff method and stored in a list sw (see Equation 3,

which is applied for each slice Ta ǫ B). The multi-slices analysis

aims to bring each of these lists into a single referential to pool

their contribution.

Assume (us)sǫN∗ an arithmetic series determining the first

template slice number to be tested in the case of a multi-slices study

and (vs)sǫN∗ an arithmetic series determining the last template

slice number to be tested in the case of a multi-slices study, we

then have:

us = u1 +
dt

et
(s− 1) and vs = N −

dt

et
(n− s) (9) and (10)

with u1 = 1 corresponding to the first template slice number.

Values from the series (us)sǫN∗ and (vs)sǫN∗ are rounded

to the nearest integer so that they correspond to real

slice numbers.

The giRAff method is successively executed for each slice s,

solely on a range of template slices B[us;vs] ⊂ B defined by the two

series. This range contains the same number of slices dt/et rounded

off to the nearest unit. This amounts to determining the z-position

of the first studied slice from the mutualization of the similarity

information Sw of all the slices in the multi-slices set. Once this z-

position has been estimated in a common manner, it is propagated

to the other slices of the series to determine their respective z-

positions. The position of the other slices is deducted by adding the

distance dt in the template corresponding to the distance dr , which

separates the slices from each other in the experimental volume.

Assuming zm is the z-position estimated by combining different

similarity information in the multi-slices case, as with the classical

giRAff method, a calculation of the maximum similarity is then

performed to determine the desired position zm:

zm(E,B) = argmax
Ta∈B[us;vs]

(
1

n

n∑

s=1

π sSw(Is,B[us;vs], θ̂RIGs, θ̂AFFs)

)
(11)

with Sw being a list containing the averaged NMI values for rigid

and affine registration (see Equation 3), E a multi-slices ensemble,

and πs the contribution rate for each slice s (πs = 1/n by default,

giving an equal contribution for each slice).

Assume giRAffm is the extension of the giRAff method to a

multi-slices study, which is defined as:

giRAffm(E,B) = (zs, θ̂RIGs, θ̂AFFs) (12)

For each slice Is from E, a zs position (deduced from zm) as well

as rigid and affine transformations θ̂RIGs and θ̂AFFs are determined,

which allows the identified label slice Lâ to be mapped onto the

experimental single slice Is. The contribution of each slice Is can be

adjusted toward the weight πs. For example, if a slice Is has many

artifacts that might compromise the registration with the template

slices, it is possible to manually adjust its influence by decreasing its

contribution πs or even remove it from the zm estimation (πs = 0).

The numbers zs = ts of each of the slices from the multi-slices

study from E can directly be calculated from zm:

zs = zm + s dt = t̂1 + s
et

γ er
dr (13)
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FIGURE 4

giRA�Mapper generic pipeline performing the automated atlas segmentation of any number n of histological slices using the giRA� method as well
as its extension giRA�m. S* represents the needed and required number of slices to reconstruct a 3D brain.

with t̂s rounded to correspond to real slice numbers (integers). An

affine transformation θ̂AFFs is associated with each position zs.

2.2.4 giRA�Mapper: a generic pipeline
The generic pipeline giRAffMapper automatically performs

the atlas segmentation of any number of slices corresponding to

any histological experimental protocol. Let S∗ be the needed and

required number of slices to reconstruct a 3D brain. Whether it is

for the analysis of a single slice (n = 1), for several slices in the

analysis of a particular anatomical region (1 < n < S∗), or for a

large enough number of slices to perform a 3D reconstruction of

the brain (n≥ S∗), the giRAffMapper generic pipeline automatically

processes any histological brain slice protocols (Figure 4).

2.2.5 Validation of the method
2.2.5.1 Metrics of validation

As our aim is to achieve an atlas segmentation as accurate

as that of experts, we took the quantitative results of a

neuroanatomist’s evaluation as a reference. We asked an expert

to identify the right number (z-position) of the template slice

being the most similar to each experimental considered slice

Ir , the so-called Expert Rating for the z-position (ERz) (see

Supplementary material S1). This made it possible to define the

deviation of the z-position 1sn between ERz and the z-position

estimated by giRAff:

1sn(Ir ,B) =
∣∣ERz(Ir ,B)− z(Ir ,B)

∣∣ (14)

The final purpose being the segmentation of anatomical

regions, we also calculated dice scores (Dice, 1945) between

the manual segmentation from an expert on the experimental

considered slice and the one resulting from the identified

and registered template slice by the giRAff method. We then

compared these obtained dice scores to those calculated after prior

identification of the z-position by an expert.

2.2.5.2 Realistic histological protocols to perform
region-based analysis

We designed realistic region-based histological protocols

from mouse whole brain histological datasets with an expert.

Six main regions of interest were chosen from different sizes

and locations in the brain: cortex, striatum, hippocampus,

thalamus, globus pallidus, and substantia nigra. We especially

selected them because of their known involvement in

neurodegeneration, especially concerning Alzheimer’s, Parkinson’s,

or Huntington’s diseases (Dostrovsky et al., 2002; Picconi et al.,

2005; Teichmann et al., 2005). For each anatomical region,

the protocol includes the identification of the respective

slices in which this region starts and ends along the AP

axis, as well as the number of slices to be considered and

their inter-slice distance, allowing quantitative studies (see

Supplementary material S2). To assess the robustness of such an

exploratory approach, we tested all possible protocol combinations

covering each region and brain considered, given a constant

inter-slice distance.
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2.2.6 Determination of the rigid-a�ne weighting
w for a given imaging modality

To determine the optimal rigid-affine weighting to be applied

for a given imaging modality, we evaluated the average 1sn

values for each possible weighting, using steps of 0.01, for all the

slices from the brains in a given modality. From this evaluation,

we estimated an average curve of 1sn as a function of w,

which gave us an average trend displaying which rigid-affine

weighting w minimizes deviation 1sn and, therefore, maximizes

the accuracy of the method. To get a realistic idea of this trend

for conventional histological slices, it is necessary to exclude

from the overall estimate brains suffering from too many artifacts

(air bubbles, tearing, missing tissue, etc.) that could compromise

this evaluation.

2.3 Implementation details and source
code

Considering the large number of calculations, the pipeline

was run using distributed computing on multiple microprocessors

using the SomaWorkflow library of BrainVISA software (Laguitton

et al., 2011). BrainVISA is an open-source software platform for

neuroimaging research, including visualization tools and graphical

user interfaces (https://brainvisa.info). This study was conducted

on a workstation Ubuntu 16.04; LTS 64-bits; Intel R© Xeon R© CPU

E5-2620 v2 @ 2.10GHz × 24 (24 computing cores); 128 GB of

Random Access Memory (RAM), with the support of our Titan2

calculator composed of five DELL R610 bi-processor nodes on

Intel R© Xeon R© CPU X5675 @ 3.07GHz × 12 and 48 Go of

RAM, one DELL R610 bi-processor node on Intel R© Xeon R© CPU

X5667 @ 3.07GHz × 8 and 48 Go of RAM, and six DELL R630 bi-

processor nodes on Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz ×

16 and 128 Go of RAM (representing 328 computing cores overall).

3 Results

The giRAff method has the advantage of being exhaustive in

exploring all the possible correspondences after linear registration

between a single slice under study and the slices from the

average template. This exploration is performed in a minimum

of time thanks to a distributed implementation. The choice of

the registration algorithm as well as the similarity metric was

made to suit multimodal studies, and their independence provides

robustness in the identification of the right z-position for a given

single slice.

The giRAffm extension has been specially designed for multi-

slices studies, where the RSF is taken into account for an

accurate and realistic estimation of the common z-position for a

given dataset.

All these developments are gathered in a generic pipeline

able to automatically segment any number of slices by atlas. The

method presents the advantage of being embedded in an easy-to-

use software for simple utilization (see Supplementary material S6).

We used two complementary metrics to evaluate the efficiency

of the method in its two different aims: its ability to identify the

right z-position of single histological slices, whatever their number,

and its ability to present relatively good atlas segmentation scores

after registration.

3.1 Single histological slice segmentation
by giRA�

3.1.1 Determination of the rigid-a�ne weighting
w

We first evaluated which rigid-affine weight w minimizes the

1sn criterion for each modality: the autofluorescence (Figure 5A)

and the cresyl violet (Figure 6A). For the autofluorescence, the

trend was clearly not toward a rigid-affine weighting w at extremes

(0 or 1). No particular weighting appeared to be especially

optimal between these extreme values. We therefore chose a rigid-

affine weighting w = 0.50 for this modality to ensure robustness

in the use of the two types of registration and to avoid the

extreme weightings, which can be a source of misidentification

(high 1sn). Concerning cresyl violet, it was necessary to remove

data presenting too important artifacts (M7), making them non-

representative for the evaluation of the global trend of the rigid-

affine weightingw. In contrast to autofluorescence modality, a clear

trend appeared in favor of a weighting w = 1 for the cresyl violet,

which minimized mean 1sn. This means that the NMI resulting

from affine registration prevailed for this imaging modality in

the estimation of the z-position of single slices in comparison to

an expert.

3.1.2 Precision and robustness of the method
The giRAff method was applied independently on 2,135 single

half-slices (one hemisphere) and 636 whole slices (whole brain)

from two modalities from 13 mouse brains. In routine protocols

performed in our laboratory, ϕ and β angles were estimated below

5◦ (see Supplementary material S3) and were neglected in this

study. The deviation 1sn compared to an expert was calculated

for every single slice considered from this dataset. The giRAff

method was able to identify any single mouse brain slice with an

average accuracy of 1.20 ± 1.19 and 2.05 ± 3.05 slices for the

autofluorescence and the cresyl violet, respectively (Table 1). This

represented an average precision of the z-position identification

between 120 and 164 µm, respectively.

Concerning the autofluorescence, no high1sn scores appeared,

being mainly narrow around 0 and 200 µm, the largest deviation

of 10 slices being obtained only once (M1) among the six brains

(Figure 5B). If we look qualitatively at the segmentation of the

anatomical regions of interest, we notice that their delineation is

close to that performed by an expert on the experimental slice

(Figure 5C). From the smallest of the regions studied (substantia

nigra) to the most elongated (cortex), the segmented shapes were

quite close. These results were confirmed quantitatively by the

dice scores (Figure 5D; see Supplementary material S4) evaluated

on five slices among the brainM1, which demonstrated the capacity

of the giRAffmethod to obtain fairly high scores (around 0.90) after

identification of the z-position for a given experimental slice. More

importantly, those dice scores were widely comparable to those of

an expert.
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FIGURE 5

Single slice manual segmentation of the Autofluorescence half mouse brains (M1-M6): (A) Averaged 1sn values after application of the giRA� method
for each rigid-a�ne weighting w from 0 to 1 by 1% increments, (B) 1sn values (gray) after application of the giRA� method (mean in red and standard
deviation in blue) for each single slice, (C) segmentation of six anatomical regions of interest of various sizes (cortex, striatum, hippocampus,
thalamus, globus pallidus, and substantia nigra) by an expert in five experimental single slices across the brain M1 (first row) as well as their
corresponding registered template slice identified by the giRA� method (second row), and (D) non-weighted mean dice scores (see
Supplementary material S4) evaluated on the six anatomical regions for the five slices identified and registered from (C) between the giRA� method
(yellow) and an expert (cyan).

Results for cresyl violet appeared to be somewhat less

accurate, with 1sn scores being concentrated more between

0 and 300 µm on average, with the exception of M7,

for which values were significantly higher (Figure 6B).

Misidentifications above 10 slices of deviation were also rare.

The qualitative analysis of the segmentations showed that

the anatomical regions corresponded rather well, with some

small differences, in proportion for the substantia nigra or in

shape for the striatum (Figure 6C). These small differences

had very little impact on the dice score, which remained

globally quite high (around 0.85), except for the substantia

nigra and the globus pallidus (around 0.75). Similarly and

most importantly, dice scores showed that segmentation

results using the giRAff method on these five slices were

still widely comparable to those of an expert (Figure 6D; see

Supplementary material S4).

All in all, no particular difference in the accuracy of the

giRAff method was noticed in identifying the z-position of slices

from a brain including pathological lesions (M13) compared

to other brains (M7-M12): average 1sn and standard deviation

(1.13 ± 0.91 slices) of M13 were significantly inferior to the

mean evaluation on the whole cresyl violet dataset (2.05 ±

3.05 slices).

3.2 Multi-slices histological segmentation
by giRA�m

Based on the rigid-affine weighting empirically determined

for each of the two modalities, the giRAffm extension was

applied on multi-slices datasets based on routine histological

sectioning protocols. Those protocols were designed by

experts to correspond to studies of particular anatomical

regions of different sizes in the coronal incidence: cortex,

striatum, thalamus, hippocampus, globus pallidus, and

substantia nigra (see Supplementary material S2). These

conventional protocols involved a number of slices and an

inter-slice distance, with the first slice of a given region

being shifted at each iteration so that the entirety of the
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FIGURE 6

Single slice manual segmentation of the seven cresyl violet mouse brains (M7-M13): (A) Averaged 1sn values after application of the giRA� method for
each rigid-a�ne weighting w from 0 to 1 by 1% increments, (B) 1sn values (gray) after application of the giRA� method (mean in red and standard
deviation in blue) for each single slice, (C) segmentation of six anatomical regions of interest of various sizes (cortex, striatum, hippocampus,
thalamus, globus pallidus, and substantia nigra) by an expert in five experimental single slices across the brain M10 as well as their corresponding
registered template slice identified by the giRA� method, and (D) non-weighted mean dice scores (see Supplementary material S4) evaluated on the
six anatomical regions for the five slices from (C) between the giRA� method (yellow) and an expert (cyan).

slices constituting each region were tested. The deviation

1sn was calculated for each slice included in every multi-

slices case, and the result was averaged per anatomical

region studied.

The deviation 1sn was estimated in three different contexts: (1)

using the giRAff method considering each slice as single (same case

as in Section 3.1 focused on the slices including each anatomical

region considered), (2) using the giRAffm extension considering

multi-slices protocols and an RSF γMi evaluated for each brain

thanks to the ERz , and (3) using the giRAffm extension considering

multi-slices protocols and an averaged RSF γm evaluated for a given

protocol and imaging modality (see Supplementary material S5).

Concerning the autofluorescence, first, the multi-slices

approach significantly reduced the average deviation 1sn and

its dispersion, in general: 1sn criterion underwent a reduction

between 55 and 105 µm and the standard deviation between 53

and 87% depending on the region, on average (Table 2; Figure 7A).

The case of considering the RSF γMi specific to each volume Mi (i

ranging from 1 to 6) presented smaller deviations 1sn than the case

of an average RSF γm (increase of the order of 8%). Depending

on the experimental conditions that were applied to each volume,

considering γMi specific to each of them made it possible to obtain

better accuracy in the detection of the zm position. Estimating an

accurate value of this RSF γ increased the precision of detecting

the right position zm by the giRAffm extension. On average, over

all regions, the accuracy of zm position detection in the multi-slices

case by the giRAffm extension was equal to 57 ± 49 µm with γMi

and 63± 52 µm with γm for the autofluorescence.

Regarding the cresyl violet, second, the multi-slices approach

strongly decreased the average deviation 1sn and its dispersion

in general: 1sn criterion underwent a reduction between 53

and 169 µm, and the standard deviation between 69 and 90%

depending on the region, on average (Table 2; Figure 7B). The

use of the giRAffm extension in the multi-slices case significantly

improved the overall detection accuracy of the zm position in this

modality. In contrast to what was observed for the autofluorescence

data, the γm case presented better results (1sn decreased by

4% on average over all regions) than for the consideration of

the respective γMi. Only the cortex region showed 1sn(γMi) >

1sn(γm) by 7%. For the other regions, considering γm rather

than γMi improved the detection of the correct z-position by

4% (striatum) to 27% (globus pallidus). On average, over all

regions, the accuracy of zm position detection in the multi-

slices case by the giRAffm method was 94 ± 54 µm with

γm. Whatever the case considered, the substantia nigra was

the only region with high deviations: the accuracy 1sn was
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TABLE 1 Single slices—autofluorescence and cresyl violet.

Autofluorescence M1 M2 M3 M4 M5 M6 MEAN

△sn(nb of slices and µm)

µ
1.19 1.14 0.84 1.30 0.82 1.90 1.20

119 µm 114 µm 84 µm 130 µm 82 µm 190 µm 120 µm

σ
± 1.46 ± 1.01 ± 0.91 ± 1.20 ± 0.89 ± 1.67 ± 1.19

± 146 µm ± 101 µm ± 91 µm ± 120 µm ± 89 µm ± 167 µm ± 119 µm

M (nb of slices per brain) 354 379 341 342 362 357 2,135

Cresyl violet M7 M8 M9 M10 M11 M12 M13 MEAN

△sn(nb of slices and µm)

µ
5.40 2.07 1.85 0.76 1.70 1.82 1.13 2.05

432 µm 166 µm 148 µm 61 µm 136 µm 146 µm 90 µm 164 µm

σ
± 11.84 ± 3.38 ± 1.35 ± 0.64 ± 2.54 ± 1.69 ± 0.91 ± 3.05

± 947 µm ± 270 µm ± 108 µm ± 51 µm ± 203 µm ± 135 µm ± 73 µm ± 244 µm

M (nb of slices per brain) 82 93 95 97 93 85 91 636

Average 1sn scores and standard deviation resulting from the application of the giRAff method compared to expert z-position evaluation (ERz), as well as the number of slicesM per brain on

which it has been estimated for the six autofluorescence half mouse brains (M1-M6) and the seven cresyl violet mouse brains (M7-M13). The MEAN column presents the non-weighted average

1sn values for all the considered brains.

180 ± 40 µm while it was always < 80 µm for all other

regions. Atlas segmentation of small anatomical regions was more

challenging than for large regions, both for experts and for the

proposed method.

A gain in accuracy was clearly observed when using the giRAffm
extension compared to the giRAff method for the same slices

considered independently: with a few exceptions, 1sn was brought

down between 0 and 100 µm on average, whatever the modality

and the region.

For one single slice, the giRAff method proposed an automated

atlas segmentation in about 1min using Titan2 infrastructure.

3.3 Cross-talk between giRA� and giRA�m

Several single slices from cresyl violet mouse brains (M7-M13)

suffered from histological artifacts. In most cases, the presence

of a considerable artifact prevents segmentation of the entire

histological slice. Such a slice is often discarded, or its segmentation

is carried out manually if the damaged part does not concern the

tissue of interest. Despite some considerable artifacts, the giRAffm
extension still allows for identification of the correct z-position and

segment the rest of the slice correctly. Some examples including

such artifacts (tissue folding, missing tissue, and external noise) are

presented in Figure 8.

4 Discussion

In this study, we proposed a method to automatically segment

one or a set of single slices using a 3D digital atlas. The giRAff

method, based on linear registration tools and on the NMI as a

similarity metric, showed its ability to deal with any number of

slices, adapting to very different standard histological protocols

(3D fluorescence and 2D brightfield imaging). We demonstrated

the robustness and the efficiency of the method by applying it

on two different datasets: autofluorescence data, which was not

affected by cutting artifacts, and histological slices from routine

experimental protocols. It was indeed able to identify, depending on

the protocol considered, the z-position of one or more single slice(s)

with an accuracy of the order of one slice within the atlas template.

This amounted to an identification deviation of less than about

100 µm on average, with dice scores comparable to those obtained

by an expert. The method also showed its ability to deal with slices

suffering from histological artifacts using the multi-slices approach.

The method was based on a balanced use of the similarity

information evaluated after rigid and affine registration in an

exploratory approach. In this context, the rigid-affine weighting w

was of crucial importance as it allowed to adjust the use of NMI

information to take advantage of the benefits from each type of

registration. Indeed, in the exploratory approach we proposed, the

two types of registration can be complementary. Rigid registration

is often rough and avoids the identification of a particular slice

that is the closest to the single slice considered, whereas affine

registration makes the difference in improving tissue registration

thanks to a greater number of degrees of freedom (shearing and

scaling). On the contrary, affine registration could make slices

correspond to each other with an inappropriate superposition of

tissues forced by large deformations, whereas rigid registration does

not allow such modifications, limits the deformations, and permits

the differentiation of these slices. The use of a weighted proportion

of the similarity information created a robust study framework

for their comparison in an exploratory context. This represents

a useful parameter to tune according to the amplitudes of the

deformations considered or according to the biological protocol

used. For the two modalities tested in this study, the trend was

toward either 0.5 or 1. What we would suggest for users is to

consider one or the other of the rigid-affine weighting given in the

manuscript by default for their own data according to the imaging

modality chosen. In the case of another specific imaging modality

or for any doubt on the rigid-affine weighing chosen, the operator

could easily test adjusting it from 0.5 to 1 or from 1 to 0.5. If
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TABLE 2 Multi-slices—autofluorescence and cresyl violet.

Autofluorescence 1sn
(nb of slices and µm)

Cortex Striatum Thalamus Hippocampus Globus
pallidus

Substantia
nigra

MEAN

giRAff
µ

1.59 1.28 1.14 1.16 1.11 1.33 1.27

159 µm 128 µm 114 µm 116 µm 111 µm 133 µm 127 µm

σ
± 3.68 ± 1.30 ± 1.12 ± 1.03 ± 1.15 ± 1.06 ± 1.56

± 368 µm ± 130 µm ± 112 µm ± 103 µm ± 115 µm ± 106 µm ± 156 µm

giRAffm | γMi
µ

0.54 0.63 0.52 0.57 0.53 0.63 0.57

54 µm 63 µm 52 µm 57 µm 53 µm 63 µm 57 µm

σ
± 0.49 ± 0.48 ± 0.47 ± 0.48 ± 0.52 ± 0.50 ± 0.49

± 49 µm ± 48 µm ± 47 µm ± 48 µm ± 52 µm ± 50 µm ± 49 µm

giRAffm | γm
µ

0.72 0.73 0.57 0.60 0.51 0.66 0.63

72 µm 73 µm 57 µm 60 µm 51 µm 66 µm 63 µm

σ
± 0.62 ± 0.54 ± 0.48 ± 0.48 ± 0.51 ± 0.50 ± 0.52

± 62 µm ± 54 µm ± 48 µm ± 48 µm ± 51 µm ± 50 µm ± 52 µm

Cresyl violet 1sn
(nb of slices and µm)

Cortex Striatum Thalamus Hippocampus Globus
pallidus

Substantia
nigra

MEAN

giRAff
µ

2.22 1.54 2.62 2.79 1.55 4.38 2.31

178 µm 123 µm 210 µm 223 µm 124 µm 350 µm 286 µm

σ
± 3.41 ± 1.90 ± 3.65 ± 3.84 ± 1.55 ± 4.99 ± 3.17

± 273 µm ± 152 µm ± 292 µm ± 307 µm ± 124 µm ± 399 µm ± 254 µm

giRAffm | γMi
µ

0.84 0.84 1.05 0.96 0.89 2.45 0.98

67 µm 67 µm 84 µm 77 µm 71 µm 196 µm 78 µm

σ
± 0.51 ± 0.46 ± 0.44 ± 0.50 ± 0.48 ± 0.57 ± 0.49

± 41 µm ± 37 µm ± 35 µm ± 40 µm ± 38 µm ± 46 µm ± 39 µm

giRAffm | γm
µ

0.90 0.81 0.94 0.87 0.65 2.27 0.94

72 µm 65 µm 75 µm 70 µm 52 µm 182 µm 75 µm

σ
± 0.60 ± 0.53 ± 0.51 ± 0.51 ± 0.47 ± 0.50 ± 0.54

± 48 µm ± 42 µm ± 41 µm ± 41 µm ± 38 µm ± 40 µm ± 43 µm

Non-weighted average 1sn scores (deviation in number of slices) and standard deviation calculated on six anatomical regions of interest of various sizes (cortex, striatum, hippocampus,

thalamus, globus pallidus, and substantia nigra) using realistic conventional histological protocols for the six autofluorescence brains (M1-M6) and the seven cresyl brains (M7-M13) in three

different contexts: (1) using the giRAff method considering each slice as single, (2) using the giRAffm extension considering multi-slices and RSF γMi evaluated for each brain thanks to the ERz ,

and (3) using the giRAffm extension considering multi-slices and an averaged RSF γm evaluated for a given protocol and imaging modality (autofluorescence and cresyl violet).

this improves the result in their opinion for their own dataset,

they should obviously reuse it by default for the next iterations

with other data produced in the same modality. Initialization of

the registration by centering the slices on each other was therefore

a mandatory step in this gradual pipeline. Even if this centering

process was presented as being manually performed in this study,

it would be possible to readily add a simple algorithm to perform

this task in an automated manner. Maximizing the overlap of the

binarized tissue surface could be used, for example, to improve the

method in the future.

The giRAff method was inspired by the operating mode an

expert uses when manually identifying the position of a single

slice: neuroanatomists flip atlas pages and try to match the

shapes of certain anatomical regions in an exploratory way, as

well as qualitatively estimate the similarity in a visual manner.

Our pipeline does the same using linear registration and NMI.

Although NMI has shown its robustness in various multimodal

brain applications, its efficiency remains discussed within the

scientific community (Zheng, 2006; Xiong et al., 2018; Song et al.,

2020). This similarity metric is known to have non-significative

values in absolute: comparing two objects whose nature does not

have anything in common can even result in a significantly high

NMI score (Rohlfing, 2011). The use of NMI was solely relative

in our pipeline, considering its score on any template slice in

comparison to each other. This information was never used in an

absolute manner, and the nature of the objects being compared

was the same, thus avoiding this limitation. The NMI was not

used as a similarity metric to estimate registration but only to

objectively evaluate the quality of the slice-to-slice correspondence

after registration.

In the dataset we used, we purposely selected uncut 3D coherent

histological brain volumes (autofluorescence of a cleared brain
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FIGURE 7

Multi-slices. Averaged 1sn values and standard deviation per considered anatomical region (cortex, striatum, hippocampus, thalamus, globus
pallidus, and substantia nigra) in three di�erent contexts: using the giRA� method considering each slice as single (yellow), using the giRA�m

extension considering multi-slices and RSF γMi evaluated for each brain thanks to the ERz (green), and using the giRA�m extension considering
multi-slices and an averaged RSF γm evaluated for a given protocol and imaging modality (orange) for (A) the six autofluorescence brains and (B) the
seven cresyl violet brains.

FIGURE 8

Example of histological single slices (cresyl violet) presenting histological artifacts: (A) tissue folding (M11), (B) missing tissue (M8), and (C) external
noise (M7), with the superposition of the red boundaries of the template slice, obtained using a Deriche filter (Deriche, 1990), at the z-position

identified by the giRA�m extension.

acquired with a light-sheet microscope), which was considered as

a succession of 2D virtual slices. In such a way, it was possible

to test different data processing approaches with artifact-free

tissue. This could be one of the reasons why the precision of

the z-position detection was better for the autofluorescence (lower

1sn) than for the cresyl violet. We first opted for this favorable

context to make a proof of concept, taking autofluorescence as

a kind of ideal case (Piluso et al., 2021a). Then, we confronted

with “real life” histological preclinical routine protocols (digitized

Nissl/cresyl violet-stained brain sections), based on our robust and

adjustable pipeline.

When using the giRAff method for a given individual slice,

its z-position is estimated only once. This estimate may suffer

from deviations that could be due to the presence of artifacts in

the slices, by poor quality registration, or by a relative similarity

value that is not significant enough. In the giRAffm approach, the

joint estimation of the position zm from a set of slices provided

a statistical quantity of estimates sufficient to significantly reduce

the deviation 1sn and its dispersion in general. This improvement

was based on the assumption that a large majority of the slices

had little or no artifact, and that the registration and similarity

metric were robust enough to accurately estimate the z-position

of such slices in the dataset. As a result, for one or several slice(s)

suffering from artifacts, representing a minor proportion of a given

dataset, giRAffm provided better z-position identification results

than giRAff.

On average, for a multi-slices dataset, the z-position of single

slices was detected with a precision of one slice in the atlas

(∼ 100 µm). This deviation is comparable to the one that experts

could make on such a dataset, as long as one single slice considered

does not perfectly match one given slice in the template. Indeed,

because of its slice thickness and its exact location on the AP axis,

as well as possible tilting angles, experts sometimes hesitate between

two adjacent slices from the template to identify the right z-position
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of an experimental single slice. Therefore, they are constrained to

make an arbitrary choice, assuming that the position they have

identified is only accurate within one slice (100 µm).

Some regions with little pixel support, such as substantia nigra,

presented poor dice score results compared to other bigger regions

with larger pixel supports. In the linear registration algorithm

used, few degrees of liberty were allowed to try to optimize

a global transformation at a whole-image scale. This obviously

tended to maximize the overlap between regions, including larger

pixel support at the expense of other smaller regions including

significantly fewer voxels. In such regions, a difference of one

single voxel was far more significant than in other regions.

Using non-linear registration after estimating the z-position could

significantly increase the overlap between such small regions and

then significantly increase their dice score.

Concerning the cresyl violet data, the M7 brain showed higher

1sn scores (larger deviation) than the other brains without using

the multi-slices extension giRAffm, confirmed by the presence

of artifacts due to the histological and digitization protocols

(bubbles, added tissue fragments, and external noise). This is a

typical example of artifacts that can occur during a conventional

histological protocol. Automatically segmenting histological slices

with significant artifacts has always been a challenging task for

the scientific community (Agarwal et al., 2016). Most of the time,

automatic atlas segmentation of these slices is basically impossible.

Our proposed giRAffm extension has the advantage of optimizing

z-position detection on a set E of multiple single slices, and thus

could be able to identify and segment such slices including artifacts.

Results were pooled to obtain the best zm position estimated for all

the slices. Thus, for a set of slices from the same brain, including

slices with important artifacts, it was then possible to decrease their

rate of contribution πs (until 0) in the global estimation of the

zm position, but yet achieve their automatic segmentation reliably.

Considering a majority of good quality slices selected from E and a

robust regression (significantly high coefficient of determination,

typically above 0.97), the giRAffm extension can propose an

automated atlas segmentation corresponding for any other slice

suffering from those artifacts from the same brain in a robust way,

especially without taking them into account in the global estimation

of the position zm. If the rate of contribution πs was presented

as a subjective parameter to add manually as input information

within the multi-slices pipeline, further improvements could lead

to the use of image processing algorithms able to automatically

detect artifacts within histological slices (Agarwal et al., 2016). This

would lead to an automated setup of the rate of contribution πs for

each single slice as a consequence. Moreover, using the multi-slices

giRAffm extension allowed for automated estimation of the RSF γ

between the data considered. This reinforced the fact the method

we proposed is versatile, robust, and adaptable to many types of

protocols or histological brain data.

Considering a multi-slices dataset, we focused on a constant

inter-slice distance between single slices under study in this article.

But in practice, this distance could be heterogeneous. The principle

of the multi-slices extension giRAffm for the analysis of such slices

would be exactly the same; the different inter-slice distances can be

given as input information within the giRAffm pipeline.

In conventional histological protocols, tilting angles may occur

when slicing the 3D organ. A non-zero ϕ angle around the IS

axis can generate anatomical differences between the left and right

side of the slice, which are easy for an expert to identify due to

the brain symmetry with respect to the interhemispheric plane.

However, it is more challenging to identify a non-zero β angle

around the LR axis that will generate differences between the top

and bottom of the slice. This angle is most often observed as non-

zero, and neurobiologists then have to deal with neighboring slices

to perform the segmentation manually. Thanks to a rigid 3D-

3D registration between each considered brain and the template

volume, it was possible to estimate these tilting angles around

the IS and LR axis, and they are of low amplitude (< 5◦, see

Supplementary material S3), hence our focus on the z-position

determination. Considering those realistic tilting angles of low

amplitude, the accuracy of the giRAff method nevertheless made it

possible to preserve automatic segmentations for which dice scores

are still comparable to those of an expert. Indeed, as protocols for

acquiring those brains may be representative of standard protocols

in conventional brain histology performed in the coronal incidence,

we assume that tilting angles rarely exceed an amplitude of 5◦

with modern equipment and in a similar study framework. If this

angulation generates genuine anatomical differences compared to

data without angulation, the method we proposed made it possible

to compensate for this drawback. Indeed, we chose to process

data produced in routine histological protocols in this article,

i.e., including real tilting angles caused by the cutting process.

Histological data presented in this article included their native

tilting angles. As the giRAff method detected the z-position of the

single slice with high accuracy, its anatomical environment was

well identified (basically in the thickness range of about 200 µm).

Following this location, registration ensured the best matching of

the tissue between the single slice considered and the template slice

identified, as it would have been done in the case of considering

the respective adjacent slices of its direct neighborhood. In the

coronal incidence and with a slice thickness of about a hundred

micrometers, anatomical variations are small from one slice to the

next adjacent one. The template data are smooth, and very few

discontinuities appear when examining the slices one after the other

along the AP axis. More specifically, a tilting angle would generate

small anatomical differences between the right and left of the slice

for an angle ϕ around the IS axis and between the top and bottom

of the slice for an angle β around the LR axis compared to the

template data. In practice, using linear registration would basically

correct most of those segmentation errors because the presence

and location of anatomical regions are almost the same from one

slice n to its n-1 and n+1 (or more) neighbors. Indeed, anatomical

differences generated by a tilting angle cause linear deformations

along one, two, or both axes (IS and LR in the coronal incidence),

which affine registration can compensate with shearing. This was

confirmed by dice scores calculated, which were widely comparable

to those of an expert in the end. The only necessary condition is

that the z-position of the single slice considered must be accurately

estimated, typically with a deviation less or equal to one slice in

the template, to avoid too large anatomical difference between

slices considered. It is just a matter of comparing data which are

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230814
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Piluso et al. 10.3389/fnins.2023.1230814

comparable, i.e., extracted, cut, and digitized within a rigorous,

consistent, and realistic study framework. If neurobiologists are

asked to cut coronal mouse brain slices using a microtome, it is

reasonable to believe that their skills will enable them to obtain

tilting angles below 5◦ as observed in the data presented in this

article. Visual quality control and steel matrices could also be used

for this purpose.

The method we proposed was based on linear registration in

a pipeline with an increasing number of degrees of freedom. The

use of non-linear registration could compromise the identification

of the correct z-position of a given single slice. Indeed, too

many degrees of freedom would excessively distort all template

slices to match, in an inappropriate way, the single slice under

consideration. It would then be challenging to distinguish which

was the most similar. In contrast, the use of non-linear 2D-

2D registration between the single slice and the template slice

identified at the z-position at the end of the giRAff pipeline would

certainly enable the segmentation results to be refined. This could

be useful for the analysis of small regions, for example. This

constitutes one of the further improvements the method could

benefit from. Moreover, the lack of ground truth will make the task

even harder.

A benchmark between the different methods of segmenting

single slices should be carried out to identify which could give
the best results according to the experimental data under study.

Such a benchmark should accurately compare all the methods

using a dedicated common dataset as well as an appropriate
metric to evaluate their respective performance. This comparison

is too vast to be presented exhaustively and precisely in this

paper and could be the scope of another study. Indeed, each
method has its own particular way of working, and its results

may be of a different nature, making them difficult to benchmark.

Nevertheless, we wanted to briefly test whether our method offered
competitive results compared with those provided by the most

recent state-of-the-art method. A quick comparison was led on

two independent single coronal Nissl-stained slices between the

latest fully automated method from the state-of-the-art (DeepSlice

from Carey et al., 2023) and our giRAff method. We estimated

NMI similarity metric after applying both methods in the same
conditions. Those unitary tests showed that similarity between

the resulting slices from our method outperformed DeepSlice

by about 20%, while requiring a longer processing time (< 30 s

for DeepSlice and about 1min for giRAff, estimated per slice).

Looking at the anatomy in the identified template slices, the z-

position determined for both methods was very close, if not equal.

Only some slight registration differences were observed, where

the registration algorithm used in giRAff provided the best results

according to the NMI criterion. These were very preliminary

unitary tests, hence the need for this benchmark to be fully explored

in future.

The giRAff method was developed to be fully automatic

and embedded in an easy-to-use interface with very few input

parameters so that it can be easily used by a non-expert. Optional

parameters can be adjusted if the user wants to contribute with

their own knowledge, such as the selection of the region(s) of

interest studied. This information will reduce the number of

adjacent template slices to consider in estimating the z-position

of a single slice. Only template slices including this or those

anatomical region(s) will be pre-selected, thus decreasing the

computation time.

In automatic mode, the method segments a single slice in

1min on a high-performance computing infrastructure. The result

benefits not only from the six regions we focused on but from all

the subregions defined in the ABA reference. This is comparable to

the time it may take an expert to identify the correct z-position of a

single slice within the atlas template. For the same processing time,

the giRAff method additionally provided direct atlas segmentation

of the single slice. Moreover, no knowledge of brain anatomy

or even in coding was required to use the method. Its interface

and the few input parameters required by our pipeline make it

usable by anyone with full autonomy. Even without supercomputer

infrastructure, using about 20 computing cores from a workstation,

for example, the method for one single slice worked in a reasonable

time of about 15 min.

First, preliminary results as well as complementary studies on

a brain suffering from pathological lesions showed encouraging

results for the method to be able to handle such data in the

context of dedicated protocols. This opens the door for automated

segmentation of slices from pathological mouse models, whether

neurodegenerative or other diseases, as long as data did not suffer

from too large anatomical alterations. Similarly, the use of this

pipeline can be extended to other rodents, such as rat for instance,

or even in other modalities, such as magnetic resonance imaging.

Promising results have been obtained on this modality (Piluso et al.,

2021b), and future work aims at validating the use of the method in

such cases. In addition, the use of this method will indirectly allow

better targeting of conventional histology protocols to reduce the

amount of brain data to be used in a study.

5 Conclusion

The wide variety of existing histological protocols as well as

the great numbers of anatomical structures in the mouse brain

makes the analysis of histological slices quite tedious and complex.

In conventional preclinical histology for the analysis of the mouse

brain, it is rare to have enough slices to reconstruct the brain in

3D and, sometimes, working on 3D data is not a prerequisite. It

is possible to study only one single slice within the brain, but this

is also unusual. In contrast, many protocols are based on a fairly

large number of slices to perform quantitative studies on particular

anatomical regions or around a specific pathological lesion, for

example, still precluding 3D reconstruction. Whatever the case,

the generic giRAffMapper pipeline was optimized to accommodate

most protocols involving any number of single slices. We showed

that our method was able to automatically identify the position

of single slices within a mouse brain atlas with less than one slice

deviation on average and in 1min for one slice. Atlas segmentations

were comparable to those of an expert. The giRAffmethod does not

need any 3D brain volume reconstruction; it is versatile, generic,

user-friendly, and requires few input parameters. In future, we aim

to take into account real slice angles and use non-linear registration

tools to further refine the segmentation of anatomical regions from

increasingly precise atlases. This study paves the way for automated

atlas segmentation through a simplified interface of any histological

mouse slice, half- or whole-brain slice, for pathological models,
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for different modalities and possibly for different species. This is

done in a fully automated way and does not require any particular

knowledge of the study involved, nor in neuroanatomy in general,

nor even in coding, to be able to use it. This significantly widens the

scope of use of such anatomical detailed atlases within the scientific

community for a complex task that usually had to be performed

only by experts.
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