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Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition 
commonly studied in the context of early childhood. As ASD is a life-long condition, 
understanding the characteristics of brain microstructure from adolescence into 
adulthood and associations to clinical features is critical for improving outcomes 
across the lifespan. In the current work, we utilized Tract Based Spatial Statistics 
(TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter 
(WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males.

Methods: Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males 
(12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS 
were performed to analyze WM and GM microstructure, respectively. General 
linear models were used to investigate group and age-related group differences. 
Within the ASD group, relationships between WM and GM microstructure and 
measures of autistic symptoms were investigated.

Results: All dMRI measures were significantly associated with age across WM 
and GM. Significant group differences were observed across WM and GM. No 
significant age-by-group interactions were detected. Within the ASD group, 
positive relationships with WM microstructure were observed with ADOS-2 
Calibrated Severity Scores.

Conclusion: Using TBSS and GBSS our findings provide new insights into group 
differences of WM and GM microstructure in autistic males from adolescence 
into adulthood. Detection of microstructural differences across the lifespan 
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as well as their relationship to the level of autistic symptoms will deepen to 
our understanding of brain-behavior relationships of ASD and may aid in the 
improvement of intervention options for autistic adults.
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Introduction

Autism spectrum disorder (ASD) is a heterogeneous 
neurodevelopmental condition characterized by challenges in social 
interaction and communication, and repetitive and stereotyped 
behaviors (American Psychiatric Association, 2013). While ASD is 
commonly studied in the context of early childhood (Lord et al., 2020; 
Hirota and King, 2023), ASD is a life-long condition with complex 
clinical and neurodevelopmental trajectories that continually change 
across the lifespan and may contribute to challenging behaviors and 
differences observed in adult life outcomes (Ratto and Mesibov, 2015). 
Specifically, the neurodevelopmental window from adolescence to 
middle-adulthood captures a chronically understudied but critical 
transitionary life period comprised of complex social changes for 
autistic and non-autistic individuals alike (Elster and Parsi, 2020). 
However, a lack of knowledge exists surrounding the microstructural 
brain changes occurring with aging that may support the emergence 
of behavioral challenges and sub-optimal outcomes in autistic 
individuals in part due to the high clinical variability and biological 
heterogeneity that exists within this spectral population. This dearth 
of knowledge poses major challenges to the development of 
individualized treatment and support options for autistic individuals 
after childhood.

Diffusion magnetic resonance imaging (dMRI) probes tissue 
microstructure by characterizing the random motion of water 
molecules in biological tissue (Basser and Ozarslan, 2009; Afzali et al., 
2021). Diffusion tensor imaging (DTI) quantitatively describes 
diffusion properties in biological tissue through four scalar 
measurements: fractional anisotropy (FA), and mean diffusivity (MD), 
radial diffusivity (RD), and axial diffusivity (AD). While DTI provides 
quantitative metrics sensitive to the underlying brain microstructure 
and organization, the complex biological tissue environment of the 
brain microstructure (e.g., myelin, crossing axons and dendrites) may 
cause these diffusion patterns to deviate from the assumed Gaussian 
distribution of the DTI model. Recent dMRI biophysical models aim 
to model and account for the complexity of the underlying 
microstructure and provide metrics with increased biological 
specificity compared to DTI (Alexander et al., 2019). For example, the 
Neurite Orientation Dispersion and Density Imaging (NODDI) 
(Zhang et al., 2012) model, were developed to quantify the angular 
variation of neurites with orientation dispersion index (ODI) and 
intracellular volume fraction of neurites (FICVF) and aims to account 
for a wide range of neurite orientation distributions that capture the 
full spectrum of patterns observed across brain tissue, including the 
highly disperse dendritic processes of the cortical gray matter 
microstructure (Zhang et al., 2012). Taken together, dMRI techniques 
are well equipped to quantitatively describe tissue microstructure in 
both white matter and gray matter.

Diffusion MRI methods, and in particular DTI, have been widely 
used to study brain microstructure in ASD (Travers et al., 2012; Conti 
et al., 2015; Dean et al., 2016; Vogan et al., 2016; Fitzgerald et al., 2019; 
Thompson et  al., 2020; Andrews et  al., 2021). Indeed, studies 
examining white and gray matter microstructural differences in young 
autistic individuals suggest these differences may be  related to 
alterations in fundamental neurodevelopmental processes (Ouyang 
et al., 2016; Andrews et al., 2019, 2021; DiPiero et al., 2022). However, 
neuroimaging studies in autistic adolescents and adults indicate both 
white matter (Shukla et al., 2011; Langen et al., 2012; Travers et al., 
2015; Dean et al., 2016; Wilkinson et al., 2016; Andrews et al., 2019; 
Fitzgerald et  al., 2019; Hattori et  al., 2019) and gray matter 
(Courchesne et al., 2001; Carper et al., 2002; Courchesne et al., 2003; 
Langen et al., 2012; Zielinski et al., 2014; Gori et al., 2015; Carper et al., 
2016; Bletsch et  al., 2021; DiPiero et  al., 2022) microstructure 
differences continue to emerge across the lifespan. For example, 
utilizing DTI to investigate longitudinal white matter microstructure 
in autistic individuals 3-to-41 years, Travers et al. revealed a differing 
developmental trajectory of FA in the corpus callosum such that 
autistic individuals showed decreasing FA with age whereas FA tended 
to increase with age in non-autistic individuals (Travers et al., 2015). 
This reduction in FA in autistic individuals in adulthood was also 
found in a more recent study within the anterior thalamic radiation 
and right cingulum (Haigh et  al., 2020). Age-related differences 
between diagnostic groups in white matter microstructure have also 
been reported in autistic adults 30-to-73 years of age, with higher 
age-related mean MD and RD in ASD within projection and 
association fiber tracts (Koolschijn et al., 2017). Other DTI studies of 
adolescents and young adults have described widespread reductions 
in gray matter FA and increased MD in autistic individuals (Groen 
et al., 2011; Bletsch et al., 2021). Beyond DTI, advanced diffusion MRI 
methods have been used to explore white and gray matter 
microstructure in ASD. For example, studies utilizing NODDI have 
shown autistic adults to display decreased neurite density (FICVF) in 
commissural and long-range association tracts (Andica et al., 2021) 
and increased neurite dispersion (ODI) in in visual brain areas 
(Matsuoka et al., 2020). Additionally, diffusion kurtosis imaging (DKI) 
studies of autistic adults have described reduced axial kurtosis (AK) 
in the body and splenium of the corpus callosum (Hattori et al., 2019) 
and reduced mean and radial kurtosis (MK, RK, respectively), and 
MD in autistic compared to neurotypical (NT) males in parietal, 
frontal, and temporal cortical regions (McKenna et  al., 2020). 
However, more work is needed to further interrogate whole-brain 
microstructural differences related to ASD, particularly across 
adolescence to adulthood.

In this cross-sectional study, we  utilized Tract Based Spatial 
Statistics (TBSS) (Smith et al., 2006) and Gray-Matter Based Spatial 
Statistics (GBSS) (Nazeri et  al., 2015, 2017) to examine and 
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characterize whole brain white matter and gray matter 
microstructure differences between autistic and non-autistic 
individuals during late adolescence and adulthood. Previous work 
has widely applied TBSS to understand white matter differences in 
ASD during adulthood (Gibbard et al., 2013; Hirose et al., 2014; 
Andica et al., 2021), however, only one study has utilized NODDI in 
conjunction with TBSS to investigate white matter microstructural 
differences in ASD, reporting lower neurite density in major white 
matter tracts of autistic adults (Andica et al., 2021). Further, only one 
prior study has applied GBSS to investigate cortical gray matter 
microstructure related to ASD in childhood to early adulthood, 
reporting decreased neurite density in autistic individuals across 
widespread gray matter regions and an accelerated increase in 
neurite density between diagnostic groups (DiPiero et al., 2022). 
However, to the best of our knowledge, no prior studies have 
combined TBSS and GBSS to investigate whole brain white matter 
and gray matter microstructure with NODDI. This study, therefore, 
addresses critical gaps in the current ASD literature by taking a 
whole-brain analysis approach with TBSS and GBSS in conjunction 
with DTI and NODDI to investigate microstructural differences 
related to ASD into adulthood.

Based upon the extant literature, we hypothesized widespread 
group mean, and age-related differences in both white matter and gray 
matter microstructure such that the autistic group would demonstrate 
decreased neurite density (FICVF) and increased neurite dispersion 
(ODI) compared to their NT peers. Considering the wealth of 
previous work investigating microstructural differences in ASD with 
DTI, we also aimed to expand on previous work with the inclusion of 
DTI metrics and speculate such differences to be present across DTI 
metrics in accordance with neuronal disorganization. As ASD is a 
neurodevelopmental condition, an individual’s abilities and symptoms 
are not linear across the lifespan; that is, many autistic individuals tend 
to experience changes in specific symptoms and domains of 
functioning over their lifetime (Seltzer et al., 2003; McGovern and 
Sigman, 2005). As such, we additionally investigated relationships 
between white matter and gray matter microstructure and measures 
of autistic symptom severity within the autistic cohort. Thus, this 
study aims to delineate neuroanatomical and microstructural 
differences present in autistic adolescents and adults and assesses 
relationships between microstructural organization and autism 
severity during a critical transitionary life period. Characterizing these 
neurodevelopmental differences across the lifespan is a critical step in 
defining the structural nature of developmental differences associated 
with ASD, as well as in improving and optimizing therapeutic options 
that can lead to better long-term outcomes for autistic adults.

Materials and methods

Participants

Participants consisted of a sample including 78 autistic and 81 NT 
participants, selected from a broader, existing longitudinal 
neuroimaging study examining brain development in ASD (Prigge 
et al., 2021). While participants have completed up to 5 study visits 
over a 16-year period from 2003–2019, the study’s MRI scanner and 
neuroimaging protocols were updated in 2017 to include more state-
of-the-art imaging techniques. The current study leverages the 

diffusion MRI data acquired after this upgrade between 2017–2019 
and utilizes participant data from the fifth timepoint only.

All participants were male and between the ages of 12 and 47 years 
at the time of the MRI scan. Participants with ASD were diagnosed 
based on the Autism Diagnostic Interview-Revised (ADI-R) (Lord 
et al., 1994), the Autism Diagnostic Observation Schedule (ADOS) 
(Lord et al., 2000, 2012), DSM-IV (1994) and ICD-10 criteria; all ASD 
participants in the present study met criteria for a lifetime diagnosis 
of ASD. Exclusion criteria consisted of a history of severe head injury, 
seizure disorder, hypoxia-ischemia, genetic disorder associated with 
ASD (identified with Fragile-X testing or karyotype), known medical 
cause of ASD diagnosis (e.g., known patient history, and physical 
exam), and/or other neurological disorders. Neurotypical (NT) 
participants did not have history of learning, developmental, cognitive, 
neurological, or neuropsychiatric challenges or conditions. Additional 
enrollment criteria have been extensively described elsewhere 
(Alexander et al., 2007a; Zielinski et al., 2014; Lange et al., 2015). 
Consent was obtained from all adult participants, and both parental 
consent and participant assent were obtained for participants under 
the age of 18 years. All study procedures were approved by the 
Institutional Review Boards at The University of Utah and University 
of Wisconsin–Madison.

Intelligence (IQ) was assessed at study enrollment and all 
subsequent timepoints as part of a comprehensive cognitive battery. 
At the time of their MRI Scan, IQ was measured with the Wechsler 
Adult Intelligence Scale-Third Edition (Wechsler, 1997) providing 
indices of Full Scale, Verbal, and Nonverbal IQ. Additionally, the 
ADOS-2 (Lord et  al., 2012) Module 4 was administered to all 
participants in the ASD group at timepoint 5. A summary of 
participant demographic information at Timepoint 5 can be found in 
Table 1.

TABLE 1 Demographic, cognitive, and clinical characteristics of 
participants.

Sample 
demographics

NT ASD p value

N 81 78 -

Age (Years); Mean (SD) 

[Range]

27.04 (6.83) 

[12.33–46.92]

26.66 (7.28) 

[14.67–46.41]

0.74

Race –

Asian 0 0 –

Black 0 1 –

Multi-Racial 3 0 –

White 73 75 –

Not Reported/missing 5 2 –

Clinical Characteristics 

average score (SD) [Range]

ADOS – 6.87 (2.94) 

[1–10]

–

SRS – 80.54 (30.89) 

[19–146]

–

Full Scale IQ 120.37 (10.95) 

[95–141]

104.72 (18.02) 

[60–150]

< 0.00001

**ADOS Calibrated Severity Scores n = 75 participants; Social Responsiveness Scale (SRS) 
n = 65 participants; Full-scale IQ n = 43 NT n = 76 ASD.
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Imaging acquisition and processing

Magnetic resonance imaging (MRI) data were acquired at the 
University Utah on a 3.0 Tesla Siemens Prisma scanner equipped 
with a 64-channel head coil. Diffusion weighted images (DWIs) 
were acquired using a multi-shell spin-echo echo-planar pulse 
sequence. A total of 187 DWIs were acquired, 7 of which were 
acquired with no diffusion encoding (i.e., b-value = 0 s/mm2) and 
the remaining 180 acquired along non-collinear diffusing encoding 
directions with b = 350 s/mm2 [12 directions], b = 1,000 s/mm2 [24 
directions], b = 2000 [48 directions], and b = 3,000 [96 directions]. 
An additional 14 non-diffusion-weighted images with reverse 
phase-encoded directions were collected for use in correcting 
susceptibility-induced artifacts. Additional scanning parameters 
included: repetition time (TR) = 4,870 ms; echo time (TE) = 92.4 ms; 
flip angle = 78 degrees; multi-band factor = 3; echo spacing = 0.71 ms; 
bandwidth = 1,654 Hz/Px; 250 × 209 mm field of view; 168 × 140 
imaging matrix; 1.5 mm × 1.5 mm in-plane resolution; and 1.5 mm 
slice thickness. The duration of the diffusion scan was 15 min and 
30 s. A T1-weighted structural scan was additionally acquired using 
an MP2RAGE sequence with the following parameters: 
TR = 5,000 ms, TE = 2.93 ms, Inversion Times (TI) = 700 and 
2030 ms, flip angles = 4° and 5°, field of view = 256 mm, 176 slices, 
resolution = 1 × 1 × 1 mm.

Following image acquisition, DWIs were processed using an 
inhouse processing pipeline. Briefly, DWIs underwent Rician 
noise (Veraart et al., 2016) and Gibbs ringing artifact correction 
(Kellner et al., 2016) using MRtrix3 (Tournier et al., 2019). The 
FMRIB software library (FSL) (Jenkinson et al., 2012) was used to 
correct for susceptibility-induced off-resonance distortions using 
the pairs of images with reversed phase encoding and topup 
(Andersson et al., 2003); while the eddy tool was used to correct 
for motion and eddy current-induced distortions (Andersson and 
Sotiropoulos, 2016). Outlier detection and replacement was 
enabled to identify and correct for signal dropout artifacts 
(Andersson et al., 2016) and gradient directions were corrected 
for rotations (Leemans and Jones, 2009). Bias field correction was 
performed using the Advanced Normalization Tools (ANTs) N4 
algorithm (Tustison et al., 2010) and non-parenchyma signal was 
removed using FSL’s Brain Extraction Tool (BET) (Smith, 2002). 
Finally, the entire DWI series was co-registered to the MP2RAGE 
uniform image using the TiDi-Fused pipeline in order to enhance 
the apparent spatial resolution (Guerrero-Gonzalez et al., 2022). 
Specifically, the mean b = 0 image was calculated and spatially 
aligned to the MP2RAGE uniform image using rigid registration 
(Jenkinson et  al., 2002). The resulting transformation was 
subsequently applied to the entire DWI series using the (Avants 
et al., 2011a) and cubic B-spline interpolation, resulting in the 
diffusion MRI series up-sampled to MP2RAGE resolution. The 
diffusion encoding directions were additionally corrected for the 
rotational component of the rigid body transformation. One 
subject from the ASD group was removed due to motion to reflect 
the final sample size in Table 1.

Diffusion tensors were estimated at each voxel using a weighted-
least squares algorithm as part of the diffusion imaging in python 
(DIPY) open-source software package (Garyfallidis et al., 2014). 
Quantitative maps of fractional anisotropy, and mean, radial and 
axial diffusivity (FA, MD, RD, AD, respectively) were derived 

(Basser, 1995). DWIs were also fit to the three-compartment 
Neurite Orientation Dispersion and Density Imaging (NODDI) 
tissue model (Zhang et al., 2012) in Python using the Diffusion 
Microstructure Imaging in Python (DMIPY) toolbox (Fick et al., 
2019), to provide estimates of the intracellular volume fraction 
(FICVF), orientation dispersion index (ODI) and isotropic volume 
fractions (FISO). Quantitative maps were visually inspected for 
artifacts (i.e., slice intensity banding, FA hyper-intensities, 
distortions, and/or blurring).

A study specific template was created from each subject’s FA maps 
using the antsMultivariateTemplateConstruction2.sh script in ANTs 
(Avants et al., 2011a). DTI and NODDI parameter maps from each 
subject were then non-linearly warped to the common study-specific 
template space for subsequent analysis.

Tract based spatial statistics

Voxelwise analysis of white matter microstructure was 
performed using Tract-based spatial statistics (TBSS), an analysis 
method developed to try to alleviate issues with misregistration and 
data smoothing, and diminish effects of partial volume 
contamination (Smith et al., 2006). First, a mean FA image was 
created from all participants and thinned to create a mean FA 
skeleton representing the center of all tracts common to the 
population. A threshold of 0.2 was applied to the skeleton to remove 
voxels of gray matter and CSF resulting in the final TBSS skeleton 
for analysis (Figure 1A). Each subject’s aligned DTI (FA, MD, RD, 
and AD) and NODDI (FICVF and ODI) parameter maps were then 
projected onto the white matter skeleton for voxelwise 
statistical analysis.

FIGURE 1

White and gray matter skeletons projected on study-specific 
template. (A) TBSS white matter skeleton (green) generated from 
skeletonized FA maps representing the center of the white matter 
tracts. All DTI and NODDI metrics were projected onto the skeleton 
for voxelwise analysis. (B) Gray matter fraction maps were first 
averaged across subjects and the mean gray matter image was 
skeletonized (red). All DTI and NODDI metrics and gray matter 
fraction were projected onto the skeleton from the local gray matter 
fraction maxima for voxelwise analysis.
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Gray matter-based spatial statistics

GBSS adopts the TBSS (Smith et al., 2006) framework to enable 
analyses of diffusion MRI measures in the cortical gray matter (Nazeri 
et al., 2015, 2017). Processing steps for GBSS have been previously 
described (Nazeri et  al., 2015, 2017). Briefly, a two-tissue class 
segmentation of the DTI FA maps was performed using Atropos 
(Avants et al., 2011b) to estimate a white matter fraction map. Gray 
matter fraction maps were then estimated by subtracting the white 
matter fraction and CSF fraction (NODDI FISO parameter) maps 
from 1. DTI and NODDI measures and gray matter fraction maps 
were non-linearly warped into the study-specific template space by 
applying the warp fields generated by study-specific template 
construction. Gray matter fraction maps aligned to the study-specific 
template were averaged to create a mean gray matter fraction map, 
which was skeletonized using the tbss_skeleton tool in FSL (Smith 
et  al., 2006; Jenkinson et  al., 2012; Figure  1B). NODDI and DTI 
metrics were projected onto the gray matter skeleton from local voxels 
with the greatest gray matter fraction. The gray matter skeleton was 
thresholded to include only voxels with an average gray matter 
fraction >0.65 (Nazeri et al., 2017).

Statistical analyses

Microstructural age associations
Age-related associations were first assessed across the TBSS (white 

matter) and GBSS (gray matter) skeletons separately (Figure 1). First, 
average values of FICVF, ODI, FA, MD, RD, and AD were extracted 
from the white matter and gray matter skeletons for each individual 
without accounting for group. Global mean dMRI values were then 
used to assess a best fit age model for white and gray matter 
microstructure trajectory. Linear (dMRI (age) ~ α*age + β) and 
logarithmic (dMRI(age) ~ α*ln(age) + β) models were fit to the white 
matter and cortical microstructure measures on a voxelwise basis 
using RStudio (Version 2021.09.2 + 382 “Ghost Orchid”) (R Core 
Team, 2021). Information criterion parameters, including the Bayesian 
Information Criterion (BIC) and Akaike information criterion (AIC), 
were calculated and used to evaluate the model that best fit the data. 
The best fitting model for each dMRI parameter across white and gray 
matter skeletons was subsequently used to investigate population-wise 
age relationships and differential white matter and cortical 
microstructural patterns between groups.

Group differences and age by group interactions
General linear models (GLMs) were used to investigate group-

wise white and gray matter microstructural differences, while 
age-by-group interactions were used to investigate age-related 
differences between diagnostic groups. For both TBSS and GBSS 

analyses, group difference and age-by-group interaction models were 
run separately. Following the BIC and AIC model fitting for age 
described above, TBSS white matter analyses utilized logarithmic age 
in GLMs with measures of FICVF, MD, RD and AD, while linear age 
was controlled for in GLMs with measures of FA and ODI (Table 2). 
Likewise, gray matter analyses performed with GBSS utilized 
logarithmic age in GLMs for measures of FICVF, ODI, MD, RD, and 
AD, whereas linear age was controlled for in the GLM for FA 
(Table 3).

Non-parametric permutation testing (n = 500) was carried out 
using Permutation Analysis of Linear Models (PALM) (Smith et al., 
2006; Winkler et  al., 2014). For both TBSS and GBSS analyses, 
multivariate analyses were performed for dMRI measures that 
followed the same age-trajectory, whereas a univariate analysis with 
linear age was run for GBSS analyses of FA. Joint inference of group 
differences was assessed with Non-Parametric Combination (NPC) 
and Fisher’s combining function, while differences in individual 
metrics were also evaluated. Threshold free cluster enhancement 
(TFCE) (Smith and Nichols, 2009) was used to identify significant 
regions at p < 0.05, FWER-corrected across modality and contrast.

Associations with ADOS-2 CSS and SRS
Within the ASD cohort, levels of autistic symptoms were 

quantified with the ADOS-2 (Lord et al., 2000). The calibrated severity 
score (ADOS-CSS) is considered a reliable measure of the level of 
autistic symptoms (Hus and Lord, 2014) and ranges from 1-to-10 
(with 10 being the most severe) (Gotham et al., 2009). Non-parametric 
inference of voxelwise TBSS- and GBSS-skeletonized DTI and 
NODDI measures were estimated by linear regression using PALM 
and n = 500 permutations, controlling for the effects of age and 
IQ. Significance was defined as p < 0.05, FWER-corrected using TFCE 
(Smith and Nichols, 2009).

We also investigated relationships between microstructural 
metrics and parental reported Social Responsiveness Scale (SRS; 
Constantino and Gruber, 2012) total T-Score. The SRS was developed 
as a quantitative scale that measures the presence and extent of autistic 
social impairment. Non-parametric inference of voxelwise TBSS- and 
GBSS-skeletonized DTI and NODDI measures were estimated by 
linear regression using PALM with n = 500 permutations controlling 
for the effects of age and IQ. Significance was defined as p < 0.05, 
FWER-corrected using TFCE (Smith and Nichols, 2009).

Significant gray matter regions from GBSS analyses were identified 
by linearly co-registering statistical maps to the Harvard-Oxford 
Cortical atlas (Frazier et al., 2005; Desikan et al., 2006; Makris et al., 
2006; Goldstein et al., 2007) and the FSL flirt tool (Jenkinson et al., 
2012). Similarly, statistical maps from TBSS analyses were registered 
to the JHU ICBM-DTI-81 (Mori et al., 2005; Wakana et al., 2007; Hua 
et al., 2008) white-matter labels atlas using the FSL flirt tool (Jenkinson 
et al., 2012) to identify significant white matter regions.

TABLE 2 BIC and AIC age fitting across white matter skeleton: ** bolded values indicate best fit according to BIC and AIC metrics.

FICVF ODI FA MD RD AD

BIC: Log Age −713.991 −1,065.134 −797.923 −3,038.257 −3,036.685 −2,859.505

BIC: Linear Age −712.098 −1,065.637 −799.196 −3,035.447 −3,035.995 −2,857.291

AIC: Log Age −723.198 −1,074.341 −807.130 −3,047.464 −3,045.892 −2,868.712

AIC: Linear Age −721.305 −1,074.844 −808.403 −3,044.654 −3,045.201 −2,866.497
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Results

Age relationships across white and gray 
matter skeletons

Across the TBSS skeleton, logarithmic growth models were found 
to best describe the age-related trajectories for FICVF, MD, RD, and 
AD, while the linear model was more appropriate for FA and ODI. BIC 
and AIC values from comparison of logarithmic and linear age models 
for TBSS are provided in Table 2. Average age-related patterns of 
TBSS-skeletonized diffusion MRI metrics are shown in Figure 2. In 
general, FICVF and ODI increased with age, while MD, RD, and AD 
decreased with age. FA tended to remain relatively flat across the 
investigated age range.

Across the GBSS skeleton, logarithmic growth models best 
described the age-related trajectories for FICVF, ODI, MD, RD, and 
AD, while FA was best described by linear-age models. BIC and AIC 
values from comparison between logarithmic and linear age models 
for GBSS are provided in Table 3. Average age-related patterns of 
GBSS-skeletonized diffusion MRI metrics are shown in Figure 3. 

Generally, FICVF and ODI increased with age, while MD, RD, and 
AD decreased with age. FA tended to remain relatively flat 
across ages.

Microstructural age associations

To further assess the white and gray matter microstructural 
age relationships, voxelwise TBSS- and GBSS-skeletonized DTI 
and NODDI measures were fit to logarithmic and linear growth 
models to assess age-related changes. Across the TBSS skeleton, 
age-related patterns were generally consistent with the global 
mean age-related trajectories for each measure described in 
Figure 2. Measures of FICVF and ODI tended to increase with age 
(p < 0.05; FWER-corrected) across the TBSS skeleton, while 
measures of MD, RD, and AD tended to decrease with age 
(p < 0.05; FWER-corrected). FA showed sparse areas of decrease. 
Across white matter measures, relationships with age were 
consistently noted in white matter tracts including the fornix, 
anterior and posterior limbs of the internal capsules, external 

TABLE 3 BIC and AIC age fitting across gray matter skeleton: ** bolded values indicate best fit according to BIC and AIC metrics.

FICVF ODI FA MD RD AD

BIC: Log Age −1,015.932 −989.927 −1,206.414 −3,155.106 −3,159.127 −3,130.197

BIC: Linear Age −1,003.294 −988.118 −1,207.141 −3,142.637 −3,148.668 −3,115.656

AIC: Log Age −1,025.139 −999.133 −1,215.620 −3,164.313 −3,168.334 −3,139.404

AIC: Linear Age −1,012.501 −997.325 −1,216.348 −3,151.844 −3,157.875 −3,124.863

FIGURE 2

White matter microstructure age relationships from TBSS. Logarithmic and linear fit lines applied per Bayesian and Akaike Information Criterion (BIC 
and AIC) model selection in Table 2. Scatter points represent mean dMRI measures across the TBSS white matter skeleton shown in Figure 1A and to 
the left of the scatter plots. Bands represent 95% confidence intervals.
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capsules, genu, body, and splenium of the corpus callosum, and 
anterior corona radiata. Statistical maps for significant age 
relationships can be visualized in Figure 4.

Age-related patterns across the GBSS skeleton were also 
consistent with the global mean age-related trajectories for each 
measure described in Figure 3. Measures of FICVF, and ODI tended 
to increase with age (p < 0.05; FWER-corrected) across the GBSS 

skeleton, while measures of MD, RD, and AD tended to decrease with 
age (p < 0.05; FWER-corrected). FA showed small clusters of 
significant increases with age. Across gray matter measures, 
relationships with age were consistently observed in the insular 
cortex, precentral gyrus, postcentral gyrus, and the central opercular 
cortex. Statistical maps for significant age relationships can 
be visualized in Figure 5.

FIGURE 3

Gray matter microstructure age relationships from GBSS. Logarithmic and linear fit lines applied per Bayesian and Akaike Information Criterion (BIC and 
AIC) model selection in Table 3. Scatter points represent mean dMRI measures across the GBSS gray matter skeleton shown in Figure 1B and to the left 
of the scatter plots. Bands represent 95% confidence intervals.

FIGURE 4

Voxel-based age relationships of white matter microstructure. Logarithmic and linear fits applied per Bayesian and Akaike Information Criterion (BIC 
and AIC) model selection in Table 2. Significant positive (Yellow/Red) and negative (Light blue/Dark blue) voxels are shown on the dMRI maps for each 
measure. Color bars represent level of significance.
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FIGURE 5

Voxel-based age relationships of gray matter microstructure. Logarithmic and linear fits applied per Bayesian and Akaike Information Criterion (BIC and 
AIC) model selection in Table 3. Significant positive (Yellow/Red) and negative (Light blue/Dark Blue) voxels are shown on the dMRI maps for each 
measure. Color bars represent level of significance.

FIGURE 6

Group differences in white matter microstructure across NODDI and DTI measures. Level of significance and neuroanatomical location of voxels from 
group difference model are displayed on the mean dMRI maps from all participants. Scatter points (NT  =  blue; ASD  =  red) represent mean dMRI values 
of significant voxels for each measure. Trendlines show model prediction and 95% confidence intervals for group difference on dMRI measures when 
accounting for the effects of age. (A) Significant group difference for FICVF. (B) Significant group difference for ODI. (C) Significant group difference for 
FA. (D) Significant group difference for MD. (E) Significant group difference for RD. (F) Significant group difference for AD.
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ASD and NT group differences across white 
and gray matter microstructure

Group comparisons of white matter microstructure using TBSS 
revealed significant (p < 0.05, FWER-corrected) FICVF, ODI, FA, MD, 
RD, and AD differences between ASD and NT groups (Figure 6). The 
ASD group demonstrated lower FICVF, and AD, and higher ODI, 
MD, and RD compared to the NT group across widespread white 
matter tracts. FICVF, ODI, MD, and RD were all observed to differ 
between the groups in the anterior corona radiata and much of the 
corpus callosum. All neuroanatomical locations of significant group 
differences by dMRI measure can be found in Supplementary Table S1.

GBSS group comparisons revealed significant (p < 0.05, FWER-
corrected) FA and ODI differences between ASD and NT groups 
(Figure 7). The ASD group demonstrated higher ODI, and lower FA 
compared to the NT group. ODI and FA were both observed to differ 
between the groups in the right frontal pole, frontal orbital cortex, 
insular cortex, lingual gyrus parahippocampal gyrus, among others. 
No significant group differences in GBSS were observed for measures 
of FICVF, MD, RD, or AD. All neuroanatomical locations of 

significant group differences by dMRI measure can be  found in 
Supplementary Table S2.

dMRI measures of ODI and FA were significantly different 
between groups in both white matter and gray matter 
(Supplementary Figure S1). White matter and gray matter regions 
within proximity that display a significant group difference in ODI 
and FA include bilateral external capsules and insular cortices, 
bilateral posterior thalamic radiations and lingual gyri, the genu of the 
corpus callosum and cingulate gyri, and the left hemisphere cingulum 
bundle and parahippocampal gyrus.

Age-by-group interactions across white 
and gray matter microstructure

Age-by-group interactions across white and gray matter 
microstructure were non-significant after corrections for multiple 
comparisons. However, several relationships were observed at p < 0.01, 
uncorrected. In the TBSS analysis, uncorrected (p < 0.01) age by group 
interactions were observed for AD such that the NT group showed 

FIGURE 7

Group differences in gray matter microstructure across NODDI and DTI measures. Level of significance and neuroanatomical location of voxels from 
group difference model are displayed on the mean dMRI maps from all participants. Scatter points (NT  =  blue; ASD  =  red) represent the mean dMRI 
values of significant voxels for each measure. Trendlines show model prediction and 95% confidence intervals for group difference on dMRI measures 
when accounting for the effects of age. (A) Significant group difference of ODI. (B) Significant group difference of FA.
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AD decreases with age, whereas the AD in the ASD group slightly 
increased with age (Supplementary Figure S2). For GBSS, uncorrected 
(p < 0.01) age by group interactions were observed for measures of 
ODI, FA, MD, and AD (Supplementary Figure S3). The NT group 
showed increased ODI with age, whereas ODI in the ASD group 
slightly decreased with age. FA in gray matter decreased with age in 
the NT group but increased with age in the ASD group. MD and AD 
were seen to decrease with age in the NT group, and slightly increase 
and remain unchanged with age in the ASD group, respectively.

Associations of white and gray matter 
microstructure with ADOS- CSS and SRS

Significant relationships between ADOS-CSS and white matter 
microstructure (accounting for the effects of age and IQ) were 
observed with TBSS for FA and AD within the ASD cohort (p < 0.05; 
FWER-corrected) (Figure 8; Supplementary Table S2). FA and AD 
were found to be positively related to ADOS-CSS in the genu and 
body of the corpus callosum. No significant relationships between 
ADOS-CSS and GBSS gray matter measures were observed in this 
sample. Furthermore, no significant relationships between SRS and 

microstructure measures in either white matter or gray matter were 
observed in this sample.

Discussion

Autism spectrum disorders are thought to arise from atypical 
brain development leading to cascading and long-term differences in 
the structural and functional organization of the brain. However, little 
is known regarding the microstructural brain changes occurring in 
autistic individuals within the period from adolescence-into-
adulthood, and how these neurological differences may subserve the 
autistic phenotype in this age-range. As such, this study aimed to 
examine age-related differences across whole brain white matter and 
gray matter microstructure between autistic and non-autistic 
individuals. Using TBSS and GBSS, we  report widespread group 
differences across white and gray matter microstructure, with white 
matter microstructure related to a clinical score of autism severity 
(ADOS-CSS). Our findings provide new insights into group 
differences in white and gray matter organization in ASD, with 
evidence for a role of white matter tract organization in the level of 
autistic symptoms in this age-range.

FIGURE 8

White matter microstructure relationships of (A) FA and (B) AD with ADOS- CSS in ASD. Level of significance and neuroanatomical location of significant 
voxels are displayed on the dMRI maps. Scatter plots represent mean dMRI values of significant voxels for each measure. Trendlines show model prediction 
and 95% confidence intervals for relationship between dMRI measures and ADOS-CSS when accounting for the effects of age and IQ.
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Our white matter DTI findings complement the literature, with 
widespread decreases in FA, and increases in MD and RD (Alexander 
et al., 2007a; Groen et al., 2011; Kleinhans et al., 2012; Travers et al., 
2015). While previous studies of ASD often report null findings of 
white matter differences in AD (Lee et al., 2007; Alexander et al., 
2007a; Ameis et  al., 2011; Jeong et  al., 2011; Travers et  al., 2012), 
reduced AD in autistic children was found in a TBSS study within 
prefrontal and thalamic white matter (Barnea-Goraly et al., 2010). 
Further, an ASD study including children-to-adult age individuals 
showed similar reductions in AD in ASD compared to the NT group 
in widespread white matter regions including the dorsolateral 
prefrontal cortex, superior longitudinal fasciculus, corpus callosum, 
among others (Noriuchi et al., 2010). These findings of reduced AD 
may reflect decreased axon diameter, decreased fiber density, or lack 
of fiber coherence. Reductions in white matter AD in the ASD group 
were noted in the current study within areas of the internal capsules 
and white matter of the brain stem. Similar findings of lower AD were 
also reported in autistic children compared to NT children 
5-to-14 years old in the superior cerebellar peduncle (Hanaie 
et al., 2013).

Still, only a few studies to date have applied NODDI to investigate 
differential microstructural characteristics of the brain in autistic 
adolescents and adults with conflicting findings (Matsuoka et al., 2020; 
Yasuno et al., 2020; Andica et al., 2021). For example, Andica et al. 
(2021) reported decreased neurite density in the autistic group 
compared to the non-autistic group in long-range association and 
commissural tracts and no differences in neurite dispersion. Similar 
trends of decreased neurite density in ASD have been observed in 
cortical gray matter, with no differences in neurite dispersion (DiPiero 
et al., 2022). However, Matsuoka et al. reported increased neurite 
dispersion in ASD in gray matter regions of the visual cortex 
(Matsuoka et al., 2020) whereas Yasuno et al. did not detect group 
differences in neurite density or dispersion across white or gray matter 
(Yasuno et al., 2020). In the current work, we report decreased neurite 
density (as indexed by reduced FICVF) in white matter and increased 
orientation dispersion in both white and gray matter in the autistic 
group compared to the NT group in many regions reported in 
previous work (Matsuoka et  al., 2020; Andica et  al., 2021). 
Furthermore, our findings of increased ODI in gray matter were 
accompanied by a decrease in FA across widespread gray matter 
regions including the cingulate gyrus, frontal poles, lingual gyrus, 
among others (see Supplementary Table S2), highlighting the potential 
role of NODDI in disentangling the undefined biological contributions 
to these microstructural differences in gray matter. As current reports 
are conflicting, likely due to sample heterogeneity, large scale 
longitudinal studies needed to apply NODDI metrics to investigate 
white and gray matter microstructural changes in ASD across 
the lifespan.

White matter microstructure connects gray matter regions 
allowing for highly efficient and precise temporal communication 
across and between brain regions. As major white matter tracts play a 
large role in neural communication, and in turn, behavior, autistic 
traits have long been postulated to result from differences in structural 
and functional brain connectivity (Travers et al., 2012; Ameis and 
Catani, 2015; Dean et al., 2016). We report relationships between 
white matter microstructure and measure of autism severity derived 
from the ADOS-CSS. Specifically, we describe positive associations 
between white matter microstructure FA and AD and ADOS-CSS in 

the genu, body, and splenium of the corpus callosum, posterior 
thalamic radiation, anterior corona radiata, and the middle cerebellar 
peduncle (Figure 8; see Supplementary Table S3). Given the large 
clinical and biological heterogeneity across autistic individuals, studies 
linking the brain’s microstructure to autistic traits have been 
inconsistent. For example, negative relationships have been reported 
between restricted and repetitive behaviors and FA in major white 
matter tracts in autistic children and adults (Thakkar et al., 2008; 
Fitzgerald et  al., 2019). Although not significant, trend-level 
relationships have also suggested negative associations between FA 
and autism severity measured by the ADOS in autistic adults within 
the body of the corpus callosum (Kleinhans et al., 2012). In another 
study of autistic adults, no significant correlations between white 
matter microstructure and clinical severity measured by the ADI-R 
and ADOS were found (Catani et al., 2016). Although gray matter 
regions in the current sample were not related to autistic traits 
measured by the SRS or ADOS-CSS, a gray matter study of younger 
autistic males found ADOS-CSS to be negatively related to ODI, and 
positively related to MD, RD, and AD (DiPiero et al., 2022). These 
inconsistent findings point to the wide heterogeneity of brain 
morphology in autistic individuals that change with age and warrant 
specific longitudinal investigations between neurological correlates of 
the clinical phenotypes of ASD across the lifespan.

A major goal of the current study was to investigate potential 
age-related differences between diagnostic groups in white and gray 
matter organization within the period from adolescence into 
adulthood. While the developmental trajectories of gray matter 
microstructure are not well defined, positive relationships between 
neurite density and myelin content and negative relationships between 
ODI and cortical thickness have been described in adulthood 
(Fukutomi et al., 2018). Developmental trajectories of white matter 
microstructure have been shown to follow a second order polynomial 
pattern peaking around mid-adulthood and rapidly decreasing in old 
age (Yeatman et  al., 2014). Although our study did not detect 
significant age-related differences between diagnostic groups across 
white or gray matter, trend level associations were noted (see 
Supplementary Figures S2, S3) and may be a hallmark of a plateau in 
brain maturation within this developmental period. For example, a 
longitudinal study of white matter maturation in autistic individuals 
investigated age-by-group interactions on FA of the corpus callosum 
across different age bins (less than 10 years, 10 to 20 years, and greater 
than 20 years) and reported significant age-by-group interactions for 
FA in all subregions for individuals under 10 years of age, but no 
significant interactions for either of the older groups (Travers et al., 
2015). The groupwise trajectories of FA curves crossed during 
childhood, leading to a sustained decrease in FA in the ASD group 
relative to NT during adolescence and young adulthood. These 
longitudinal results from Travers et al., 2015 suggest a differential 
trajectory in early childhood development of the corpus callosum 
microstructure in ASD that transitions into sustained group 
differences in adolescence and adulthood. Findings converge with the 
results of our current study with sustained group differences in tissue 
microstructure, with an absence of a significant age-by-group 
interaction potentially capturing structural brain differences 
established prior to this developmental stage that may continue to 
change with advanced aging; hence, our adolescent-to-adult sample 
may capture the period of a developmental plateau with persistent 
group-wise differences. This normalization trend in the developmental 
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organization of white matter microstructure from adolescence to 
mid-adulthood in ASD is reported in other white matter studies 
(Kleinhans et al., 2012), however, more work is needed to investigate 
the age-related trajectories occurring in gray matter and into 
advanced aging.

There are a few notable limitations to the current study. First, the 
cross-sectional design and all male participant sample limit our ability 
to evaluate individual differences and may not be generalizable to 
autistic females. At the initial outset of this study, male participants 
were prioritized to decrease heterogeneity and have adequate power 
(Prigge et al., 2021). Additional studies of autistic females are needed 
to address the disparities in ASD research surrounding non-male 
participants to provide equitable opportunities for the development of 
individualized supports into adulthood. Future work to include 
autistic individuals with intellectual disabilities that may currently 
exclude them from participating in MRI studies are also needed to 
expand the generalizability of our results, and to aid in improving 
outcomes for autistic adults. Additionally, longitudinal studies are 
necessary for gaining a deeper understanding of brain development 
especially in aging as other factors, such as life experience, may 
influence structural and functional brain development and behavior.

To assess autism severity, clinical measures from the ADOS-2 
(calibrated severity score (ADOS-CSS)) and SRS (total T-Score) were 
used. While the ADOS-2 is an activity-based diagnostic tool 
administered by trained clinicians to assess autistic symptoms during 
a standardized evaluation, the SRS is a parent-based questionnaire that 
encompasses a broader range of behaviors observed by the parent 
across a wider context and time frame. The complementary 
information provided by these two assessments strengthens the 
interpretability of our study (Hus et al., 2013a,b, 2014). However, it 
remains unclear how these severity scores and their underlying brain 
structures change with advancing age and how the temporal 
emergence of brain-behavior relationships changes across the lifespan.

Our study leverages information from both the DTI and NODDI 
models to investigate age relationships, group differences, and 
age-related differences between diagnostic groups. While both models 
are distinctly different models to describe the underlying dMRI signal, 
with DTI serving as a signal representation model and NODDI a 
biophysical model (Basser et al., 1994a,b; Alexander et al., 2007b; 
Zhang et  al., 2012; Jelescu et  al., 2020), use of metrics from both 
models allows for a more complete view of microstructural differences 
related to ASD. Indeed, Zhang et al., 2012, suggests that mutual use of 
DTI and NODDI metrics for completeness, particularly in clinical 
studies, may be desirable as other non-neurite sources may contribute 
to changes in DTI-based metrics (Zhang et al., 2012). Future work 
examining the relationships between DTI and NODDI as well as 
investigating the sensitivity of these models to underlying biological 
factors are needed. Lastly, although inclusion of DTI metrics allows 
for our findings to be interpreted in the context of previous work, DTI 
metrics, particularly in gray matter, may be come unstable as the 
diffusion environment becomes more isotropic (Lenglet, 2015) and is 
thus considered a limitation of our study.

In conclusion, the current study investigated white and gray 
matter microstructural differences between autistic and non-autistic 
individuals using advanced dMRI, TBSS, and GBSS. Findings revealed 
group differences in white and gray matter organization in brain areas 
involved in various cognitive, sensory, and motor functions. 
Furthermore, this work begins to bridge a critical gap in knowledge 

surrounding brain organization related to ASD from adolescence into 
mid-adulthood. To our knowledge, this study is the first to utilize 
NODDI in conjunction with the TBSS and GBSS frameworks to assess 
whole brain microstructural differences in ASD and supports the 
hypothesis that differences in both neural circuitry and cortical 
microstructure play an important role in ASD. Future studies are 
necessary to assess how these microstructural brain differences 
continue to change into late-adulthood, and how these structural 
changes may support future behavioral challenges in autistic adults. 
Findings from this study will help guide future longitudinal studies of 
ASD from early life into late-adulthood and may ultimately inform 
development of improved treatment options for autistic individuals 
based on brain-behavior relationships.
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