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Emotion recognition is a challenging task, and the use of multimodal fusion

methods for emotion recognition has become a trend. Fusion vectors can provide

a more comprehensive representation of changes in the subject’s emotional state,

leading to more accurate emotion recognition results. Di�erent fusion inputs or

feature fusion methods have varying e�ects on the final fusion outcome. In this

paper, we propose a novel Multimodal Feature Fusion Neural Network model

(MFFNN) that e�ectively extracts complementary information fromeyemovement

signals and performs feature fusion with EEG signals. We construct a dual-branch

feature extraction module to extract features from both modalities while ensuring

temporal alignment. A multi-scale feature fusion module is introduced, which

utilizes cross-channel soft attention to adaptively select information from di�erent

spatial scales, enabling the acquisition of features at di�erent spatial scales for

e�ective fusion. We conduct experiments on the publicly available SEED-IV

dataset, and our model achieves an accuracy of 87.32% in recognizing four

emotions (happiness, sadness, fear, and neutrality). The results demonstrate

that the proposed model can better explore complementary information from

EEG and eye movement signals, thereby improving accuracy, and stability in

emotion recognition.

KEYWORDS

multimodal emotion recognition, electroencephalogram (EEG), eye movement, feature

fusion, multi-scale, Convolutional Neural Networks (CNN)

1. Introduction

Emotions are influenced by various factors, and different emotions manifest themselves

through facial expressions and tone of voice, among other aspects. Emotion is an integral

part of intelligence and cannot be separated from it. Therefore, the next breakthrough in the

field of artificial intelligence may involve endowing computers with the ability to perceive,

understand, and regulate emotions. Professor Picard and her team at the Massachusetts

Institute of Technology (MIT) formally introduced the concept of affective computing

(Picard, 2000) and emphasized the crucial role of affective computing in human-computer

interaction (Picard et al., 2001). Human emotion recognition is essential for applications

such as affective computing, affective brain-computer interfaces, emotion regulation, and

diagnosis of emotion-related disorders (Pan et al., 2018). Therefore, it is necessary to

establish accurate models for emotion recognition.
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In recent years, emotion recognition systems have primarily

utilized speech signals (El Ayadi et al., 2011), facial expressions

(Ko, 2018), non-physiological signals (Yadollahi et al., 2017), and

physiological signals (Shu et al., 2018) for emotion recognition.

Each of these modalities has its own prominent characteristics.

Subjective behavioral signals (including facial expressions, speech,

eye movements, etc.) are convenient to acquire, but they are

influenced by various factors, such as the potential for facial

expression masking. Objective physiological signals (including

electroencephalogram (EEG), electrocardiogram, etc.) are less

susceptible to masking and can more accurately reflect changes

in a person’s emotions, but their acquisition methods are more

complex (Zhou et al., 2022). EEG signals have shown remarkable

performance in emotion recognition (Zheng and Lu, 2015; Yang

et al., 2017; Yin et al., 2017; Zheng et al., 2017), making them a

suitable method for extracting human affective information.

Generally, in most cases, various features are extracted from

EEG signals, and these extracted features are then utilized

for classification purposes. Petrantonakis and Hadjileontiadis

(2009) proposed an EEG-based feature extraction technique using

higher-order crossing (HOC) analysis and implemented a robust

classification approach. They tested four different classifiers and

achieved efficient emotion recognition. Shi et al. (2013) introduced

differential entropy (DE) features in five frequency bands for the

first time and demonstrated the effectiveness of DE features in

representing EEG signals. Duan et al. (2013) extracted frequency-

domain features from multi-channel EEG signals in different

frequency bands and employed SVM and KNN as emotion

classifiers for classification purposes. However, extensive evidence

suggests that traditional machine learning approaches fail to

establish a direct connection between extracted features and

emotional changes (Liu et al., 2019; Huang et al., 2021). To capture

deeper emotional features, we employ deep learning for feature

extraction in this study.

Deep learning has shown superiority over traditional machine

learning methods in various fields such as computer vision

(Jaderberg et al., 2015), natural language processing (Hu, 2019),

and biomedical signal processing (Craik et al., 2019). Furthermore,

deep learning approaches have been widely employed in emotion

recognition based on EEG signals. Maheshwari et al. (2021)

proposed a multi-channel deep convolutional neural network

(CNN) for emotion classification using multi-channel EEG signals.

Chen et al. (2019) introduced a deep CNN-based method for

EEG emotion feature learning and classification, exploring the

impact of temporal features, frequency-domain features, and their

combinations on emotion recognition using several classifiers.

Zhang et al. (2018) introduced a spatio-temporal recursive neural

network (STRNN) for emotion recognition, which extracts spatio-

temporal features from EEG signals for emotion recognition and

achieves promising performance. Li et al. (2020) proposed a

novel framework called the Bilateral Hemisphere Difference Model

(BiHDM) to capture the differential information between the

left and right hemispheres in EEG signals. They employed four

directed Recurrent Neural Networks (RNNs) to capture the spatial

information of EEG electrode signals, and a domain discriminator

was utilized to generate domain-invariant emotion features. Zhang

et al. (2019) proposed a design called Graph Convolution Broad

Network (GCB-net), which utilizes graph convolution layers to

extract features from graph-structured inputs and employs stacked

regular convolution layers to capture relatively abstract features. To

enhance the performance of GCB-net, a Broad Learning System

(BLS) is applied to augment its capabilities. Shen et al. (2020)

introduced a CRNN model that combines Convolutional Neural

Networks (CNNs) with Recurrent Neural Networks and Long

Short-TermMemory (LSTM) cells for extracting frequency, spatial,

and temporal information from multi-channel EEG signals for

emotion classification, and demonstrated the effectiveness of the

model. Li et al. (2023) proposed a multi-scale Convolutional Neural

Network (STC-CNN) that extracted and fused the spatio-temporal

domain features and connectivity features of EEG signals for

emotion classification. In the methods for extracting emotional

information, Convolutional Neural Networks (CNNs) have shown

promising performance (Moon et al., 2018; Khare and Bajaj, 2020).

Therefore, we employ CNNs to extract emotional features from the

EEG and eye movement modalities.

However, Human emotions are rich in expression, and it is

not possible to accurately describe emotions using single modal

signals alone. In recent years, researchers have proposed the use

of multimodal signal fusion methods for emotion recognition.

Schirrmeister et al. (2017) inspired by the success of deep

learning in emotion recognition, proposed an emotion recognition

system that combines visual and auditory modalities. This system

utilizes convolutional neural networks (CNNs) to extract emotional

information from speech, deep residual networks to extract

visual information, and employs long short-term memory (LSTM)

networks for end-to-end training. Lu et al. (2015) demonstrated

the effectiveness of eye movement signals in distinguishing between

different emotion categories. They also discovered that fusing EEG

and eye movement signals enhances the accuracy of emotion

classification, indicating a relationship between the two modalities.

Zhou et al. (2022) proposed a framework for integrating subjective

and objective features, which combines the spatiotemporal features

of EEG signals and the gaze features. This framework aims to

achieve improved emotion recognition based on EEG and eye

movement signals. Mao et al. (2023) introduced a cross-modal

guidance and fusion network that effectively utilizes both EEG and

eye movement signals and combines them to achieve enhanced

RSVP decoding performance. Fei et al. (2022) proposed a cross-

modal deep learning method based on Canonical Correlation

Analysis (CCA), referred to as Cross-Modal Deep CCA (CDCCA).

By applying specific CCA constraints, each modality is transformed

and aligned in a hyper-space. During the testing phase, only

eye movement signals are used as input, while knowledge of the

electroencephalogram (EEG) signals is learned during the training

phase. Existing feature fusion methods mostly focus on feature

selection without reflecting the distinctiveness of the features,

which may result in the model not fully leveraging the strengths

and weaknesses of different features.

To address the aforementioned issues, this paper proposes a

novel multimodal feature fusion neural network(MFFNN). Since

the eye movement signals in the SEED-IV dataset are collected

every 4 seconds, considering the rationale of fusing two modalities,

we process the EEG signals using a 4-second time window.

Figure 1 illustrates the multimodal emotion recognition framework
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FIGURE 1

Multimodal emotion recognition framework. (A) Dual branch feature extraction module. (B) Multi-scale feature fusion module.

FIGURE 2

The overview of MFFNN.

proposed in this study. The main contributions of this study are

as follows.

• A novel multimodal feature fusion neural network model

is proposed. The dual-branch feature extraction module

extracts emotional features, while the multi-scale feature

fusion module explores complementary information in eye

movement signals and EEG signals, selecting themost relevant

features for emotion fusion.

• Experimental validation is conducted on the SEED-IV dataset,

demonstrating the effectiveness of the proposed model, and

validating the functionality of each module.

The remaining sections of the paper are as follows: In Section

2, a detailed description of the multimodal fusion framework is

provided, including the dual-branch feature extraction module

(EEG signal feature extraction, eye movement signal feature

extraction) and the multi-scale feature fusion module (fusion

of features from both modalities). In Section 3, the SEED-IV

dataset is introduced, and experiments are conducted to analyze

and discuss the experimental results, validating the feasibility

and effectiveness of the model. Finally, Section 4 concludes

the article.

2. Methodology

2.1. Multimodal feature fusion neural
network model

Multimodal fusion enables the utilization of complementary

information from different modalities to discover dependencies

across modalities. The role played by each feature map

extracted in the classification task may vary, necessitating

further selection. In other words, certain portions of the

features contain necessary information related to discriminating

between target and non-target class samples, while other

parts have minimal impact on the classification. Therefore, to

extract the most relevant and complementary features from
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different modalities for emotion recognition, we propose

a Multimodal Feature Fusion Neural Network (MFFNN)

that selects and fuses the features from different modalities

that are most correlated with emotions. The allocation of

weights is determined based on the interactions within and

between modalities.

The proposed MFFNN framework, as illustrated in Figure 1,

consists of two main modules: the dual-branch feature extraction

module and the multi-scale feature fusion module. The dual-

branch feature extractionmodule comprises two parallel backbones

responsible for extracting emotional features from both EEG

and Eye modalities. A multi-layer convolutional structure is

employed as the feature extractor, enabling effective extraction

of emotional information from both modalities. To address the

limitations of each modality and leverage their complementarity,

a multi-scale feature fusion module is proposed. This module

adaptively selects information from different spatial scales and

employs soft attention mechanisms to explore interactions between

modalities, aiming to identify the most relevant features for

emotion recognition. The selected features are weighted and

fused to obtain the fusion feature F, which is then input to

a fully connected layer and activated by Softmax to yield the

classification result.

As shown in Figure 2, the dataset samples are first divided

into training and testing samples. Subsequently, the training

and testing samples are preprocessed by removing the baseline

signal. Additionally, the slice window technique is employed

for label preprocessing. Next, the training samples are used to

train the proposed MFFNN model, computing the cross-entropy

loss, and updating the network parameters using the Adam

optimizer (Kingma and Ba, 2014). Finally, the trained model

is employed to recognize the emotional states of the testing

samples, and the classification accuracy is used as the final

recognition result.

2.2. Dual-branch feature extraction module

2.2.1. EEG feature extraction
To facilitate the extraction of emotional information from

EEG signals, EEG signals are treated as two-dimensional data,

where one dimension represents EEG channels and the other

dimension represents time. The SEED-IV dataset experiment’s

electrode distribution is illustrated in Figure 3, with each channel

corresponding to a specific brain location, providing spatial

information of the EEG signal. Additionally, as emotions change

over time, the EEG signals also carry temporal information. To

extract features from both the temporal and spatial aspects of the

EEG, we have designed our EEG feature extraction architecture

based on CNN, as depicted in Figure 4.

Preprocessing of EEG data: The SEED-IV dataset provides

62-channel EEG data. In order to remove noise and eliminate

artifacts, bandpass filters ranging from 1 Hz to 75 Hz were

utilized to preprocess the EEG data, along with baseline correction.

Considering that the eye movement signals in the SEED-IV

dataset are collected every 4 seconds, and taking into account

the rationality of fusing the two modalities, we divide the EEG

FIGURE 3

EEG electrode distribution.

signals into non-overlapping time windows of 4 seconds. To

reduce computational complexity, we downsample the temporal

dimension of the input samples to 60, resulting in EEG modality

samples of shape 240 (4s× 60)×62 (62 electrodes).

After preprocessing, to better capture the spatiotemporal

characteristics of EEG signals related to emotions, our EEG feature

extraction model includes four convolutional blocks. The first

three convolutional blocks include a normalization layer and a

max-pooling layer, while the last convolutional block does not

include a max-pooling layer. Each convolutional block consists of

a convolutional layer and two different convolutional kernels for

extracting the spatiotemporal features of the EEG. Each individual

convolutional layer employs ReLU as the activation function. The

two convolutional kernels have different sizes, namely 3 × 1 and

1 × 5. The 3 × 1 kernel convolves the data along the temporal

dimension to extract the temporal features of the EEG signals, while

the 1 × 5 kernel convolves the data along the spatial dimension to

extract the spatial features of the EEG signals.

2.2.2. Eye movement feature extraction
We utilize the SEED-IV dataset as the experimental dataset in

our study. This dataset encompasses detailed parameters of various

eye movement signals, including pupil diameter, gaze details,

saccade details, blink details, and event details statistics. Studies in

neuroscience and psychobiology have shown a connection between

emotions and eye movement data, particularly pupil diameter

and dilation response. Therefore, we focused on investigating the

changes in pupil diameter during emotional variations.

Preprocessing of EYE data: Due to the significant influence

of illumination on pupil diameter, we employed a principal

component analysis (PCA) method (Soleymani et al., 2011) to
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FIGURE 4

EEG spatio-temporal feature extraction structure.

remove the interference of illumination on pupil diameter. The

specific implementation process is as follows.

Let M be the matrix of X × Yi, which contains the response of

the subject to the same video,X represents the sample,Yi represents

the participant,M is divided into two components, as shown by the

following equation:

M = A+ B (1)

A is the strongest illuminance response in the signal, which

is the most crucial aspect. Studies have shown that the size of

the pupillary light reflex varies with age, and most participants

in our experiment are young, in their twenties, thus eliminating

the influence of aging. B represents the emotional information

generated after receiving video stimuli. The sources of these two

components are independent, and the decorrelation of principal

component analysis can separate these two components. We

utilize principal component analysis (PCA) to decompose M

into components of Yi. In order to capture the emotional

information contained in the pupil diameter, we assume that the

first principal component approximates the estimation of light

reflection. Subsequently, the normalized principal component is

removed from the normalized time series.

After preprocessing to remove the interference of illumination

on the pupils, we aim to extract emotional information from the

pupil diameter. The temporal dimension of the input samples is

downsampled to 60, and the EYE modality with a sample shape

of 240 (4s × 60) ×4 (pupil size, and the X and Y coordinates of

the left and right eye gaze points) is fed into the eye movement

feature extractor (CNN) to extract features. In our eye movement

feature extraction model, we construct four convolutional blocks.

Each convolutional block consists of a normalization layer and

an adaptive pooling layer (performing only max pooling along

the temporal dimension). Additionally, each block contains a

convolutional layer using ReLU as the activation function and a

1 × 5 convolutional kernel to extract emotional features from

eye movements.

2.3. Multi-scale feature fusion module

In this section, the proposed multi-scale feature fusion method

is introduced. Existing feature fusion methods primarily focus

on feature selection, but they often overlook the dissimilarity

among features, which may limit the model’s ability to fully utilize

the strengths and weaknesses of different features. To effectively

leverage the advantages of different modal features, a multi-scale

feature fusion method is designed, as depicted in Figure 5.

In order to discover traits that are more correlated with

emotions, efforts are directed toward finding specific traits that

show a stronger correlation with emotional states. Through in-

depth feature analysis and selection, we find out the features closely

related to various emotional expressions. Firstly, the results of the

two branches are fused by element-wise summation:

V = Veeg + Veye (2)

where Veeg and Veye represent the characteristics of EEG and

Eye mapping, Veeg ∈ RH×W×C and Veye ∈ RH×W×C . We then

embed global information by simply using global averaging pooling

to generate x ∈ RC . The purpose of doing this is to extract the

global features after fusing the two modalities. Specifically, the

c-th element of x is computed by reducing V along the spatial

dimensions H ×W:

xd = Gap (Vd) =
1

H ×W

H
∑

i=1

W
∑

j=1

Vd(i, j) (3)

Furthermore, we introduce a compact feature y ∈ Rd×1 to

guide accurate and adaptive feature selection. To improve efficiency

and reduce dimensionality, we employ a simple fully connected

(FC) layer:

y = FC(x) = Re lu
(

fBN(Wx)
)

(4)

where Relu function is activation function, fBN is batch

normalization and W ∈ Rd×C. To investigate the impact of

d on model efficiency, we control its value using a reduction ratio r.

d = max(C/r, L) (5)

where L represents the minimum value of d (L = 32 is a typical

setting in our experiments).

Under the guidance of compact feature y, cross-channel soft

attention is used to select information of different spatial scales

adaptively. The purpose of this is to select the modal features

most relevant to emotion, and then we get two weight vectors.

Specifically, apply softmax operator on channel numbers:

ac =
eAcy

eAcy + eBcy
, bc =

eBcy

eAcy + eBcy
(6)
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FIGURE 5

Multi-scale feature fusion (MS Fusion).

where A,B ∈ RC×d and a,b represent the soft attention vectors

for Veeg and Veye. The magnitude of variable a,b depends on the

correlation between the corresponding modality and emotion, with

higher correlation leading to larger values. The attentionAc ∈ R1×d

corresponds to the c-th row of A, ac refers to the c-th element of

a, and the same applies to Bc and bc. The final fusion feature is

obtained by weighting the attention on each kernel:

Fc = ac · Veeg + bc · Veye , ac + bc = 1 (7)

where F = [F1, F2, · · · , FC] , Fc ∈ RH×W .

After obtaining the fused features, we input them into a fully

connected layer and apply the softmax activation function to

obtain the classification results. The entire network is trained by

minimizing the cross-entropy loss, as shown below:

L = −
1

N

∑

i

M
∑

c=1

yic log
(

pic
)

(8)

In the equation, M represents the total number of categories.

The variable yic serves as an indicator with binary values (0 or 1),

indicating whether the observation sample i belongs to category

c. Similarly, pic represents the predicted probability of the i-th

observation sample belonging to category c.

3. Experiments and discussion

To demonstrate the effectiveness of ourMFFNN, we conducted

experiments on the SEED-IV dataset and compared it with both

single modal and multimodal methods.

3.1. Dataset

The SEED-IV dataset, which is a widely used multimodal

emotion dataset, was released by Shanghai Jiao Tong University

(Zheng et al., 2018). The detailed information of this dataset is

presented in Table 1.

In the SEED-IV dataset induction experiment, 44 participants

(22 males, all college students) were recruited to self-evaluate their

TABLE 1 Detailed information about the SEED-IV dataset.

Attributes Description

Subject 15 (7 males and 8 females)

Stimulant 72 movie clips

Trials of subjects 72 times (24× 3)

Length of each trial 125 s (5 s hint of start, 120 s film clip)

Number of electrodes 62 electrodes

Emotional labels Happy, sad, fearful, neutral

EEG data Array shape 24× 62× data

(24 experiments, 62 channels)

emotions. A library of 168 movie clips representing four emotions

(happiness, sadness, fear, and neutrality) was selected. Through

preliminary research, 72 movie clips were carefully chosen, and

the experimental procedure was similar to that of SEED. Fifteen

participants underwent three sessions of experiments on different

days, with each participant watching 6 movie clips per session,

resulting in a total of 24 experiments. During the experiments,

their EEG signals and eye movement data were simultaneously

collected using a 62-channel ESI neuroimaging system and SMI

eye movement glasses. The specific experimental procedure is

illustrated in Figure 6. Participants watched one of the movie

clips, with a 5-second prompt before each segment, and each

movie clip lasted approximately two minutes, followed by a 45-

second feedback period. Figure 7 displays the raw EEG curves of

a participant with certain channels downsampled to 200 Hz during

a single experiment. Figure 8 illustrates the variation curves of the

average pupil size [px] X and average pupil size [px] Y during the

same experiment (blue represents X, orange represents Y).

3.2. MFFNN realization

In this study, the proposed method is evaluated on the SEED-

IV dataset, which consists of data from 15 participants, each of

whom underwent 3 sessions and experienced four emotion types
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FIGURE 6

The detailed arrangement of the experiment.

FIGURE 7

A fragment of EEG signals from selected channels.

FIGURE 8

Average pupil size variation curve.

(happiness, sadness, fear, and neutrality). Each participant’s session

includes 24 experiments, resulting in a total of 1,080 samples.

We split the dataset into 80% original training data and 20% test

data. To ensure that each fold includes all four different emotion

categories, we adopt 5-fold cross-validation in our experiments.

The data set partitioning method is consistent with prior studies

(Lu et al., 2015; Liu et al., 2019).

Moreover, this section provides an explanation of the network

parameters used in MFFNN, accompanied by an analysis of the

impact of specific parameters on the experimental results. The

rationale behind the selection of these parameters is discussed.

FIGURE 9

MFFNN training loss changes with epoch.

FIGURE 10

MFFNN training accuracy changes with epoch.

Figures 9, 10 represent the changes in loss and accuracy with epochs

during the model’s training process. As shown in the figures, when

the epoch value reaches around 100 (with minimal deviation),

the loss and accuracy gradually converge and essentially stabilize.

Thus, in order to achieve better recognition performance, we set

the epoch to 100 in the experiments. Table 2 provides the main

hyperparameters of the pre-trained MFFNN model, along with

their current values or types, and other relevant information.

3.3. Experimental results

3.3.1. Comparison with multimodal methods
To demonstrate the superiority of the approach, comparisons

are conducted between the proposed MFFNN and other methods

reported in the literature. The objective is to substantiate the
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TABLE 2 The primary hyperparameters for training the MFFNNmodel.

Hyperparameters Value

Emotion categories 4

Downsampling frequency 60

Window size 4s

Learning rate 0.001

Epoch 100

Batch size 256

Dropout 0.2

Hidden layer 256

TABLE 3 Comparison with multimodal methods.

Methods ACC (%) STD (%) P (%) F1-Score (%)

DLF-SUM (Lu

et al., 2015)

82.99 9.70 72.51 74.23

FLF (Lu et al., 2015) 83.70 6.92 69.02 70.24

DLF-MAX (Lu

et al., 2015)

81.71 6.43 86.84 73.32

EmotionMeter

(Zheng et al., 2018)

75.88 16.44 80.24 69.22

DCCA (Qiu et al.,

2018)

81.74 9.23 88.97 77,21

DGCCA-AM (Lan

et al., 2020)

82.11 2.76 84.15 76.62

mDCAN (Zhao

et al., 2021)

85.04 6.62 89.37 81.56

SOFNN (Zhou

et al., 2022)

86.27 10.16 90.72 80.83

MFFNN (Our

model)

87.32 6.41 94.32 85.04

effectiveness of the proposed model. For the evaluation metrics,

we employed accuracy, standard deviation, precision, and F1-score.

The calculation formulas are as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(9)

precision =
TP

TP + FP
(10)

F1-Score =
2 · precision · recall

precision+ recall
(11)

where the true positive (TP) and false negative (FN) respectively

indicate that the target sample is correctly or incorrectly

classified, and the true negative (TN) and false positive (FP)

respectively indicate that the non-target sample is correctly or

incorrectly classified.

Table 3 presents the comparison results of accuracy, standard

deviation, precision, and F1-score between our proposed model

and eight other multimodal methods, using EEG and Eye

modalities as inputs. Among them, Lu et al. (2015) proposed three

FIGURE 11

Confusion graph of MFFNN.

methods, namely DLF-SUM, DLF-MAX, and FLF, which combine

eye movements and EEG signals to enhance emotion recognition.

Zheng et al. (2018) utilized EmotionMeter to integrate EEG and

eye movements and employed a bidirectional autoencoder (BDAE)

for shared representation extraction to improve recognition

performance. Qiu et al. (2018) used DCCA to jointly learn

the parameters of nonlinear transformations for two modalities,

maximizing their correlation and demonstrating its efficacy in

enhancing emotion classification accuracy. Lan et al. (2020)

proposed DGCCA-AM, a method that aims to extract emotion-

relevant information from multiple modalities while discarding

noise. It achieves this by adjusting the weight matrix to maximize

the correlation among different modalities, which can be extended

to arbitrary modalities. Zhao et al. (2021) improved DCAN by

introducing a novel collaborative attention layer that enhances

the weights of key feature channels and establishes correlations

between different modalities. Zhou et al. (2022) proposed the

SOFNN model, treating eye movements as subjective signals and

EEG signals as objective signals, effectively learning spatiotemporal

information from EEG signals and dynamically integrating EEG

and eye movement signals. From Table 3, it can be observed

that compared to previous multimodal (EEG and eye movement)

methods, although there is not a substantial improvement in

accuracy, significant advancements are achieved in precision and

F1-score. This directly reflects the superior performance of the

proposed method.

To facilitate a better understanding of the emotion classification

performance of MFFNN, we generate a confusion matrix for

MFFNN, as shown in Figure 11. The numbers in the figure

represent the accuracy rates for each class. From the figure, it can

be observed that the MFFNN model performs well in classifying

happy and fearful emotions (with accuracy rates of 90 and 89%

respectively), while its recognition performance for sad emotions

is relatively poorer (only 82%). Furthermore, it is evident from

the figure that similar emotions are more prone to confusion. For
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TABLE 4 Comparison with EEG modal methods.

Methods Modality ACC (%) STD (%) P (%) F1-
Score
(%)

SVM (Wang

et al., 2011)

EEG 56.61 20.05 76.94 52.54

DBN (Zheng

and Lu, 2015)

EEG 66.77 7.38 78.48 60.24

CRNN-DF

(Zhang et al.,

2023)

EEG 72.74 10.44 80.18 64.36

CNN-R

(Manor and

Geva, 2015)

EEG 73.99 3.94 85.71 71.27

BiHDM (Li

et al., 2018)

EEG 74.35 74.35 84.94 69.70

Shallow

ConvNet

(Schirrmeister

et al., 2017)

EEG 76.74 4.19 87.22 70.61

RGNN (Zhong

et al., 2020)

EEG 79.37 10.54 89.73 71.97

EEGNet

(Lawhern

et al., 2018)

EEG 79.12 2.05 91.20 73.32

ERP-CapsNet

(Ma et al.,

2021)

EEG 80.49 3.34 90.67 73.49

MS-CNN

(Wang et al.,

2021)

EEG 83.00 2.32 93.74 75.21

Transformer

(Liu et al.,

2021)

EEG 83.27 8.37 92.31 78.64

SST-

EmotionNet

(Jia et al.,

2020)

EEG 84.92 6.66 94.28 80.83

MFFNN EEG,Eye 87.32 6.41 94.32 85.04

instance, 8% of the sad emotions are misclassified as fearful, and

6% of the sad emotions are misclassified as neutral. Additionally,

neutral emotions are the most easily confused. These findings

align with our experimental expectations and validate the rationale

behind our experimental design.

3.3.2. Comparison with EEG-based methods
In order to demonstrate the effectiveness of the proposed

MFFNN compared to existing EEG-based emotion recognition

methods, further comparisons were made with single-modal EEG

approaches. The comparative results are presented in Table 4.

It is evident that traditional SVM (Wang et al., 2011) methods

are outperformed by deep learning approaches. Among the

deep learning methods (Jia et al., 2020; Wang et al., 2021;

Zhang et al., 2023), the MFFNN model exhibits comparable

performance. With higher accuracy (87.32%), precision (94.32%),

and F1-score (85.04%) on the task compared to other methods,

TABLE 5 Comparative analysis of models.

Methods ACC (%) STD (%) F1-Score (%) Kappa (%)

Eye 64.42 12.62 62.39 56.61

EEG 74.88 10.06 72.47 67.22

MFFNN 87.32 6.41 85.04 81.31

FIGURE 12

The e�ect of di�erent characteristics on emotional classification.

the MFFNN model demonstrates superior performance. This

finding suggests that the MFFNN model is capable of leveraging

complementary features between the two modalities and utilizing

their complementarity for effective emotion classification. It also

validates the advantages of the proposed approach in comparison

to single-modal (EEG) emotion recognition.

3.4. Model analysis of MFFNN

To validate the effectiveness of the model in feature extraction

and multimodal feature fusion, experiments were designed to

analyze the roles and effects of different modules. Firstly, the

effectiveness of the dual-branch feature extraction module was

verified. Specifically, EEG signal features were extracted as

described in this paper, and a softmax classifier was used for

training this model using the EEG signal data from the SEED-

IV dataset. Additionally, separate training was conducted for the

eye movement signal features, also using softmax as the classifier.

The experimental results are presented in Table 5 and Figure 12.

F1-score was employed to evaluate whether the model had any

emotion omissions in the case of a limited number of samples for

the SEED-IV dataset. Furthermore, the Kappa statistic was used to

ensure that the model did not exhibit bias when applied to different

emotion datasets with significant variations in sample size.

From Table 5 and Figure 12, it can be observed that the

accuracy of both models mentioned above is not very high, with

the accuracy of the EEG signal being higher than that of the eye

movement signal. This indicates that subjective behavioral signals

are influenced by various factors, while objective physiological

signals are less susceptible to deception. Additionally, it suggests

that a single modal signal alone is insufficient to accurately

describe emotions, which further confirms our previous statement.

Compared to traditional recognition methods, the dual-branch

feature extraction module, which is used solely for extracting

emotional information from the two modalities, has demonstrated
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FIGURE 13

Precision box diagrams with di�erent features.

good performance. This, to some extent, also confirms the

feasibility of this module.

After validating the dual-branch feature extraction module,

the study further examines the multi-scale feature fusion module.

By comparing the aforementioned two models with MFFNN, the

role of the multi-scale feature fusion module in the network is

explored. As shown in Table 5 and Figure 12, compared to the sole

use of EEG and eye movement signals, the MFFNNmodel achieves

better results (87.32% accuracy). The F1-score and kappa also show

significant improvements, indicating that the MFFNN model can

perform well even with varying sample sizes, demonstrating better

model adaptability.

Figure 13 measures the accuracy distribution and fluctuation

obtained from different features. From the figure, it can be observed

that the accuracy solely based on eye movement signals is the

lowest and exhibits significant fluctuations, which is closely related

to individual differences. Compared to the two single modal

approaches, the MFFNN method achieves the best performance

and enhances the robustness of the model.

Figure 14 depicts the classification performance of EEG and

eye movement signals for different emotions. From the graph,

it can be observed that EEG signals exhibit better recognition

performance for the emotion of happiness (84%), while eye

movement signals perform better in recognizing neutral emotions

(70%). Additionally, we noticed significant variations in the

recognition performance of each emotion by individual signals.

For instance, EEG signals achieve a recognition rate of 84%

for happiness but only 64% for sadness. Eye movement signals

achieve a recognition rate of 70% for neutrality but only 57% for

sadness. We also found that EEG signals have a 14% probability

of misclassifying sadness as neutrality. On the other hand, eye

movement signals show higher accuracy in recognizing neutrality

and sadness but are more prone to confusion between sadness and

fear. EEG signals perform relatively better in this aspect compared

to eye movement signals, which validates the complementary

nature of the two modalities. Comparing Figure 14 with Figure 11,

it is evident that the MFFNN framework, which integrates EEG

and eye movement signals, significantly improves the recognition

performance for different emotions and reduces the probability of

FIGURE 14

EEG and eye movement confusion (Solid blue arrows are EEG

signals and dotted green eye movement signals).

confusion. This comparison confirms that the proposed MFFNN

framework effectively exploits the emotional features of both EEG

and eye movement modalities, utilizing their complementarity to

enhance the accuracy of emotion recognition.

We also present the confusion matrices for the three

aforementioned methods, as shown in Figure 15. In Figures 15A–C

represent eye movement features, EEG features, and MFFNN,

respectively. The horizontal axis represents the actual labels of

the stimuli, while the vertical axis represents the emotion labels

obtained after classification by the network. From the figure, it

is evident that both eye movement features and EEG features

result in confusion between different emotions. In contrast, our

MFFNN exhibits superior performance in emotion recognition

compared to the single modal methods. The MFFNN is capable

of assigning different weights to the two modal features based

on their correlation with emotions in various emotion allocation

tasks, thereby fully exploiting the complementarity of the two

modal features and improving the accuracy of multimodal

emotion recognition.

4. Conclusions

In this study, a multimodal feature fusion framework based on

MFFNN is proposed. The dual-branch feature extraction module

effectively captures essential emotional information from raw EEG

and eye movement signals. The multi-scale feature fusion module

analyzes the complementarity of the twomodal features at different

scales, leading to accurate emotion classification. Additionally, a

cross-channel soft attention mechanism is employed to selectively

emphasize information from different spatial scales, focusing on

the modal features most relevant to emotions. The proposed

MFFNN framework is validated on the SEED-IV dataset. Through

comparisons with single modal and multimodal methods, the
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FIGURE 15

Confusion matrices with di�erent characteristics [(A) represents eye movement feature, (B) represents EEG feature, and (C) represents MFFNN

feature].

multi-scale feature fusion in our approach extensively exploits the

complementary characteristics of the two modalities, resulting in

enhanced accuracy of emotion recognition compared to single

modal approaches. Furthermore, the experiments in this study

only considered the four common emotions. However, in practical

applications, a broader range of emotions should be taken into

account. In future research, the scope of multimodal fusion can

be further expanded by integrating more perceptual modalities and

sensor data into the emotion recognition framework. In addition

to EEG and eye movement signals, other physiological signals

such as heart rate and skin conductance, as well as information

from modalities like speech, images, and videos, can also be

considered. By synthesizing diverse perceptual information, we

can gain a more comprehensive understanding of an individual’s

physiological and psychological responses in different emotional

states, thereby further enhancing the accuracy and reliability of

emotion recognition.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

BF: conceptualization, methodology, software, investigation,

formal analysis, and writing—original draft. CG: data curation.

MF: visualization and investigation. YX: resources and

supervision. YL: conceptualization, funding acquisition,

resources, supervision, and writing—review and editing.

All authors contributed to the article and approved the

submitted version.

Funding

The research is funded by the National Key Research and

Development Project (Grant No.: 2020YFB1313604).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Chen, J., Zhang, P., Mao, Z., Huang, Y., Jiang, D., and Zhang, Y. J. I.
A. (2019). Accurate eeg-based emotion recognition on combined features
using deep convolutional neural networks. IEEE Access 7, 44317–44328.
doi: 10.1109/ACCESS.2019.2908285

Craik, A., He, Y., and Contreras-Vidal, J. L. (2019). Deep
learning for electroencephalogram (EEG) classification tasks:

a review. J. Neural. Eng. 16, 031001. doi: 10.1088/1741-2552/
ab0ab5

Duan, R.-N., Zhu, J.-Y., and Lu, B.-L. (2013). “Differential entropy feature
for eeg-based emotion classification,” in 2013 6th International IEEE/EMBS
Conference on Neural Engineering (NER) (IEEE) 81–84. doi: 10.1109/NER.2013.
6695876

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1234162
https://doi.org/10.1109/ACCESS.2019.2908285
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1109/NER.2013.6695876
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Fu et al. 10.3389/fnins.2023.1234162

El Ayadi, M., Kamel, M. S., and Karray, F. (2011). Survey on speech emotion
recognition: Features, classification schemes, and databases. Patt. Recogn. 44, 572–587.
doi: 10.1016/j.patcog.2010.09.020

Fei, C., Li, R., Zhao, L.-M., Li, Z., and Lu, B.-L. (2022). “A cross-modality deep
learning method for measuring decision confidence from eye movement signals,” in
2022 44th Annual International Conference of the IEEE Engineering in Medicine Biology
Society (EMBC) (IEEE) 3342–3345. doi: 10.1109/EMBC48229.2022.9871605

Hu, D. (2019). “An introductory survey on attention mechanisms in nlp problems,”
in Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems
Conference (IntelliSys) (Springer) 432–448. doi: 10.1007/978-3-030-29513-4_31

Huang, D., Chen, S., Liu, C., Zheng, L., Tian, Z., and Jiang, D. (2021).
Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional
neural network for eeg emotion recognition. Neurocomputing 448, 140–151.
doi: 10.1016/j.neucom.2021.03.105

Jaderberg, M., Simonyan, K., Zisserman, A., and Kavukcuoglu, K. (2015). “Spatial
transformer networks,” in Proceedings of the 28th International Conference on Neural
Information Processing Systems (MIT Press) 2017–2025.

Jia, Z., Lin, Y., Cai, X., Chen, H., Gou, H., and Wang, J. (2020). “Sst-
emotionnet: Spatial-spectral-temporal based attention 3d dense network for eeg
emotion recognition,” in Proceedings of the 28th ACM International Conference on
Multimedia 2909–2917. doi: 10.1145/3394171.3413724

Khare, S. K., and Bajaj, V. (2020). Time-frequency representation and convolutional
neural network-based emotion recognition. IEEE Trans. Neur. Netw. Lear. Syst. 32,
2901–2909. doi: 10.1109/TNNLS.2020.3008938

Kingma, D. P., and Ba, J. (2014). Adam: Amethod for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual
information. Sensors 18, 401. doi: 10.3390/s18020401

Lan, Y.-T., Liu, W., and Lu, B.-L. (2020). “Multimodal emotion recognition
using deep generalized canonical correlation analysis with an attention mechanism,”
in 2020 International Joint Conference on Neural Networks (IJCNN) (IEEE) 1–6.
doi: 10.1109/IJCNN48605.2020.9207625

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., and
Lance, B. J. (2018). Eegnet: a compact convolutional neural network for eeg-based
brain-computer interfaces. J. Neur. Eng. 15, 056013. doi: 10.1088/1741-2552/aace8c

Li, T., Fu, B., Wu, Z., and Liu, Y. (2023). Eeg-based emotion recognition
using spatial-temporal-connective features via multi-scale CNN. IEEE Access. 11,
41859–41867. doi: 10.1109/ACCESS.2023.3270317

Li, Y., Wang, L., Zheng, W., Zong, Y., Qi, L., Cui, Z., et al. (2020). A novel bi-
hemispheric discrepancy model for eeg emotion recognition. IEEE Trans. Cogn. Dev.
Syst. 13, 354–367. doi: 10.1109/TCDS.2020.2999337

Li, Y., Zheng, W., Cui, Z., Zhang, T., and Zong, Y. (2018). “A novel neural network
model based on cerebral hemispheric asymmetry for eeg emotion recognition,” in
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)
1561–1567. doi: 10.24963/ijcai.2018/216

Liu, J., Zhang, L., Wu, H., and Zhao, H. (2021). Transformers for eeg emotion
recognition. arXiv preprint arXiv:.06553. doi: 10.1145/3571560.3571577

Liu, W., Qiu, J.-L., Zheng, W.-L., and Lu, B.-L. (2019). Multimodal emotion
recognition using deep canonical correlation analysis. arXiv preprint arXiv:.05349.

Lu, Y., Zheng, W.-L., Li, B., and Lu, B.-L. (2015). “Combining eye movements and
EEG to enhance emotion recognition,” in Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15) (Buenos Aires) 1170–1176.

Ma, R., Yu, T., Zhong, X., Yu, Z. L., Li, Y., and Gu, Z. (2021). Capsule network for
erp detection in brain-computer interface. IEEE Trans. Neur. Syst. Rehabil. Eng. 29,
718–730. doi: 10.1109/TNSRE.2021.3070327

Maheshwari, D., Ghosh, S. K., Tripathy, R., Sharma, M., and Acharya, U. R.
(2021). Automated accurate emotion recognition system using rhythm-specific deep
convolutional neural network technique with multi-channel eeg signals. Comput. Biol.
Med. 134, 104428. doi: 10.1016/j.compbiomed.2021.104428

Manor, R., and Geva, A. B. (2015). Convolutional neural network for multi-
category rapid serial visual presentation bci. Front. Comput. Neurosci. 9, 146.
doi: 10.3389/fncom.2015.00146

Mao, J., Qiu, S., Wei, W., and He, H. (2023). Cross-modal guiding and reweighting
network for multi-modal rsvp-based target detection. Neur. Netw. 161, 65–82.
doi: 10.1016/j.neunet.2023.01.009

Moon, S.-E., Jang, S., and Lee, J.-S. (2018). “Convolutional neural network
approach for eeg-based emotion recognition using brain connectivity and its spatial
information,” in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (IEEE) 2556–2560. doi: 10.1109/ICASSP.2018.8461315

Pan, J., Xie, Q., Huang, H., He, Y., Sun, Y., Yu, R., et al. (2018). Emotion-
related consciousness detection in patients with disorders of consciousness through
an eeg-based bci system. Front. Hum. Neurosci. 12, 198. doi: 10.3389/fnhum.2018.
00198

Petrantonakis, P. C., and Hadjileontiadis, L. J. (2009). Emotion recognition from
eeg using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14, 186–197.
doi: 10.1109/TITB.2009.2034649

Picard, R. W. (2000). Affective Computing. New York: MIT press.
doi: 10.7551/mitpress/1140.001.0001

Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward machine emotional
intelligence: Analysis of affective physiological state. IEEE Trans. Patt. Anal. Mach.
Intell. 23, 1175–1191. doi: 10.1109/34.954607

Qiu, J.-L., Liu, W., and Lu, B.-L. (2018). “Multi-view emotion recognition
using deep canonical correlation analysis,” in Neural Information Processing: 25th
International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018,
Proceedings, Part V (Springer) 221–231. doi: 10.1007/978-3-030-04221-9_20

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with convolutional
neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38, 5391–5420.
doi: 10.1002/hbm.23730

Shen, F., Dai, G., Lin, G., Zhang, J., Kong, W., and Zeng, H. (2020). Eeg-
based emotion recognition using 4d convolutional recurrent neural network. Cogn.
Neurodyn. 14, 815–828. doi: 10.1007/s11571-020-09634-1

Shi, L.-C., Jiao, Y.-Y., and Lu, B.-L. (2013). “Differential entropy feature for eeg-
based vigilance estimation,” in 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (IEEE) 6627–6630.

Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., et al. (2018). A review of emotion
recognition using physiological signals. Sensors 18, 2074. doi: 10.3390/s18072074

Soleymani, M., Pantic, M., and Pun, T. (2011). Multimodal emotion
recognition in response to videos. IEEE Trans. Affect. Comput. 3, 211–223.
doi: 10.1109/T-AFFC.2011.37

Wang, H., Pei, Z., Xu, L., Xu, T., Bezerianos, A., Sun, Y., et al. (2021). Performance
enhancement of p300 detection by multiscale-cnn. IEEE Trans. Instrument. Measur.
70, 1–12. doi: 10.1109/TIM.2021.3123218

Wang, X.-W., Nie, D., and Lu, B.-L. (2011). “Eeg-based emotion recognition
using frequency domain features and support vector machines,” in Neural
Information Processing: 18th International Conference, ICONIP 2011, Shanghai, China,
November 13-17, 2011, Proceedings, Part I (Berlin Heidelberg: Springer) 734–743.
doi: 10.1007/978-3-642-24955-6_87

Yadollahi, A., Shahraki, A. G., and Zaiane, O. R. (2017). Current state of text
sentiment analysis from opinion to emotion mining. ACM Comput. Surv. 50, 1–33.
doi: 10.1145/3057270

Yang, Y., Wu, Q. J., Zheng, W.-L., and Lu, B.-L. (2017). Eeg-based emotion
recognition using hierarchical network with subnetwork nodes. IEEE Trans. Cogn. Dev.
Syst. 10, 408–419. doi: 10.1109/TCDS.2017.2685338

Yin, Z., Wang, Y., Liu, L., Zhang,W., and Zhang, J. (2017). Cross-subject eeg feature
selection for emotion recognition using transfer recursive feature elimination. Front.
Neurorob. 11, 19. doi: 10.3389/fnbot.2017.00019

Zhang, H., Ji, H., Yu, J., Li, J., Jin, L., Liu, L., et al. (2023). Subject-independent
eeg classification based on a hybrid neural network. Front. Neurosci. 17, 917.
doi: 10.3389/fnins.2023.1124089

Zhang, T., Wang, X., Xu, X., and Chen, C. P. (2019). Gcb-net: Graph convolutional
broad network and its application in emotion recognition. IEEE Trans. Affect. Comput.
13, 379–388. doi: 10.1109/TAFFC.2019.2937768

Zhang, T., Zheng, W., Cui, Z., Zong, Y., and Li, Y. (2018). Spatial-temporal
recurrent neural network for emotion recognition. IEEE Trans. Cybern. 49, 839–847.
doi: 10.1109/TCYB.2017.2788081

Zhao, Z.-W., Liu, W., and Lu, B.-L. (2021). “Multimodal emotion recognition
using a modified dense co-attention symmetric network,” in 2021 10th
International IEEE/EMBS Conference on Neural Engineering (NER) (IEEE) 73–76.
doi: 10.1109/NER49283.2021.9441352

Zheng, W.-L., Liu, W., Lu, Y., Lu, B.-L., and Cichocki, A. (2018). Emotionmeter:
A multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 49,
1110–1122. doi: 10.1109/TCYB.2018.2797176

Zheng, W.-L., and Lu, B.-L. (2015). Investigating critical frequency bands and
channels for eeg-based emotion recognition with deep neural networks. IEEE Trans.
Auton. Mental Dev. 7, 162–175. doi: 10.1109/TAMD.2015.2431497

Zheng, W.-L., Zhu, J.-Y., and Lu, B.-L. (2017). Identifying stable patterns over
time for emotion recognition from EEG. IEEE Trans. Affect. Comput. 10, 417–429.
doi: 10.1109/TAFFC.2017.2712143

Zhong, P., Wang, D., and Miao, C. (2020). Eeg-based emotion recognition using
regularized graph neural networks. IEEE Trans. Affect. Comput. 13, 1290–1301.
doi: 10.1109/TAFFC.2020.2994159

Zhou, S., Huang, D., Liu, C., and Jiang, D. (2022). Objectivity meets
subjectivity: A subjective and objective feature fused neural network for
emotion recognition. Appl. Soft Comput. 122, 108889. doi: 10.1016/j.asoc.2022.
108889

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1234162
https://doi.org/10.1016/j.patcog.2010.09.020
https://doi.org/10.1109/EMBC48229.2022.9871605
https://doi.org/10.1007/978-3-030-29513-4_31
https://doi.org/10.1016/j.neucom.2021.03.105
https://doi.org/10.1145/3394171.3413724
https://doi.org/10.1109/TNNLS.2020.3008938
https://doi.org/10.3390/s18020401
https://doi.org/10.1109/IJCNN48605.2020.9207625
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1109/ACCESS.2023.3270317
https://doi.org/10.1109/TCDS.2020.2999337
https://doi.org/10.24963/ijcai.2018/216
https://doi.org/10.1145/3571560.3571577
https://doi.org/10.1109/TNSRE.2021.3070327
https://doi.org/10.1016/j.compbiomed.2021.104428
https://doi.org/10.3389/fncom.2015.00146
https://doi.org/10.1016/j.neunet.2023.01.009
https://doi.org/10.1109/ICASSP.2018.8461315
https://doi.org/10.3389/fnhum.2018.00198
https://doi.org/10.1109/TITB.2009.2034649
https://doi.org/10.7551/mitpress/1140.001.0001
https://doi.org/10.1109/34.954607
https://doi.org/10.1007/978-3-030-04221-9_20
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1007/s11571-020-09634-1
https://doi.org/10.3390/s18072074
https://doi.org/10.1109/T-AFFC.2011.37
https://doi.org/10.1109/TIM.2021.3123218
https://doi.org/10.1007/978-3-642-24955-6_87
https://doi.org/10.1145/3057270
https://doi.org/10.1109/TCDS.2017.2685338
https://doi.org/10.3389/fnbot.2017.00019
https://doi.org/10.3389/fnins.2023.1124089
https://doi.org/10.1109/TAFFC.2019.2937768
https://doi.org/10.1109/TCYB.2017.2788081
https://doi.org/10.1109/NER49283.2021.9441352
https://doi.org/10.1109/TCYB.2018.2797176
https://doi.org/10.1109/TAMD.2015.2431497
https://doi.org/10.1109/TAFFC.2017.2712143
https://doi.org/10.1109/TAFFC.2020.2994159
https://doi.org/10.1016/j.asoc.2022.108889
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A novel feature fusion network for multimodal emotion recognition from EEG and eye movement signals
	1. Introduction
	2. Methodology
	2.1. Multimodal feature fusion neural network model 
	2.2. Dual-branch feature extraction module
	2.2.1. EEG feature extraction
	2.2.2. Eye movement feature extraction

	2.3. Multi-scale feature fusion module

	3. Experiments and discussion
	3.1. Dataset
	3.2. MFFNN realization
	3.3. Experimental results
	3.3.1. Comparison with multimodal methods
	3.3.2. Comparison with EEG-based methods

	3.4. Model analysis of MFFNN

	4. Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


