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Major depressive disorder is a global psychiatric condition characterized by 
persistent low mood and anhedonia, which seriously jeopardizes the physical 
and mental well-being of affected individuals. While various hypotheses have 
been proposed to explicate the etiology of depression, the precise pathogenesis 
and effective treatment of this disorder remain elusive. Mitochondria, as the 
primary organelles responsible for cellular energy production, possess the 
ability to meet the essential energy demands of the brain. Research indicated 
that the accumulation of damaged mitochondria is associated with the 
onset of depression. Mitophagy, a type of cellular autophagy, specifically 
targets and removes excess or damaged mitochondria. Emerging evidence 
demonstrated that mitophagy dysfunction was involved in the progression 
of depression, and several pharmacological interventions that stimulating 
mitophagy exerted excellent antidepressant actions. We provided an overview 
of updated advancements on the regulatory mechanism of mitophagy and the 
mitophagy abnormality in depressed patients and animals, as well as in cell 
models of depression. Meanwhile, various therapeutic strategies to restore 
mitophagy for depression alleviation were also discussed in this review.
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1. Introduction

Major depressive disorder (MDD) is a multifactorial psychiatric disorder characterized by 
persistent feelings of sadness and linked with deleterious effects on cognitive, affective, and 
physical well-being. Approximately 264 million individuals across the globe, accounting for 
about 4.5% of the global population, are afflicted with depression (Disease et  al., 2018). 
Furthermore, the global incidence of depression has risen by 28% due to the impact of the 
COVID-19 pandemic (Collaborators, 2021). The lifetime prevalence of depression fluctuates 
between 15 and 18%, implying that nearly one in every five persons will undergo an episode at 
some juncture in their lives (Bromet et al., 2011). Researchers have extensively explored the 
etiology of depression and put forth diverse hypotheses, encompassing monoamine, 
neuroendocrine, neurotrophic factors, epigenetic, inflammatory, and hypothalamic–pituitary–
adrenal axis hypotheses, etc., (Kim, 2016; Keller et al., 2017; Allen et al., 2018; Zhang G. et al., 
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2020). However, a definitive theory that comprehensively explicates 
its pathological mechanism remains elusive. The current first-line 
antidepressants are predominantly based on the monoamine 
hypothesis (McCarron et al., 2021). Despite their effectiveness, these 
medications may take up to 6 weeks to manifest therapeutic effects and 
frequently give rise to adverse reactions such as headaches, 
gastrointestinal symptoms, sexual dysfunction, and agitation 
(Marwaha et al., 2023). Furthermore, approximately one-third to half 
of depressed patients do not respond to multiple antidepressants 
(Rush et al., 2009; Cipriani et al., 2018). The two leading diagnostic 
systems for MDD, namely the Diagnostic and Statistical Manual of 
Mental Disorders and the International Classification of Diseases, are 
extensively employed in hospital, outpatient, and community settings 
(First, 2013; The Lance, 2019). However, these diagnoses should 
be  ascribed only after a single bout of depression lasting for a 
minimum of 2 weeks, and following the exclusion of other psychiatric 
diagnoses like anxiety, schizophrenia, and bipolar disorder to ensure 
that symptoms are exclusively attributed to depression (Malhi and 
Mann, 2018). Consequently, delving into the etiology of depression 
from novel perspectives is crucial for guiding clinical diagnosis and 
facilitate the development of therapeutic interventions.

Mitochondria serve as the “powerhouses” of eukaryotic cells, 
generating most of the cell’s energy through oxidative phosphorylation 
in the inner mitochondrial membrane (IMM) to produce adenosine 
triphosphate (ATP). Moreover, mitochondria assume a pivotal role in 
upholding intracellular environmental homeostasis through the 
regulation of reactive oxygen species (ROS), calcium ions (Ca2+), and 
apoptosis (Zorov et al., 2014). Damaged mitochondria can increase 
the production of mitochondrial ROS (mtROS) (Tripathi et al., 2021), 
which causes oxidative damage to mitochondrial lipids, DNA, and 
proteins (Ashrafi and Schwarz, 2013), and also release high levels of 
Ca2+ and cytochrome C into the cytosol, triggering apoptosis (Parsons 
and Green, 2010). Hence, ensuring the elimination of malfunctioning 
mitochondria is imperative for the cell’s survival.

Mitophagy stands as a form of selective autophagy that specifically 
targets mitochondria, and is widely considered to be  the most 
distinctive type (Galluzzi et al., 2017). Moderate mitophagy effectively 
eliminates impaired mitochondria, exerting neuroprotective effects, 
while inadequate or excessive mitophagy may disrupt energy 
production and impede mitochondria-linked signaling pathways 
(Yang et  al., 2021). Mitochondria depolarize in response to ROS, 
cellular senescence, nutrient scarcity, and low mitochondrial 
membrane potential (MMP), thereby triggering mitophagy activation. 
Defective mitochondria are sequestered by bilayer membrane 
structures, eventually resulting in the creation of autophagosomes. 
These specialized vesicles subsequently merge with lysosomes  - 
cellular compartments replete with hydrolytic enzymes - culminating 
in mitochondrial phagocytosis (Tripathi et  al., 2021). Mitophagy 
ensures the body’s energy metabolism and tissue homeostasis by 
sequestering damaged mitochondria, balancing mitochondrial mass, 
and controlling elevated mtROS (Lin et al., 2019), which is mediated 
by two major pathways, namely PINK1/Parkin-dependent and 
PINK1/Parkin-independent pathways (Lemasters, 2005; Figure 1). 
Defects in mitophagy cause the accumulation of dysfunctional 
mitochondria, precipitating oxidative stress and various pathological 
conditions. Accumulating evidence substantiates the association 
between aberrant mitophagy processes and the onset and progression 
of depression, corroborated by observations of dysfunctional 
mitophagy in both depressed individuals and mice. Notably, certain 

antidepressants can alleviate depression-like behaviors in animals by 
regulating mitophagy. Consequently, rectifying abnormal mitophagy 
may present an innovative strategy for treating depression.

The objective of this review is to offer a comprehensive overview 
of the prevailing knowledge concerning the mechanisms of mitophagy 
and to deliberate on the deviations in mitophagy noted in MDD 
patients, along with various animal and cellular models of depression. 
We delineate alterations in biomarkers indicative of mitochondrial 
dysfunction, autophagy, and mitophagy to underscore the pivotal role 
played by mitophagy failure in the underlying pathological 
mechanisms of depression.

2. The regulation of mitophagy

2.1. The PINK1/Parkin-dependent pathway

The PINK1/Parkin-dependent pathway, governed by PTEN-
induced putative kinase 1 (PINK1) and E3-ubiquitin ligase Parkin, has 
been extensively investigated (Clark et  al., 2006). This pathway 
orchestrates ubiquitin-associated mitophagy, impacting numerous 
mitochondrial physiological processes, including mitochondrial 
biogenesis, dynamics, and autophagic machinery (Harper et al., 2018; 
Pickles et al., 2018). PINK1, a ubiquitin kinase, translocates to the 
IMM through translocase complexes located on both outer and inner 
mitochondrial membranes (OMM and IMM), contingent on 
membrane potential under normal conditions (Jin et  al., 2010; 
Meissner et al., 2011). Subsequently, PINK1 undergoes cleavage by 
PARL, a resident rhomboid serine protease in IMM (Harper et al., 
2018). The resultant N-terminal truncated PINK1 is degraded by the 
mitochondrial proteasome, and helps in maintaining low levels of 
PINK1 (Jin et al., 2010; Yamano and Youle, 2013).

The MMP decreases due to mitochondrial damage, which impairs 
the normal operation of transport enzymes on both IMM and 
OMM. This impedes PINK1 import and leads to PINK1 accumulation 
on the OMM. Aggregated PINK1 phosphorylates ubiquitin at S65 
(p-S65-Ub) on impaired mitochondria, and consequently drawing 
cytoplasmic Parkin with a high p-S65-Ub affinity to form ubiquitin 
chains (Kane et al., 2014). Active Parkin ubiquitinates multiple OMM 
substrates, yielding more targets for PINK1-driven ubiquitin 
phosphorylation and fostering further Parkin recruitment (Pickrell 
and Youle, 2015; Yamano et  al., 2016; Malpartida et  al., 2021). 
Mitophagy receptors, like nuclear dot protein 52 kDa (NDP52), 
sequestosome 1 (SQSTM1, or P62), and optineurin (OPTN), are 
enlisted where ubiquitin chains have aggregated to a specific level. 
These mitophagy adaptors feature a ubiquitin-binding domain 
recognizing ubiquitin chains attached to cargoes, alongside an 
LC3-interacting region (LIR) enlisting phagophore membranes coated 
with LC3B, thus initiating mitophagy (Harper et al., 2018).

2.2. The PINK1/Parkin-independent 
pathway

PINK1/Parkin-independent pathways primarily hinge on receptor 
proteins that directly interact with LC3B and/or gamma-aminobutyric 
acid receptor-associated protein (GABARAP) through their LIR 
motifs, precipitating mitochondria elimination. These include like 
BCL-2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3), 

https://doi.org/10.3389/fnins.2023.1235241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1235241

Frontiers in Neuroscience 03 frontiersin.org

B-cell leukemia/lymphoma 2 (Bcl-2) and adenovirus E1B 19-kDa 
interacting protein 3-like (NIX), and FUN14 domain-containing 1 
(FUNDC1; Doblado et al., 2021).

2.2.1. Bcl-2 family proteins BNIP3 and 
NIX-mediated mitophagy

Bcl-2 family proteins play a pivotal role in OMM regulation and 
apoptosis control (Chipuk et al., 2006). Previous studies have shown 
that these proteins can trigger mitophagy through both Parkin-
dependent and Parkin-independent pathways, entailing inhibition of 
Parkin translocation to depolarized mitochondria and relying on 
BNIP3 and NIX proteins (Thomas et al., 2011; Hollville et al., 2014). 
BNIP3 is primarily localized in mitochondria and plays an important 
role in regulating the fusion of autophagosomes with lysosomes (Ma 
et al., 2017). NIX (also known as BNIP3L) was cloned from a human 
placental cDNA library based on its 56% sequence identity to BNIP3 
(Matsushima et al., 1998). NIX shares several features with BNIP3, 
encompassing interaction with BCL2 and BCL-XL, and induction of 
both apoptosis and autophagy (Chen et al., 1999; Schweers et al., 2007; 
Novak et al., 2010).

Under hypoxic or starved circumstances, NIX or BNIP3 protein 
levels surge, orchestrating mitophagy via multiple routes. Firstly, these 
receptors are involved in tethering mitochondria to the 
autophagosome by directly interacting with LC3 and/or GABARAP 
on the autophagosome membrane. Secondly, BNIP3 or NIX compete 
with Beclin-1 to bind BCL-XL. Enhanced NIX expression during 

erythroid differentiation disrupts existing BCL-XL–Beclin-1 
complexes, liberating Beclin-1 and triggering autophagy (Thomas 
et  al., 2011). In addition, BNIP3 can recruit Drp1 and Parkin to 
mitochondria by binding Parkin, then promoting mitochondrial 
fission to trigger mitophagy (Lee et al., 2011).

2.2.2. FUNDC1-mediated mitophagy
Previous investigations have identified FUNDC1 as a mitophagy 

receptor, interacting with LC3B and facilitating its recruitment to 
mitochondria during mitophagy (Liu et al., 2012). FUNDC1-mediated 
mitophagy is impeded by phosphorylation at the tyrosine 18 and 
serine 13 positions under normal physiological conditions. Upon 
hypoxia stimulation, Src is inactivated and FUNDC1 undergoes 
dephosphorylation, resulting in increased co-localization and 
interaction between FUNDC1 and LC3B. This leads to the selective 
incorporation of mitochondria as cargo into LC3-bound isolation 
membranes, consequently facilitating mitochondrial removal by 
LAMP1-positive autolysosomes (Liu et al., 2012; Chen et al., 2014; Lv 
et al., 2017).

Mitophagy is a complex, multifaceted process characterized by a 
multitude of molecular, organelle, and cellular interactions. These 
interactions synergistically contribute to ensuring the effective 
operation of this crucial process. Additionally, this process entails the 
selective removal of compromised or dysfunctional mitochondria 
from the cell, intricately entwined with mitochondrial function 
and autophagy.

FIGURE 1

Regulatory mechanisms of mitophagy. Mitophagy, a pivotal process for maintaining mitochondrial quality, is activated in response to mitochondrial 
damage triggered by conditions such as starvation, diminished mitochondrial membrane potential, or increased reactive oxygen species. In the PINK1/
Parkin-dependent pathway, PTEN-induced putative kinase 1 (PINK1) stabilizes on the outer mitochondrial membrane (OMM) and recruits E3-ubiquitin 
ligase Parkin to the OMM. This prompts the formation of phosphorylated ubiquitin at S65 (p-S65-Ub) on OMM proteins, acting as an “eat-me” signal for 
damaged mitochondria. Mitophagy receptors (P62, OPTN, and NDP52) recognize and bind to p-S65-Ub, consequently engaging with the phagosome 
through their LC3-interacting region (LIR) motif, which interacts with LC3 found on the surface of the phagosome. In the PINK1/Parkin-independent 
pathway, phagophores directly surround mitochondria through OMM receptors containing LIR motifs (NIX/BNIP3L, BNIP3, and FUNDC1) or by 
detecting exposed cardiolipin on the OMM. Once recruited, the phagophore envelops damaged mitochondria, forming mitophagosomes. 
Subsequently, fusion between lysosomes and mitophagosomes yields mitolysosomes, culminating in the degradation of dysfunctional mitochondria 
through acidic hydrolases.
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3. Evidence for mitochondrial 
dysfunction in depression

Mitochondria serve as semi-autonomous organelles in eukaryotic 
cells. They are pivotal for various cellular functions and signaling 
cascades (Spinelli and Haigis, 2018; Belenguer et al., 2019). These 
organelles are also the primary sites for aerobic respiration and 
generate ATP to support essential neuronal processes such as 
neurogenesis, neurotransmission, and synaptic plasticity (Kann and 
Kovacs, 2007; Rangaraju et al., 2014). In the brain, mitochondria are 
instrumental in regulating neural activity, plasticity, and behavioral 
adaptation (Grimm and Eckert, 2017; Todorova and Blokland, 2017; 
Angelova and Abramov, 2018). Mitochondrial damage not only fails 
to meet the energy demands of cells, but also impairs neuronal 
communication and cellular resilience, potentially leading to mood 
disorders and mental illness (Quiroz et al., 2008; Rezin et al., 2009). 
This is primarily manifested by alterations in mitochondrial structure, 
decreased MMP levels, excessive production of ROS, reduced ATP 
synthesis capacity, mtDNA damage and other factors.

Preclinical and clinical data provide evidence indicating that there 
exists dysfunction in the mitochondria of individuals with depression 
as well as in animals displaying behavior similar to depression. 
Reports have highlighted compromised ATP production and mtDNA 
issues in depressed patients (Czarny et al., 2018). Specifically, these 
patients have exhibited diminished respiratory indices, encompassing 
regular respiration, uncoupled respiration, spare respiratory capacity, 
coupling efficiency and ATP conversion rates (Karabatsiakis et al., 
2014). Meanwhile, their mtDNA copy numbers have proven to 
be notably higher than those of healthy individuals (Ryan et al., 2023). 
Furthermore, depression has been associated with increased levels of 
mtROS and enhanced amounts of mtDNA (Cai et al., 2015; Tripathi 
et al., 2021), suggesting that mitochondrial dysfunction may lead to 
energy depletion in the brain and contribute to the development of 
depression (Morava et al., 2010; Gardner and Boles, 2011).

Likewise, mitochondrial harm was noted in both afflicted animals 
and cells. Several animal models have been developed to mimic the 
depressive symptoms of patients with depression, and chronic 
unpredictable mild stress (CUMS), chronic restraint stress (CRS) and 
chronic social defeat stress (CSDS) are usually used to simulate stress-
induced depression. Rodents with depression-like behaviors display 
increased immobility time in tail suspension test and forced swimming 
test (despair behavior), and decreased sucrose preference (namely 
anhedonia). Mice with depression, triggered by either CUMS or CMS, 
showed a decrease in MMP levels and a suppression of the rate of 
mitochondrial respiration. Moreover, their mitochondria demonstrated 
structural anomalies like enlargement, vacuolar degeneration, irregular 
inner cristae formation, or even dissolution/disappearance (Gong et al., 
2011; Yuan et al., 2019; Wang et al., 2022). In addition to this, the level 
of ROS was growing in CUMS induced mice and microglia induced by 
LPS and ATP. Furthermore, the MMP was reduced in microglia 
induced by LPS and ATP. Decreased ATP levels and increased mtDNA 
copy number were also seen in Dex-induced mice (Arioz et al., 2019; 
Li et al., 2020; Shen et al., 2021; Wang et al., 2023).

Taken together, mitochondrial dysfunction results in escalated 
oxidative stress, mtDNA damage or deletions, alterations in 
mitochondrial fusion/fission and morphology, ultimately leading to 
neuronal cell demise. The process of mitophagy stands as a pivotal 
mechanism for upholding mitochondrial quality control through the 
removal of aged, dysfunctional, damaged or excessive mitochondria 

(Palikaras et al., 2018). This mechanism also serves to delay the onset 
of mitochondrial dysfunction instigated by oxidative stress and lessen 
the accumulation of mtDNA and ROS. In doing so, it ensures the 
preservation of the typical structure and function within the 
mitochondrial network, facilitating cellular equilibrium. Deviations 
in mitophagy can culminate in the accumulation of impaired 
mitochondria, thereby fostering depression.

4. Evidence for autophagy 
abnormalities in depression

Autophagy is a vital cellular mechanism present in eukaryotic 
cells. It is responsible for transporting damaged organelles and 
malformed proteins to lysosomes for degradation, thereby maintaining 
cellular homeostasis (Ulrich et al., 2020). Altered autophagy-related 
signaling pathways have been identified in patients and animal models 
of depression. The mammalian target of rapamycin (mTOR) serves as 
a critical regulator of autophagy (Winden et  al., 2018). Its 
phosphorylated form (p-mTOR) indicates activation of the autophagic 
pathway (Wander et al., 2011; Fiorini et al., 2013). Autopsy findings 
revealed a significant reduction in the expression of mTOR and its 
downstream effectors (p70S6K, eIF4B, and p-eIF4B) within the 
prefrontal cortex of depressed patients compared to age-matched 
healthy controls (Jernigan et al., 2011). Autophagy is accompanied by 
changes in related proteins, including Beclin-1, LC3, and P62 (Wei 
et al., 2008; Choi et al., 2013; Cai et al., 2015; Ranjan and Pathak, 
2016). The expression of autophagy genes LC3B, ATG12 and Beclin-1 
was upregulated in peripheral blood mononuclear cells of depressed 
patients (Alcocer-Gomez et al., 2017).

In the hippocampus of depression model rats, autophagy was 
activated, leading to reduced p-mTOR and P62 expression, and a 
notable increase in Beclin-1 expression (Ning et al., 2023). Depressed 
rats induced by CUMS displayed elevated levels of Beclin-1 and 
LC3BII/I in the CA1 hippocampal region, along with increased 
autophagosomes observed through electron microscopy, indicating 
autophagy activation (Hao et al., 2013; Zhang Z. et al., 2020). On the 
contrary, the autophagy process was inhibited in both 
Lipopolysaccharide (LPS)-induced mice and astrocytes. The size and 
number of autophagosomes were elevated, while the LC3BII/I ratio 
and Beclin-1 expression dramatically rose. In contrast, P62 expression 
notably decreased (Li et al., 2021).

Autophagy has been confirmed to play a role in the pathogenesis 
and progression of depression, and certain antidepressants exert their 
therapeutic effects by modulating autophagic flux. Oridonin, a 
diterpene compound isolated from Rabdosia rubescens with diverse 
biological properties (Liu and Du, 2020), exhibits potential in 
alleviating depression-like behaviors. It has been observed to increase 
the sucrose preference rate and decrease immobility time in both the 
forced swimming test (FST) and tail suspension test (TST) in mice. 
This effect might be attributed to the upregulation of autophagy levels, 
evident from an elevated LC3BII/I ratio and Beclin-1 protein 
expression, while P62 protein was downregulated in the brains of 
depressed mice. A similar effect was also observed in LPS-induced 
astrocytes. Importantly, the autophagy-inducing agent Rapamycin 
synergistically enhanced oridonin-mediated upregulation of LC3BII/I, 
Beclin-1, and P62 protein expression. Conversely, the autophagy 
inhibitor 3-Methyladenine abrogated oridonin-induced promotion of 
autophagy (Li et al., 2021).

https://doi.org/10.3389/fnins.2023.1235241
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1235241

Frontiers in Neuroscience 05 frontiersin.org

The tricyclic antidepressant amitriptyline can impede autophagic 
flux by disrupting the fusion of autophagosomes and lysosomes, 
possibly due to LC3BII accumulation induced by amitriptyline 
(20 μM), with or without NH4Cl (an autophagosome-lysosome fusion 
inhibitor). A significant portion of LC3B and P62 immunoreactivities 
were co-localized, but not with LAMP2 (Kwon et  al., 2020). 
Concurrently with LC3BII induction, there was a subtle increase in 
Beclin-1 expression observed following treatment with amitriptyline 
or the selective serotonin re-uptake inhibitor citalopram (Zschocke 
et al., 2011). Ketamine exhibited rapid-onset effects in the treatment 
of depression, inducing autophagy in microglia by upregulating LC3B 
levels and downregulating P62 protein expression. Additionally, the 
ketamine-induced increase in autophagy can be  impeded by 
bafilomycin A1, an autophagy inhibitor (Lyu et al., 2022).

Both individuals and animal models with depression have been 
observed to display altered autophagy-associated signaling. Autophagy 
is a crucial cellular mechanism for eliminating damaged or 
dysfunctional components from cells, and its disruption can result in 
the accumulation of toxic substances and other harmful materials 
within cells. This accumulation could potentially contribute to the 
development of various diseases, including depression. Mitophagy, a 
form of selective autophagy, can also be  influenced by changes in 
autophagy levels.

5. Evidence for impaired mitophagy in 
depression

5.1. Impaired mitophagy in MDD patients

Clinical research indicates that changes in mitophagy-related 
protein levels may relate to depression severity. Patients with 
depression might experience impaired mitochondria clearance, seen 
through higher PINK1, P62, and LC3B levels in peripheral blood 
nuclear cells, and lower Parkin levels (Scaini et al., 2022). The mRNA 
levels of PINK1, NIX, and LC3A were significantly lower in the blood 
of MDD patients (Weixing, 2019; Lu et  al., 2023). The 18 kDa 
translocator protein (TSPO) has gained increased attention for its role 
as a crucial rate-limiting step in neurosteroidogenesis and its potential 
implications in the pathophysiology of stress response and related 
disorders (Beurdeley-Thomas et  al., 2000; Pinna and Rasmusson, 
2012). TSPO hinders mitophagy downstream of the PINK1/Parkin 
pathway by impeding crucial protein ubiquitination, and its function 
depends on the voltage-dependent anion channel (VDAC1; Gatliff 
et al., 2014). Clinical studies have demonstrated significantly elevated 
the TSPO density by distribution volume in the serum of patients 
experiencing extreme depressive episodes (Setiawan et al., 2015).

In summary, the impaired mitophagy observed in patients with 
depression is associated with anomalies in transcriptional processes 
and corresponding protein expression. Although a few clinical 
studies have explored this relationship, existing data are not 
sufficient. Additional indicators related to patient conditions are 
needed for further validation. Importantly, elucidating the role of 
mitochondrial autophagy in depression may open avenues for new 
therapeutic strategies for patients suffering from this condition. By 
conducting more extensive studies on the connection between 
mitochondrial autophagy and depression, researchers could acquire 
new insights into optimal treatment and management approaches 
for affected patients.

5.2. Impaired mitophagy in MDD models

Disruption of mitophagy, the selective removal of damaged 
mitochondria, may significantly contribute to depression-like 
behavior in animals, as indicated by several studies. Studies have 
revealed inhibited mitophagy levels in animal models of depression 
induced by learned helplessness (LH) and social defeat stress (SDS). 
These models showed substantial decreases in the expression of key 
proteins involved in mitophagy such as TSPO, Parkin, VDAC1, and 
the autophagy initiator protein Beclin-1 (Li et al., 2016; Wei et al., 
2020). Similarly, mitophagy suppression was observed in the 
hippocampus of rats induced with chronic CUMS. This was 
characterized by reduced protein and mRNA expression of 
mitophagy-related proteins PINK1 and Parkin, along with autophagy 
protein Beclin-1, while protein and mRNA levels of P62 were 
increased (Meng, 2020). Jin et  al. discovered that NIX-mediated 
mitophagy degradation was impaired in hippocampal neurons of 
CUMS-induced mice, leading to the accumulation of damaged 
mitochondria. This resulted in increased protein expressions of 
LC3BII/I, P62, and TOM20. Notably, NIX protein expression was 
prominently lower in the CUMS group compared to controls, whereas 
no differences were observed for Parkin protein (Jin et al., 2023). 
Similarly, the mRNA expression of NIX and LC3A was downregulated 
in the blood of mice induced by LPS and CSDS, while OPTN and 
NDP52 proteins remained unaffected in CSDS (Lu et al., 2023).

MDD is an emotional disorder associated with stress, and 
prolonged exposure to stress heightens susceptibility to depression 
(CONVERGE consortium, 2015). The social defeat stress model is 
commonly employed in depression research (Suzuki et  al., 2021). 
Mitophagy and autophagy activation were observed in the 
hippocampus following social defeat stress, leading to increased 
expression of Beclin-1, ATG5, LC3B II, P62, LAMP2, PINK1, and 
Parkin, with the exception of TOM20, which showed reduced levels 
(Guo et  al., 2022). Diabetes-related depression (DD) is a major 
complication of diabetes, and DD rats exhibited behaviors similar to 
depression, such as increased immobility time in the FST. Mitophagy 
disorders occurred in the DD rats, which results in an upregulation of 
related proteins LC3B, Beclin-1, and Parkin, while a downregulation 
of P62 and mTOR expression (Liu et al., 2021).

In BV2 cells stimulated by LPS and ATP, impaired mitophagy 
degradation led to elevated levels of LC3BII and prominently reduced 
levels of P62 in both the cytoplasm and mitochondria. Concurrently, 
mitochondrial levels of PINK1 and Parkin were notably decreased, 
while the colocalization of P62 and TOM20 through 
immunofluorescence increased (Han et  al., 2021). Similarly, 
mitophagy levels were diminished in corticosterone (CORT)-induced 
HT22 cells, resulting in the accumulation of damaged mitochondria. 
This was accompanied by increased protein expressions of LC3BII/I, 
P62, and TOM20 (Jin et al., 2023).

Overall, these findings suggest a significant disruption in the process 
of selective autophagy targeting damaged mitochondria in various animal 
strains and cellular models. Abnormal expression of key proteins such as 
PINK1, Parkin, LC3B, and P62 indicates a breakdown in the cellular 
machinery responsible for clearing damaged mitochondria. This 
disruption may have profound implications for cellular health and 
function, providing crucial insights into the impact of impaired 
mitochondrial autophagy on overall cellular well-being. Moreover, these 
findings may have broader implications for conditions linked to impaired 
mitophagy, such as depression (Table 1).
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TABLE 1 The alterations in mitophagy observed in depression models.

Species
The model 
of animals 
or cells

Sample 
Source

Experimental 
approaches/
methods

Molecular modifications
Expected phenotypic 
manifestations

Refs.

Human Peripheral blood 

mononuclear cells

WB ↑PINK1, P62, and LC3B proteins

↓Parkin protein

↓The mitophagy degradation process Scaini et al. (2022)

RT-qPCR ↓PINK1 mRNA ↓Mitophagy level Weixing (2019)

Peripheral blood RT-qPCR ↓NIX and LC3A mRNA ↓NIX-mediated mitophagy Lu et al. (2023)

Serum [18F] FEPPA PET ↑TSPO VT ND Setiawan et al. (2015)

Animal LH mice The mesencephalon 

of mice

WB ↓TSPO, PINK1, VDAC1, and Beclin-1 proteins

↑Parkin protein

↓Mitophagy level Li et al. (2016)

↓TSPO, Parkin, VDAC1, and Beclin-1 proteins ↓TSPO-mediated mitochondrial dysregulation Wei et al. (2020)SDS mice

CUMS rat Hippocampus WB and RT-qPCR ↓PINK1, Parkin, Beclin-1 mRNA and proteins

↑ P62 mRNA and protein

↓PINK1/Parkin-mediated mitophagy Meng (2020)

CUMS mice WB ↑LC3BII/ I ratio, P62, TOM20 proteins

↓NIX protein

- Parkin protein

↓NIX-mediated mitophagy degradation Jin et al. (2023)

LPS mice Blood and mPFC WB and RT-qPCR ↓NIX and LC3A mRNA

- OPTN protein

-NDP52 protein

↓NIX-mediated mitophagy Lu et al. (2023)

CSDS mice

SDS mice Hippocampus WB ↑Beclin-1, ATG5, LC3BII, P62, LAMP2, PINK1, 

and Parkin proteins

↓TOM20 protein

↑PINK1/Parkin-mediated mitophagy Guo et al. (2022)

DD rat ↑LC3B, Beclin-1, and Parkin proteins

↓P62, mTOR protein

↑Mitophagy activation Liu et al. (2021)

Cell LPS and ATP-

induced BV2 cell

WB and IF Cytoplasm: ↓LC3BII, ↑P62 proteins

Mitochondria: ↓LC3BII, PINK1, Parkin, and ↑P62 

proteins, ↑Immunofluorescence colocalization of 

P62 with TOM20

↓The mitophagy degradation process Han et al. (2021)

CORT-induced 

HT22 cell

WB ↑LC3BII/ I ratio, P62, TOM20 proteins,

↓NIX protein

- Parkin protein

↓NIX-mediated mitophagy degradation Jin et al. (2023)

CSDS, chronic social defeat stress; CUMS, chronic unpredictable mild stress; CORT, corticosterone; DD, diabetes-related depression; IF, immunofluorescence; LH, learned helplessness; RT-
qPCR, real-time polymerase chain reaction; SDS, social defeat stress; TSPO VT, translocator protein density by distribution volume; WB, western blot. ↑, increased; ↓, decreased; or, 
unchanged; ND, not determined.

5.3. Investigating the impaired mitophagy 
of depression for drug research

5.3.1. The effect of Chinese herbal medicine on 
mitophagy

Chinese herbal medicine has gained recognition for its efficacy in 
alleviating symptoms of depression (Butler and Pilkington, 2013). Its 
antidepressant effects are believed to be associated with the regulation 
of mitophagy levels. Wuling powder is a Chinese herbal medicine 
extracted from Xylaria Nigripes (Kl.) Sacc using modern fermentation 
technology, and was approved by China State Food and Drug 
Administration (Authorized Document Number: Z19990048  in 
Chinese medicine) for treating insomnia in 1999. It has been shown 
to exhibit antidepressant effects in multiple behavioral tests, with 
increased success rates in shuttle box escape and shortened latencies 
in novelty suppressed feeding test (NSF) and FST immobility time 
when administered at a dose of 500 mg/kg to LH mice. Wuling powder 
also enhanced damaged mitochondria elimination and alleviated 
mitophagy impairment by elevating the expression of mitophagy-
related proteins TSPO, VDAC1, PINK1, and Beclin-1 in the brain, 
while reducing Parkin (Li et al., 2016). Xiao Jianzhong Decoction that 
can be used in the treatment of neurasthenia and insomnia in clinic is 
derived from the “treatise on febrile and miscellaneous diseases” of 

Zhang Zhongjing in the Eastern Han Dynasty, and has a long history 
of application. Xiao Jianzhong Decoction contains active compounds 
including paeoniflorin, cinnamic aldehyde and liquiritin that exhibit 
significant antidepressant effects. Administration of Xiao Jianzhong 
decoction effectively alleviated depression-like behaviors in CUMS-
induced rats as evidenced by reduced immobility time in FST and 
increased total distance and time spent in open field test (OFT). This 
may be  particularly pertinent for the upregulation of mitophagy 
mediated by PINK1/Parkin in the hippocampus of CUMS-induced 
rats through Xiao Jianzhong decoction, as evidenced by significant 
increases in protein expression and mRNA levels of PINK1, Parkin, 
and Beclin-1, along with notable reductions in P62 protein and mRNA 
levels (Meng, 2020). Piper laetispicum C. DC, a Chinese herbal 
remedy, demonstrated potential for alleviating depressive disorders. 
Clinical trials indicated that the aqueous extract of Piper methysticum 
can improve depression symptoms. G11-5 [3-(3,4-methylenedioxy-5-
trifluoromethyl phenyl)-2E-propenoic acid isobutyl amide], a 
compound derived from the active ingredients of Piper laetispicum 
C. DC plants, has higher lipid solubility, but its toxicity still needs to 
be further studied. G11-5 can improve depression-like behavior in LH 
and SDS mice, and leads to an increased success rate for electric shock 
escape and greater total distance traveled during OFT movement, as 
well as reduced FST immobility time. Furthermore, G11-5 regulated 
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mitophagy levels and increasing the expression of TSPO, Parkin, 
VDAC1, and autophagy promoter Beclin-1 in the brain of LH mice 
(Wei et al., 2020).

Microglia are the resident immune surveillance cells of the central 
nervous system (von Bernhardi et al., 2016). The results of previous 
experiments have shown that inflammation mediated by activated 
microglia plays a crucial role in the development of MDD (Song and 
Colonna, 2018). Quercetin, a natural flavonoid with anti-inflammatory 
and antioxidant properties. It can prevent neuronal damage by 
promoting mitophagy and inhibiting mtROS-mediated activation of 
the NLRP3 inflammasome in microglia. Treatment with quercetin 
effectively restores impaired mitophagy in LPS-and ATP-stimulated 
BV2 cells, as evidenced by the upregulated expression levels of LC3BII, 
PINK1, and Parkin, along with the downregulated levels of P62 
protein, and reduced co-localization of P62 with TOM20 observed 
through immunofluorescence (Han et al., 2021).

Baicalin, the primary bioactive constituent of Scutellaria 
baicalensis, has demonstrated antidepressant-like effects in various 
rodent models (Li et al., 2015). In CUMS-induced mice, intragastric 
administration of baicalin (20 mg/kg) for 4 weeks effectively 
ameliorated depression-like behaviors by markedly increasing the 
sucrose preference rate and reducing the immobility time in 
TST. Through investigating its molecular mechanism, baicalin was 
found to promote the elimination of damaged mitochondria in mice 
hippocampal neurons and enhance mitophagy levels mediated by 
NIX. This process ameliorates aberrant expression of LC3B II/I, P62, 
NIX, and TOM20 proteins. Additionally, baicalin markedly improved 
the expression of LC3BII/I, P62, and TOM20 while reducing NIX 
protein levels in CORT-induced HT22 cells (Jin et al., 2023).

During the course of antihypertensive treatment, Morinda 
officinalis oligosaccharides, a natural extract derived from the root of 
Morinda officinalis, have demonstrated antidepressant properties (Xu 
et  al., 2017; Zhang et  al., 2018). The depression-like behavior of 
CUMS-induced rats can be alleviated through the administration of 
Morinda. This intervention increases the sucrose preference rate and 
reduces the immobility time of rats in FST and TST. Morinda 
officinalis oligosaccharides were found to enhance autophagic flux and 
mitophagy in LPS-induced astrocytes, leading to a reduction in P62 
levels and an increase in LC3B expression. This process facilitated the 
translocation of Parkin to the mitochondria and resulted in TOM20 
degradation, ultimately reversing ectopic expression of LC3B and P62 
(Yang et al., 2023).

In recent times, there has been a growing interest in the potential 
therapeutic effects of herbal remedies for depression. Research 
suggests that specific Chinese herbal medicines can effectively 
modulate levels of mitophagy, thereby positively influencing mood 
and alleviating depressive symptoms.

5.3.2. The effect of classic antidepressants on 
mitophagy

Antidepressant pharmacotherapy is an efficacious intervention for 
depression (Cho et al., 2016), with monoamine oxidase inhibitors, 
tricyclic antidepressants, selective serotonin reuptake inhibitors 
(SSRIs), and serotonin and norepinephrine reuptake inhibitors being 
commonly prescribed agents (Xu et al., 2010). Fluoxetine, a pioneer of 
the SSRI class, has gained widespread used for its significant clinical 
efficacy and favorable safety profile (Perez-Caballero et  al., 2014; 
Micheli et al., 2018; Shu et al., 2019; Hetrick et al., 2021). In a study 

involving CUMS-induced mice, fluoxetine was found to enhance 
NIX-mediated mitophagy by reducing the LC3BII/I and P62 
expression while increasing NIX expression, without affecting Parkin 
levels (Lu et  al., 2023). Additionally, the level of mitophagy was 
promoted by regulating the levels of mitophagy-related proteins such 
as TSPO, VDAC1, PINK1, and Beclin-1 in LH mice brains. However, 
Parkin expression was downregulated (Li et  al., 2016). Astrocytes, 
abundant cells in the central nervous system, play a pivotal role in the 
pathogenesis of MDD due to their prevalence and substantial volume 
in the cortex and hippocampus (Kong et al., 2014; Pekny et al., 2016). 
Given their role in metabolic support and brain function regulation, 
efficient mitophagy is crucial to meet their high energy demands 
(Hertz et  al., 2007). Fluoxetine enhances the removal of damaged 
mitochondria and promotes autophagic flux in astrocytes from CMS 
mice and primary cultured mouse astrocytes. This is evidenced by an 
increase in the LC3BII/I ratio and a decrease in P62 protein expression. 
Furthermore, fluoxetine induces mitophagy in primary astrocytes by 
downregulating cytoplasmic Parkin and mitochondrial TOM20 
expression levels while upregulating mitochondrial Parkin expression 
(Shu et al., 2019). Citalopram, an SSRI, exerts protective effects on 
mitophagy in a transgenic mouse model of Alzheimer’s disease (AD) 
expressing amyloid precursor protein (APP). Treatment with 
citalopram sensibly upregulates the mRNA levels of LC3B, ATG5, 
PINK1, Beclin-1 and BNIP3L in APP mice. However, it leads to 
significant downregulation of the expression of proteins such as 
PINK1, ATG5, ATG7, P62 and LC3BII/I (Reddy et  al., 2021a). 
Moreover, it augmented the autophagic and mitophagy activity of 
mAPP-HT22 cells, significantly elevating mRNA levels of LC3B, ATG5, 
Beclin-1, PINK1 and BNIP3L while reducing protein expressions of 
PINK1, LC3BII, ATG5, ATG7 and P62 (Reddy et al., 2021b).

Ketamine, a frequently utilized intravenous anesthetic and 
analgesic in clinical practice, has recently been indicated to possess 
distinct advantages in antidepressant research owing to its rapid-onset 
antidepressant effect (Chen-Li et  al., 2022). In mice exhibiting 
depression-like behavior induced by LPS, ketamine effectively 
enhanced their sucrose preference rate, reduced immobility time in 
FST and TST tests, and decreased feeding latency in NSFT. The 
LPS-induced blockage of BV2 cells’ autophagic flux was reversed and 
early mitophagy activation was upregulated with the treatment of 
ketamine, which elevated the mRNA levels and protein expressions of 
PINK1, Beclin-1, and ATG5. Additionally, LC3BII/I and LAMP1 
levels in LPS-injured BV2 cells were observed to increase, while the 
expression of P62 protein decreased following treatment with 
ketamine (Wu et al., 2022). Lu et al. proposed that NIX-mediated 
mitophagy could potentially serve as an antidepressant mechanism for 
ketamine. The study revealed that ketamine rescued TNFα-induced 
behavioral despair, as evidenced by a reduction in immobility time in 
the TST and FST, without impacting locomotion activity. Moreover, 
ketamine mitigated TNF-α-induced NIX deficiency in the mPFC and 
reversed the reduction of Beclin-1 and LC3BII proteins in the mPFC 
of TNF-α-treated mice. However, the knockout of NIX prevented the 
increase in stress-coping behaviors induced by ketamine in TNF-α-
treated mice, while locomotion activity remained unaffected (Lu 
et al., 2023).

In simple terms, both classic and rapid antidepressants have 
demonstrated promising outcomes in treating depression and related 
illnesses like AD due to their ability to regulate mitophagy levels 
(Table 2).
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TABLE 2 Modulation of mitophagy levels in the depression model by pharmacological interventions.

Drug type Models Administration Route
Sample 
Source

Experimental 
approaches/
methods

Behavioral changes Molecular mechanisms
Expected 
phenotypic 
manifestations

Refs.

Wuling powder

Chinese medicine 

compound

LH mice 500 mg/kg for 2 weeks

Gavage 

administration

The mesencephalon 

of mice
WB

Shuttle box: ↓Number of escape 

failures, ↓Average escape latency

NSFT: ↓Feeding latency

FST: ↓Immobility time

↑TSPO, PINK1, VDAC1, and Beclin-1 

proteins

↓Parkin protein

↑Mitophagy level Li et al. (2016)

Xiao Jianzhong 

Decoction
CUMS rat

3,600 mg/kg,7,200 mg/kg, 

and 14,400 mg/kg for 

3 weeks

Hippocampus WB and RT-qPCR

FST: ↓Immobility time

OFT: ↑Total distance and total 

time of exercise

↑mRNA and protein levels of PINK1, 

Parkin, and Beclin-1

↓ P62 mRNA and protein

↑PINK1/Parkin-

mediated mitophagy
Meng (2020)

G11-5 Plant derivatives
LH and SDS 

mice

5 mg/kg, 10 mg/kg, and 

20 mg/kg for 2 weeks
ND

The mesencephalon 

of mice
WB

Shuttle box: ↑Escape success rate

FST: ↓Immobility time

OFT: ↑Total distance of exercise

↑TSPO, Parkin, VDAC1, and Beclin-1 

proteins

↓TSPO-mediated 

mitochondrial 

dysregulation

Wei et al. (2020)

Quercetin

Chinese herbal 

medicine 

monomer

LPS and ATP-

stimulated BV2 

cell

30/100 μM for 1 h WB and IF

↑LC3BII, PINK1, Parkin protein

↓P62 protein

↓Immunofluorescence colocalization of 

P62 with TOM20

↑The mitophagy 

degradation process
Han et al. (2021)

Baicalin

CUMS mice 20 mg/kg for 4 weeks
Gavage 

administration
Hippocampus

SFT: ↑Sucrose preference rate

TST: ↓Immobility time ↓LC3BII/I ratio, P62, TOM20 protein

↑NIX protein

↑NIX-mediated 

mitophagy degradation
Jin et al. (2023)

CORT-induced 

HT22 cell
4 μM for 1 h WB

Morinda officinalis 

oligosaccharides

CUMS rat 100 mg/kg for 4 weeks
Gavage 

administration
Brain

WB and TEM

SFT: ↑Sucrose preference rate

FST: ↓Immobility time

TST: ↓Immobility time

↓Total protein P62, Cytoplasmic Parkin and 

Mitochondrial TOM20 protein

↑LC3BII/I ratio

↓Mitochondrial damage such as swollen 

mitochondria, adventitia rupture, cavitation

↑Autophagic flux and 

mitophagy level
Yang et al. (2023)

LPS-induced 

astrocytes cell
2.5 and 5 mg/mL for 24 h

Fluoxetine

SSRIs

CUMS mice 20 mg/kg for 4 weeks

Gavage 

administration

Hippocampus

WB

SFT: ↑Sucrose preference rate

TST: ↓Immobility time

↓LC3BII/I ratio, P62, TOM20 protein

↑NIX protein

↑NIX-mediated 

mitophagy degradation
Lu et al. (2023)

LH mice 10 mg/kg for 2 weeks
The mesencephalon 

of mice

Shuttle box: ↑Escape success rate

FST: ↓Immobility time

OFT: ↑Total distance of exercise

↑TSPO, Parkin, VDAC1, Beclin-1 proteins

↓TSPO-mediated 

mitochondrial 

dysregulation

Li et al. (2016)

CMS mice 10 mg/kg for 4 weeks Hippocampus

WB and TEM

FST: ↓Immobility time

TST: ↓Immobility time

↑LC3BII/I ratio

↓ P62 protein

↓Mitochondrial damage

↑The clearance of 

damaged mitochondria 

and unblocked 

autophagic flux
Shu et al. (2019)

Primary cultured 

mice astrocytes 

cell

10 μM for 1 h

Total:↑LC3BII/I ratio↓ P62 protein

Cytoplasm: ↓Parkin protein

Mitochondria: ↓TOM20 protein, ↑Parkin 

protein

↑Mitophagy induced

Citalopram

APP mice 20 mg/kg for 4 weeks
Intraperitoneal 

injection
Cerebral cortex

WB and RT-qPCR

↑LC3B, ATG5, PINK1, Beclin-1, and 

BNIP3L mRNA

↑PINK1, ATG5, ATG7, P62, LC3BI, and 

LC3BII proteins

↑Mitophagy activation

Reddy et al. 

(2021a)

mAPP-HT22 cell 20 μM for 24 h
Reddy et al. 

(2021b)

(Continued)
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6. Conclusion and prospects

Depression, a chronic illness that affects millions of people 
worldwide, has undergone extensive research in recent years. 
Although some progress has been made, current treatment options 
remain limited and often fail to adequately alleviate symptoms for 
many patients with depression. Therefore, an imperative demand for 
innovative therapeutic approaches exists. Based on the current 
research progress, we believe that restoring the level of mitophagy may 
be  an innovative approach to improve the therapeutic effect of 
depression. Multiple lines of evidence reflect that mitochondrial 
dysfunction is linked to depression in various regions of the brain 
(Bansal and Kuhad, 2016; Marx et al., 2021; Hollis et al., 2022; Khan 
et al., 2023). Patients with mitochondrial diseases, mutations, and 
polymorphisms in mtDNA may undergo mood changes, cognitive 
function alterations, psychosis, and anxiety (Anglin et al., 2012a,b; 
Mancuso et al., 2013). Mitophagy is a cellular process that eliminates 
damaged mitochondria, effectively regulating mitochondrial quality 
and quantity to uphold cellular homeostasis. The regulation of 
mitophagy holds promising applications in the investigation and 
clinical management of neurological disorders like Parkinson’s disease 
(PD) and AD (Kerr et al., 2017; Lizama and Chu, 2021). The regulation 
and functions of mitophagy share many similarities across PD, AD, 
and MDD. Furthermore, the observed alterations in mitophagy and 
mitochondrial function in depression propose that targeting 
mitophagy could be a promising therapeutic avenue.

Recent studies have shown that mitophagy plays a role in the 
development of depression. The mitochondrial damage caused by 
impaired mitophagy affects the process of mitochondrial ATP 
production, which impairs neuroplasticity and then negatively 
affects the development of depression (Bertholet et al., 2016). 
Mitophagy can also inhibit microglia-mediated 
neuroinflammation by suppressing the activation of 
inflammasomes, thereby attenuating depressive symptoms 
(Sprague and Khalil, 2009; Su et al., 2017; Taene et al., 2020). This 
review succinctly encapsulates recent advancements in linking 
mitophagy failure to the pathogenesis of MDD. Aberrant 
expression of the mitophagy marker PINK1 and related proteins 
in individuals with clinical depression underscores that 
mitophagy failure could potentially serve as a causal factor for 
MDD. Preclinical depression models also substantiate this 
hypothesis. These harmonious findings improve the concept that 
salvaging mitophagy in MDD might constitute a promising 
therapeutic strategy. Our review highlights that several 
antidepressants and effective compounds derived from Chinese 
herbal medicine, such as fluoxetine, ketamine, and baicalin, 
which have demonstrated significant amelioration of abnormal 
pathological and behavioral manifestations in MDD models 
through the induction of mitophagy. Despite some progress in 
exploring the relationship between mitochondrial autophagy and 
depression, an urgent necessity persists for a more comprehensive 
investigation into the evolution of this process during the 
progression of MDD. To gain a comprehensive understanding, it 
is necessary to collect more clinical data and conduct extensive 
preclinical studies. Only then can we hope to unravel the complex 
interplay between mitochondrial autophagy and depression, 
paving the way for potentially life-changing novel 
therapeutic interventions.T
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Glossary

AD Alzheimer’s disease

APP Amyloid precursor protein

ATP Adenosine triphosphate

Bcl-2 B-cell leukemia/lymphoma 2

BNIP3 CL-2 and adenovirus E1B 19-kDa interacting protein 3

Ca2+ Calcium ions

CMS Chronic mild stress

CORT Corticosterone

CSDS Chronic social defeat stress

CUMS Chronic unpredictable mild stress

DD Diabetes-related depression

FST Forced swimming test

FUNDC1 FUN14 domain-containing 1

GABARAP Gamma-aminobutyric acid receptor-associated protein

h Hour

IF Immunofluorescence

IMM Inner mitochondrial membrane

LH Learned helplessness

LIR LC3-interacting region

LPS Lipopolysaccharide

MDD Major depressive disorder

MMP Mitochondrial membrane potential

mRFP-GFPLC3 probes The tandem fluorescent-tagged LC3 probe monitoring autophagic flux based on different pH stability of mRFP

mtROS Mitochondrial ROS

NDP52 Nuclear dot protein 52 kDa

NIX B-cell leukemia/lymphoma 2 and adenovirus E1B 19-kDa interacting protein 3-like

NSF Novelty suppressed feeding test

OFT Open field test

OMM Outer mitochondrial membrane

OPTN Optineurin

PD Parkinson’s disease

PINK1 PTEN-induced putative kinase 1

p-mTOR Phosphorylated mTOR

p-S65-Ub Phosphorylate ubiquitin at S65

ROS Reactive oxygen species

RT-qPCR Real-time polymerase chain reaction

SDS Social defeat stress

SFT Sucrose preference test

SQSTM1 Sequestosome 1 also known as P62

SSRIs Selective serotonin reuptake inhibitors

TEM Transmission electron microscopy

TNF-α Tumor necrosis factor-α

TSPO Translocator protein

TST Tail suspension test

VDAC1 Voltage-dependent anion channel

WB Western blot
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