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Biological evidence indicewates that the brain atrophy can be involved at the

onset of neuropathological pathways of Alzheimer’s disease. However, there is

lack of formal statistical methods to perform genetic dissection of brain activation

phenotypes such as shape and intensity. To this end, we propose a Bayesian

hierarchical model which consists of two levels of hierarchy. At level 1, we develop

a Bayesian nonparametric level set (BNLS) model for studying the brain activation

region shape. At level 2, we construct a regression model to select genetic

variants that are strongly associated with the brain activation intensity, where a

spike-and-slab prior and a Gaussian prior are chosen for feature selection. We

develop e�cient posterior computation algorithms based on the Markov chain

Monte Carlo (MCMC) method. We demonstrate the advantages of the proposed

method via extensive simulation studies and analyses of imaging genetics data in

the Alzheimer’s disease neuroimaging initiative (ADNI) study.
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1. Introduction

Imaging genetics is an emerging interdisciplinary field with a focus on assessing the

impact of genetic variation on brain function and structure. It is a useful tool to uncover

the etiologies of complex neuropsychiatric diseases, such as Autism (Ameis and Szatmari,

2012) schizophrenia (Meyer-Lindenberg, 2010) and Alzheimer’s disease (Weiner et al.,

2013). Traditional genetics studies have attempted to search genetic variants that are

strongly associated with a behavior or related phenotypes; however, some findings were

weak and inconsistent. There are considerable inter-subject differences in the behavioral

measures, usually requiring large sample sizes to detect a signal. For neuropsychiatric

disease, many genetic variants may not be directly associated with a clinical outcome

or a behavior response but have a strong indirect effect which is mediated through

molecular and cellular level information processing by neurons in the brain. We refer to

this information processing procedure as brain activity. Functional neuroimaging, including

functional magnetic resonance imaging (fMRI) and positron emission tomography (PET),

is a set of powerful techniques to indirectly measure the brain activity at each location in

the brain. Many current functional neuroimaging studies have focused on detecting the

brain activation regions in association with particular cognitive and emotional tasks or at

resting state.

Therefore, in imaging genetics studies, it is of great interest is to simultaneously select

important genetic variants and detect brain activation regions where the genetic effects are

strongly associated with brain activity. We refer to this procedure as genetic dissection of
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brain activation regions. Ourmotivating example is joint analysis of

the fluorodeoxyglucose positron emission tomography (FDG-PET)

data, single nucleotide polymorphisms (SNP) data and clinical

data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study. Alzheimer’s disease (AD) is one of the most common

neurodegenerative disorders that impair mental functioning. It

affects approximately eight percent of people who are 65 years

of age or older. It has been shown that AD leads to nerve cell

death and tissue loss in the brain (Bookheimer et al., 2000). As AD

progresses, the brain shrinks dramatically; and abnormal changes

in the brain worsen over time, eventually interfering with many

aspects of brain function, such as memory loss, resulting in a

decline in some intellectual abilities and changes in personality and

behavior. New and potential treatments for AD focus on slowing

the progression of the disease, making it important to identify at

an early stage markers of future cognitive decline. Genetics studies

showed that the presence of some of genes such as APOE and

NEDD9 may be associated with cognitive decline in older persons

(Wang et al., 2011). Structural magnetic resonance imaging (sMRI)

studies (Bookheimer et al., 2000) identified that older persons with

normal cognition may show medial temporal atrophy and thus

indicate the possibility of future cognitive impairment.ManyADNI

studies have focused on the joint analysis of sMRI and SNPs to

discover the genetic effects on brain structure (Stein et al., 2010;

Zhu et al., 2014; Huang et al., 2015). Functional neuroimaging

techniques can facilitate to discover more subtle alternations in

brain function as AD progresses, thus analyses of PET or fMRI

data in the ADNI studies have drawn much attention recently as

well. For example, Huang et al. (2010) and Kundu and Kang (2016)

developed statistical methods for leaning the genetic effects on the

functional connectivity of AD. In this work, our goal is to study

the genetic effects on functional brain activity for people at risk of

AD, based on which we can identify the consistent brain activation

regions across multiple subjects and quantify the changes of their

shapes over times.

Many of them have been adopted to detect the association

between imaging biomarkers and genetic variants. The pioneer

work includes voxelwise genome-wide association (vGWAS)

study (Stein et al., 2010) where each voxel is considered as a

phenotype and univariate regression models were fitted for all

the combinations of voxels and genetic variants. This approach

enjoys the simplicity and fast computations but suffers from the

difficulty of themultiple testing problem since the number of voxels

often can be up to more than 10,000. To address those limitations,

Huang et al. (2015) proposed a joint modeling approach, termed

as, Fast voxelwise genome wide association analysis (FVGWAS)

with a well family-wise error control procedure and developed

efficient computing tools for large-scale imaging genetics studies.

Huang et al. (2017) introduced a new framework called Functional

Genome-Wide Association Analysis (FGWAS) designed to analyze

functional phenotypes like those found in neuroimaging studies.

FGWAS improves upon FVGWAS methods by incorporating the

unique features of functional phenotypes-like smoothness and

correlation-into the statistical model, resulting in more powerful

detection of genetic variants affecting brain structure and function.

Alternatively, Vounou et al. (2010) and Zhu et al. (2014) proposed

to use low rank regression to handle the high-dimensional

neuroimaging phenotype, where a latent structure are imposed in

the regression coefficients. Besides reduced rank approximation

approaches, independent component analysis (ICA) (Liu et al.,

2009) and canonical correlation analysis (CCA) (Chi et al., 2013)

have been applied to discover the association between the imaging

biomarkers and genetic variants with different latent structure

assumptions.

Different from all the existing methods, in this work, we

propose a Bayesian hierarchical model for genetic dissection of

brain activation regions using the level set function with the

Gaussian process (GP) prior. We term our method as Bayesian

nonparametric level set (BNLS) method. BNLS consists of two

levels of hierarchy.

At level 1, a Bayesian nonparametric level set model is

developed for characterizing the shape of consistent brain

activation regions across multiple subjects. The level set method

has been widely used in image segmentation problems (e.g., Balafar

et al., 2010; Li et al., 2011; Bergeest and Rohr, 2012), where contours

(2D) or surfaces (3D) are represented as the zero-level set of a

higher dimensional function, thus spatial voxels can be classified

based on the function values: positive (inside the region) or negative

(outside the region). We refer to this function as the level set

function. The corresponding shape representation can characterize

complex topological variations: the appearance of holes or tails,

shapes that break down into smaller pieces, etc. The traditional

level set based shape estimation problem can be solved by the

numerical methods for partial differential equations. In our model,

we propose to assign a GP prior to the level set function and make

fully posterior inference on the level set function as well as the shape

of the activation regions, taking advantages of the good statistical

properties of GP.

At level 2, a regression model is adopted to select genetic

variants that are strongly associated with the average brain activity

within the region over multiple subjects, where a spike-and-slab

prior and a Gaussian prior are chosen for feature selection. In

particular, we model the average brain activation intensity within

the region for each subject as the response variable; and we

consider all the genetic variants as well as some clinical factors

as predictors. We assign the Bayesian spike and slab prior on the

regression coefficients for variable selection and thus to detect the

important genetic variants of interest. The spike and slab prior was

initially proposed by Mitchell and Beauchamp (1988) and George

and McCulloch (1993) and has been broadly adopted for various

applications (Chipman et al., 2001; Ishwaran and Rao, 2005a,b). In

the spike and slab prior specifications, the coefficients are mutually

independent with a two-point mixture distribution made up of a

“uniform-like” flat distribution (called “slab”) and a “degenerated-

point-mass-at-zero-like” distribution (called “spike”), leading to

sparsity in the posterior inference.

Our proposed Bayesian model offers several unique features

compared to existing methods. First, the foundational assumptions

of our model diverge substantially from those of FVGWAS and

FGWAS. Specifically, we focus on probabilistic modeling of brain

activation regions and the selection of key genetic variants with

significant associations to these regions. Second, we aim for fully

Bayesian inferences that account for all sources of variation in

the model parameters, which in turn characterize both imaging
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measurements and genetic variants. Third, our method is designed

to efficiently analyze high-resolution images and a moderately

large set of genetic variants. It is important to note that we do

not expect our Bayesian approach to scale in the same way as

variable screening-based methods like FVGWAS and FGWAS. Our

model also has the potential to be integrated with prior knowledge-

guided Bayesian variable screening methods (He and Kang, 2022).

The efficacy of this combined approach certainly warrants future

investigation.

The remainder of the manuscript is organized as follows. In

Section 2, we present the proposed model with prior specifications,

and develop the posterior computation algorithms for fully

Bayesian model. In Section 3, we evaluate the performance of the

proposed method via extensive simulation studies. In Section 4, we

illustrate the proposed method on analysis of the PET and SNP

data from the ADNI study to detect influential SNPs and consistent

activation regions across subjects. Finally, we conclude our paper

by discussion in Section 5.

2. Materials and methods

In this section, we develop BNLS: a two-level Bayesian

hierarchical model for fitting the brain activation regions that

can simultaneously select important genetic variants. At Level 1,

we focus on identifying the consistent activation regions across

subjects, where the brain activation intensity may be different

for different subjects. At Level 2, we are interested in identifying

the important genetic variants (such as SNPs) that are strongly

associated with brain activation intensities.

2.1. Two-level model

Suppose we collect brain images consisting of p voxels in a brain

region B ⊂ R
3 and genetic variants ofm SNPs from n subjects. Let

i(i = 1, . . . , n) index the subject, j(j = 1, . . . , p) index the voxels

and k(k = 1, . . . ,m) index the SNPs. Denote by yij the observed

imaging signal at voxel vj ∈ B. Let Sik be the genetic variant for

SNP k.

At Level 1, we model the brain signal intensity within brain

activation regions by assuming yij follow a normal mixture model:

[yi(vj) | φ,µi, σ
2
i ] ∼ N

[

µiδ{φ(vj)}, σ
2
i

]

, (1)

where δ(x) = 1 if x > 0 and δ(x) = 0 if x ≤ 0. The level set

function φ(v) :B → R determines the brain activation regions. For

any voxel v in the brain, if φ(v) > 0 implying that δ{φ(vj)} = 1,

then it is located in a activation region and the brain signal yij has

an average activation intensity µi. Otherwise, the voxel is located

outside the brain activation regions with a mean intensity zero. The

parameter σ 2
i is the variance of the signal yij across all voxels j for

subject i.

At Level 2, we link the activation intensity to the genetic variant

by using a regression model

µi ∼ N

(

m
∑

k=1

Sikηk, τ
2
µ

)

, (2)

where ηk is the genetic effects of SNP k on the brain activation

intensity. The variance parameter τ 2µ characterizes the variability

of the average activation intensity that are not from the

genetic variants.

2.2. Prior specifications

In this section, we discuss the prior specifications for models

(1) and (2).

At Level 1, to guarantee the robustness and flexibility of

modeling the activation regions shape, we assign a Gaussian process

prior to the level set function φ(v) with mean zero and covariance

kernel function, denoted as

φ ∼ GP(0, κ),

where κ(v, v′) :B × B → R is a symmetric positive definite kernel

function.

At Level 2, we impose sparsity on ηk to identify the important

SNP sets that are strongly associated with the brain activation

intensity. To achieve this goal, we adopt the spike-and-slab prior

proposed by Ishwaran and Rao (2005b):

[

ηk | γk, τ
2
k

]

∼ N[0, γkτ
2
k ], [γk | ν0,w] ∼ (1− w)δν0 + wδ1,

w ∼ Uniform[0, 1],

where δv(·) refers to a point mass measure at a real value v. The

parameter w is the prior inclusion probability indicating how likely

each feature is to be selected. Pre-defined value ν0 usually select very

small so that the “spike” (δν0 , i.e., N[0, ν0τ
2
k
]) part and “slab” (δ1, i.e.,

N[0, τ 2
k
]) part can be mostly differentiated from each other.

For all the variance parameters σ 2
i , τ

2
µ, and τ

2
k
, we assume they

are mutually indenpendent and follow conjugate priors:

σ 2
i ∼ IG(a1, a2), τ 2µ ∼ IG(b1, b2), τ 2k ∼ IG(c1, c2),

where IG(w1,w2) represents an inverse gamma prior with shape w1

and rate w2.

2.3. Model representation

To implement posterior computation algorithm, we need

to consider model approximations. First, we consider the basis

expansion approximation φ(v) =
∑L

l=1 βlψl(v) with βl
iid
∼

N(0,3), where {ψl(·)} and {λl} are respectively eigen functions and

eigenvalues for the kernel function κ(·, ·) that are shared cross all

patient samples. Here, L is the number of basis functions and it

can be determined according to the proportion of the variation of

the GP, denoted as α ∈ {0, 1}, that can be explained by the basis

expansions, i.e., min{L :(
∑L

l=1 λl) ≤
∑∞

l=1 λl ≥ α}. A common

choice of α is around 0.7 to 0.8. Second, we introduce the function

Hǫ[x] = 1
2 [1 + 2

π
arctan( x

ǫ
)] with Hǫ[x] → δ[x] as ǫ → 0.

Note that its first derivative is H
(1)
ǫ [x] = 1

π
ǫ

ǫ2+x2
. Let Hǫ(β) =

{Hǫ(ψ
T
1β), · · · ,Hǫ(ψ

T
pβ)}

T = (H1, · · · ,Hp)
T .

Write yi = (yi1, . . . , yip)
T, S = (Sik), µ = (µ1, . . . ,µn)

T, β =

(β1, . . . ,βL)
T and 9 = (ψ1, . . . ,ψp)

T with ψ j = [ψ1,j, . . . ,ψL,j]
T
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and ψl,j = ψl(vj). Then our Bayesian hierarchical model with prior

specifications can be represented as

yi | β ,µi, σ
2
i ∼ Np

[

µiHǫ(β), σ
2
i Ip
]

, β ∼ NL [0,3L] ,

µ ∼ Nn[S
Tη, τ 2µ1n],

η | γ , τ 2 ∼ Nm[0,Ŵ(γ , τ
2)], γk|w ∼ (1− w)δν0 + wδ1,

w ∼ Uniform[0, 1],

σ 2
i ∼ IG[a1, a2], τ

2
µ ∼ IG[b1, b2], τ

2
k ∼ IG[c1, c2], (3)

where Ŵ is a diagonal matrix with (k, k) element being γkτ
2
k
.

2.4. The model with non-sparse prior

We also consider a conjugate normal prior on η without

imposing sparsity which leads to more efficient posterior

computation. The model is represented as

yi | β ,µi, σ
2
i ∼ Np

[

µiHǫ(β), σ
2
i Ip
]

, β ∼ NL [0,3L] ,

µ ∼ Nq[S
Tη, τ 2µIq], η ∼ Nm[0, τ

2
η Im],

σ 2
i ∼ IG[a1, a2], τ

2
µ ∼ IG[b1, b2], τ

2
η ∼ IG[d1, d2].

2.5. Posterior computation and variable
selection

For posterior computation, we adopt the Riemann Manifold

Metropolis adjusted Langevin algorithm (MMALA) (Girolami and

Calderhead, 2011) and Stochastic Search Variable Selection (SSVS)

George and McCulloch (1997) within Gibbs sampling.

For the variable selection, we apply an ad-hocmethod based on

posterior credible intervals. For correlating the variables (clinical or

SNPs) with brain image intensity levels, we use the null hypothesis

that SNP k is uncorrelated with the intensity level inside the

activation region (H0 : ηk = 0) and the alternative hypothesis

that SNP k is not uncorrelated with the intensity level inside

the activation region (Ha : ηk 6= 0). Based on the marginal

posterior distribution for ηk, if 0 is included in the posterior

99% credible interval, we assign γk = 1, otherwise γk = 0

where γk is the same indicator variable introduced in SSVS.

We approximate the posterior inclusion probability of SNP k:

Eγk using the averaged values after burn-ins γ k. Then the SNPs

with posterior inclusion probability larger than 0.01 are selected

as important.

The details of derivations and posterior computation

algorithms the Bayesian level set method with spike-and-slab prior

and normal prior are provided in the Supplementary material.

3. Simulations

We tested the performance for learning activation region

shapes and selection influential variables using proposed method

starting from the simplest scenario and then gradually extended

to the most complicated scenario. For the simplest simulation

setting, we simulated a single subject, 2D imaging data and

zero predictor matrix, i.e., set n = 1, d = 2, S =

0 thus no variable selection was involved. For the most

complicated simulation setting, we simulated multiple subjects,

3D imaging data and utilized the predictors in real data analysis

for selection.

3.1. Single subject with 2D image and no
variable selection

In this simulation study, the objective is to test the Bayesian

nonparametric level set method for random shape fitting. We

simulated 2D images of size 150 × 150 on a square region [−1, 1]2

(d = 2). We considered three activation region shapes: circles,

squares and random shapes. We simulated data by setting σ 2 = 1,

and the signal intensities µ and the level set function were set

as follows:

• Circle shapes: set the signal intensity µ = 1 (weak) and the

true level set function φ(v) = exp{−0.5(v21 + v22)} − 0.8

• Square shapes: set the signal intensity µ = 3 (strong) and the

true level set function φ(v) = exp{−0.5(|v1| + |v2|)} − 0.8

• Random shapes: set the signal intensity µ = 2 (intermediate)

and draw the true level set from a Gaussian process with mean

zero and covariance kernel κ(v1, v2) = exp(−10(v1 − v2)
2)

For the posterior computation, we set ǫ = 1 × 10−3 and run

50,000 iterations with 20,000 burn-ins. The shape estimation results

were presented in Figure 1.

3.2. Multi-subjects with 3D image and no
variable selection

We evaluated the proposed method on a total of m = 50

subjects with 3D images simulated for each of them. The 3D image

grid was of 20 × 20 × 20 (p = 8, 000) on a square region [−1, 1]2

(d = 3). Like simulation 3.1, we set S = 0 so that there is no

variable selection involved. We considered three different shapes of

activation region: spheres, diamonds, and random shapes. We set

σ 2
i = 1, i = 1, . . . , n. The signal intensities µi (i = 1, . . . , n) and

the level set function φ(v) were set as follows:

• Sphere shapes: set the signal intensity µi ∼ N(1, 1) and the

true level set function φ(v) = exp{−0.5(v21 + v22 + v23)} − 0.7

• Diamond shapes: set the signal intensity µi ∼ N(3, 1) and the

true level set function φ(v) = exp{−0.5(|v1|+|v2|+|v3|)}−0.6

• Random signal shapes: set the signal intensity µi ∼ N(2, 1)

and draw the true level set from a Gaussian process with

mean zero and covariance kernel κ(v1, v2) = exp(−10(v1 −

v2)
T(v1 − v2))

For the posterior computation, we set ǫ = 1× 10−3, α = 0.8 as

PCA percent and run 5,000 iteration with 2,000 burn-in. The shape

segmentation results were respectively summarized in Figure 2.
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FIGURE 1

Single subject with 2D image and no variable selection: from top to bottom, left to right: simulated boundary in red, simulated intensity data,

estimated boundary in red and inclusion probability map. (a) Circle (weak). (b) Square (strong). (c) Random (intermediatel).

FIGURE 2

Multiple subjects with 3D image and no variable selection: top/bottom: simulated/estimated shapes; classification accuracies; left to right: MSE(µ)

are sphere 0.98, 0.000218; diamond 0.98, 0.000728; random 0.96, 0.000158.
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TABLE 1 Comparisons between BNLS with the spike-and-slab prior and with the normal prior in the simulation results for 3D image with multiple

subjects.

Shape Sphere Diamond Random

SNR(β) 8 5 2

SNR(η) 8 5 2 8 5 2 8 5 2

BNLS with spike-and-slab prior

ACC (AR) 0.992 0.992 0.991 0.991 0.991 0.991 0.952 0.954 0.952

TPR (AR) 0.972 0.969 0.965 0.949 0.949 0.948 0.950 0.952 0.950

TNR (AR) 1.000 1.000 1.000 1.000 1.000 1.000 0.948 0.950 0.947

ACC (GV) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TPR (GV) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TNR (GV) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MSE(η) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MSE(µ) 0.000 0.000 0.000 0.004 0.003 0.003 0.179 0.162 0.153

BNLS with normal prior (non-sparse prior)

ACC (AR) 0.991 0.991 0.991 0.993 0.992 0.992 0.954 0.952 0.954

TPR (AR) 0.969 0.969 0.969 0.956 0.950 0.955 0.952 0.950 0.954

TNR (AR) 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.951 0.948

ACC (GV) 0.926 0.909 0.894 0.926 0.907 0.898 0.931 0.923 0.893

TPR (GV) 1.000 0.970 0.865 0.990 0.970 0.850 1.000 0.945 0.840

TNR (GV) 0.924 0.907 0.895 0.924 0.906 0.900 0.929 0.923 0.894

MSE(η) 0.028 0.044 0.089 0.028 0.041 0.091 0.025 0.039 0.081

MSE(µ) 0.001 0.000 0.000 0.011 0.007 0.003 0.236 0.219 0.141

The results include parameter estimation mean squared error (MSE) and selection accuracy (ACC), true positive rate (TPR) and true negative rate (TNR) for brain activation region (AR) and

genetic variants (GV) for three shapes with combinations of the signal-to-noise ratios.

3.3. Multi-subjects with 3D image and
variable selection

In the simulation study, we evaluated the proposed method on

the most complicated scenario where there is a total of n = 235

subjects with 3D images simulated for each of them. We only

took the first 200 columns (m = 200) from the SNP matrix

in real data analysis to form S in the simulations. We randomly

selected 5 of them as signal (without loss of generosity, set ηk =

1, k = 1, . . . , 5) and the remaining 195 (ηk = 0, k = 6, . . . , 200)

as noise. Like previous simulation studies, we considered three

different activation region shapes with different combination of

abilities for shape estimation and variable selection quantified by

signal-to-noise-ratio SNR(•).

SNR(β) =
1

n

n
∑

i=1

SNR(β|yi) =
1

n

n
∑

i=1

|µi|

σi

SNR(η) =
Var(Eµ)

Eǫ2
=

Var(Sη)

Eǫ2

where SNR(β) is the signal-to-noise ratio for activation shape

estimation and SNR(η) is the signal-to-noise ratio for variable

selection., and in simulations, we simulated datasets of different

combinations: SNR(β) = 8, 5, 2 and SNR(η) = 8, 5, 2.

For the posterior computation, we set ǫ = 1 × 10−4 and

α = 0.75 as the proportion of variation explained in the GP

approximation, which leads to 120 basis functions. We ran 6,000

iterations with 4,000 burn-ins and saved the MCMC sample

for every two iterations. For each of the simulation settings,

we simulated 50 datasets in total and evaluated the algorithm

performance based on some proposed metrics averaged across

different datasets. The voxels inside activation regions were selected

if their posterior inclusion probability is larger than 0.5. The

variable are selected if their posterior inclusion probability is larger

than 0.02 for SSVS and 0.01 when used non-sparse prior.

For activation shape estimation and variable selection, as there

are only two possible values that voxels can take: “inside the region”

or “outside the region”, also two possible values that variables can

take: “selected” or “not-selected”, we can summarize spatial voxels

and variable selection results by their averaged accuracy, sensitivity,

and specificity respectively. We also provided the averaged mean-

squared-errors (MSE) for η and µ. The simulation results using

SSVS are presented in Table 1 and results using non-sparse prior

are presented in Table 1.

The simulation studies indicate our proposed method is

accurate for voxels classification and variable selection. For

simulations using SSVS, even with the worse scenario when

SNR(β) = 2 and SNR(η) = 2, the averaged accuracy, sensitivity

and specificity for voxels classification are all above 0.94 and for
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TABLE 2 Comparisons between FVGWAS, FGWAS, BNLS in the

simulations for 3D image with multiple subjects, where the data were

simulated according to the signal to noise ratios estimated from the real

PET images in the ADNI study.

Method FVGWAS FGWAS Bayesian

SNR(η) 0.5 1.0 0.5 1.0 0.5 1.0

ACC (AR) 0.562 0.570 0.658 0.713 0.945 0.944

TPR (AR) 0.117 0.145 1.000 1.000 0.938 0.957

TNR (AR) 1.000 1.000 0.235 0.499 0.951 0.929

ACC (GV) 0.831 0.802 0.499 0.504 0.985 0.995

TPR (GV) 0.904 0.960 0.400 0.400 0.400 0.800

TNR (GV) 0.829 0.798 0.502 0.507 1.000 1.000

The results include parameter estimation mean squared error (MSE) and selection accuracy

(ACC), true positive rate (TPR) and true negative rate (TNR) for brain activation region (AR)

and genetic variants (GV) for two levels the signal-to-noise ratios genetic variants.

variable selection are all 100%. As SNR(β) increased to 5 and

8, classification performance improves as expected while SNR(η)

increased to 5 and 8, variable selection are all 100% accurate. For

MSE of η and µ, it decreases in the general trend when SNR(β)

increases.

Compared to Bayesian level set method with non-sparse prior

for variable selection, the voxels classification is robust but the

variable selection generates worse performance. If we compare the

scenario when SNR(β) = SNR(η) = 2, the accuracy, sensitivity

(true positive rate) and specificity (true negative rate) decrease to

0.893, 0.840, 0.894 and MSE for η and µ increases to 0.081 and

0.141. The proposed method does suffer a decrease performance as

expected, but in general, the results are acceptable. We recommend

applying the fast algorithm when there is exceedingly large number

of candidate SNPs in the study for fast computation purpose.

To assess our model’s performance relative to existing methods

like FVGWAS and FGWAS, we specifically examine signal-to-noise

ratios (SNR) for both brain activation region selection and genetic

effects, using estimations from the analysis of ADNI data. The

estimated SNR(β) ≈ 0.5, while for η, the SNR varies between

0.5 and 1.0; hence, we consider two scenarios: SNR(η) = 0.5, 1.0.

We simulate the activation region through Gaussian Processes

(GP), where the spatial correlation is approximated to be 0.9 for

neighboring voxels, based on PET image analysis. Given that the

underlying assumptions of our Bayesian model differ from those of

FVGWAS and FGWAS, the parameter estimations are not directly

comparable. Therefore, we focus our comparison on activation

region and SNP selection results, omitting the mean squared error

(MSE) metrics. The findings are summarized in Table 2.

The comparative analysis indicates that FVGWAS exhibits low

power in detecting activation regions but performs exceptionally

well in identifying genetic variants, albeit with a slightly inflated

false-positive rate. On the other hand, FGWAS, which incorporates

spatial smoothness into its estimations, demonstrates high power

in detecting activation regions but struggles to control the false-

positive rate effectively, resulting in low specificity. In contrast,

our proposed Bayesian level set method, augmented with a spike-

and-slab prior, outperforms both methods in terms of activation

region and genetic variant selection. Importantly, it also effectively

controls the false-positive rate.

4. Analysis of ADNI data

We applied the proposed method on an imaging genetics study

to detect genotypes that are associated with imaging phenotypes

(both imaging intensities and activation shapes) in application to

the Alzheimer’s disease. To be specific, the primary goal was to

determinate any specific gene markers that are correlated with

regional activation levels in the brain, which can serve as potential

indicators of disease with different levels of progression.

The data was made available by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). There are three different groups

of subjects: 69 normal subjects (NORM), 117 mild cognitive

impairment subjects (MCI), and 49 Alzheimer’s disease patients

(AD). In total, 235 subjects were included in the study. For

genotypes, we selected 614 SNPs that are associated with 34 genes

known to be potentially related to AD from the literature. In

addition to the genetic data, we also included 5 clinical factors.

They are: the subjects age, gender, body weight, neuropsychiatric

inventory score (NPISCORE), and functional activity questionnaire

score (FAQSCORE). There are 2 missing values in NPISCORE

and 4 missing values in FAQSCORE. All the missing values were

imputed by the mean values of observed data for the corresponding

variables.We standardized each variable so that they had an average

value of 0 and a variance of 1. We included 42 brain regions in

the analysis. There are 12 regions located in Frontal lobe including

(Frontal_Sup_L, etc.); 8 in Parietal lobe including Parietal_Sup_L,

etc.; 6 in Occipital lobe including Occipital_Sup_L, etc. and 16 in

Temporal lobe including Temporal_Sup_R, Hippocampus_L, etc.

(L: left hemisphere, R: right hemisphere). We studied each of them

at three different time points: baseline (bl), month 6 (m6), and

month 12 (m12).

We applied the proposed level set image segmentation for

activation region fitting, and utilized the spike and slab prior in

variable selection as we only included limited number of SNPs in

the study. We applied our method to each of the brain anatomical

regions. The objective was to learn the brain activation region

changes over time, and to select significant SNP biomarkers that

were associated with the activation intensities. There were some

assumptions in the model in the way we implemented. First,

we borrowed the anatomical structure information by assuming

separate activation regions (two anatomical regions A and B, βs are

different: β(A) 6= β(B)), independent intensity levels within subject

(µi(A) 6= µi(B)) and across subjects (µi(A) 6= µj(B)), individual set

of influential SNPs (η(A) 6= η(B)). Second, we simplified our model

by assuming the same level of activation within one anatomical

brain region due to the fact that anatomical regions are usually

small areas in the brain.

Across all regions in brain, the number of voxels ranges from

335 to 5104, with an average of 2134. We set ǫ = 1 × 10−4,

α = 0.75 leading to 120 basis functions for fitting the GP, i.e.,

L = 120. Then we run the MMALA for 6,000 iterations with 4,000

burn-in and save the MCMC samples for every two iterations. The

activation regions are uniquely defined by the voxels selected inside

the activation. In simulation studies, voxels are selected as inside
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FIGURE 3

Inclusion probability map indicating changes of brain activation shapes. Left/right: the hippocampus from the right hemisphere from coronal panel/

the middle temporal gyrus from the right hemisphere at saggital panel. Points: light blue, anatomical regions; colored, activation regions. Red to dark

blue: inclusion probability decreases from 1 to 0.

FIGURE 4

Di�erent views of brain-wide activation regions. Red: activation regions; light blue: anatomical regions.
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TABLE 3 Anatomical region-wise results: number of voxels inside activation regions at di�erent time points using hard-thresholding criterion, time

points for each selected SNPs within one region.

Region name nvoxels
at bl

nvoxels
at m6

nvoxels
at m12

rs16940638
(ADAM10)

rs10512186
(DAPK1)

rs677066
(CR1)

rs3734404
(NEDD9)

rs2274976
(MTHFR)

Frontal_Sup_L 31 37 30 bl,m6,m12,

Frontal_Sup_R 31 31 31 bl,m6,m12,

Frontal_Mid_L 42 34 34 bl, m12, m6,m12,

Frontal_Mid_R 32 36 37 bl,m6,m12,

Frontal_Sup_Medial_L 41 43 41 bl,m6,

Frontal_Sup_Medial_R 33 35 38 bl,m6,m12,

Frontal_Mid_Orb_L 31 32 36 bl,m6,m12,

Frontal_Mid_Orb_R 31 32 32 bl,m6,m12,

Rectus_L 35 35 35 bl,m6,m12, m12,

Rectus_R 45 39 44 bl,m6,m12, m6,m12,

Cingulum_Ant_L 19 19 19 bl,m6,m12,

Cingulum_Ant_R 30 30 30 bl,m6,m12,

ParaHippocampal_L 30 30 31 bl,

ParaHippocampal_R 30 29 31 bl,m6,m12,

Parietal_Sup_L 42 46 42 bl,m6,m12,

Parietal_Sup_R 47 45 47 m12, m6, bl,

Parietal_Inf_L 33 33 37 bl,m6,m12,

Parietal_Inf_R 36 36 36 bl,m6,m12,

Precuneus_L 43 45 43 bl,m6,m12, m6,m12,

Precuneus_R 48 47 50 bl,m6,m12, m12,

Cingulum_Post_L 30 30 30 bl,m6,m12,

Cingulum_Post_R 19 19 19 bl,m6,m12,

Temporal_Inf_L 47 47 48 bl,m6, m6,m12,

Temporal_Inf_R 35 35 35 bl,m6,m12, m6,m12,

Fusiform_L 41 42 40 bl,m6,m12, m6,m12,

Fusiform_R 29 29 29 bl,m6,m12, m6,m12,

Occipital_Sup_L 32 35 32 bl,m6,m12, m12,

Occipital_Mid_R 48 46 48 bl,m12, m6,m12,

Occipital_Inf_L 40 43 40 bl,m6,m12, m6,m12,

Occipital_Inf_R 44 42 45 bl,m6,m12, m6,m12,

Temporal_Pole_Mid_L 35 34 33 bl,m6,m12, m12,

Temporal_Pole_Mid_R 44 42 43 bl,m6,m12, m6,m12,

Temporal_Pole_Sup_L 36 36 36

Temporal_Pole_Sup_R 41 41 41 bl,m6,m12, m6,

Temporal_Mid_L 42 41 46 bl,m12, m6,m12,

Temporal_Mid_R 36 38 33 bl, m6,m12,

Hippocampus_L 19 38 38 bl,m6,m12, m6,m12,

Hippocampus_R 31 31 27 bl,m6,m12, m6,

Temporal_Sup_L 39 40 40 m6,m12, m12,

Temporal_Sup_R 49 49 48 bl,m6,m12, m6,m12,

Occipital_Sup_R 36 36 36 bl,m6,m12, m6,

Occipital_Mid_L 46 45 51 bl,m6,m12,
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the activation regions if their posterior inclusion probabilities after

burn-ins are larger (i.e., voxel vj are selected if zj ≥ 0.5). Compared

to this hard-thresholding likewise method, in real data analysis, we

combined all voxels selected across all time points together and

defined as our “ROI” and then presented results in a probability

map where we presented each voxel’s marginal posterior inclusion

probability. For instance, the progression in hippocampus region

from the right hemisphere, in the middle temporal gyrus from the

right hemisphere at different time points are presented in Figure 3.

We observed that in both regions activations are decreased over the

time along with disease progression.

Moreover, all activation regions at a brain-wide level are

presented at the axial, sagittal and coronal panel in Figure 4. We

observed that the activations follow the human brain structure

symmetry. We also presented anatomically regional activation

selection table using hard-thresholding method in the Table 3.

For variable selection, different from simulations studies

where we selected variables based on their posterior inclusion

probabilities (≥ 0.02), this time, we applied a more stringent rule

where only SNPs with posterior inclusion probability larger than

0.5 are selected as highly-influential SNP of interest. We pooled

the SNPs selected from at least one anatomical region together.

As shown in the Venn diagram (Figure 5), in total there were 5

SNPs selected: SNP rs677066 (gene CR1) and SNP rs16940638

(gene ADAM10) are selected at all time points which indicated

their consistent impact on the activation intensities; SNP rs2274976

(gene MTHFR) and SNP rs3734404 (gene NEDD9) were only

selected at baseline and month 6 respectively; SNP rs10512186

(gene DAPK1) was selected at both month 6 and month 12. For

each of the selected SNP, the number of regions related at different

time points, region names, and region-related lobe names can be

found in Table 4.

Based on SNP-activation relation, we observe that ADAM10

(SNP rs16940638) is universally associated with the majority of the

anatomical brain regions across time: 38 out of 42 at baseline, 33 out

of 42 at month 6, and 33 out of 42 at month 12. The SNP has been

identified as one of the significant genetic variants using genome-

wide association studies (GWAS) and mediation analyses where

the objective was to detect SNPs that influence psychiatric and

cognitive traits through intermediaries, and would not be detected

otherwise (Bi et al., 2017). The biological function of the gene,

ADAM10, is to proteolytic release cell-surface proteins, including

TNF-alpha, heparin-binding epidermal growth-like factor, Notch

receptors, and amyloid precursor protein (APP) in the non-

amyloidogenic manner (Rabquer et al., 2010; Jouannet et al.,

2016; Seegar et al., 2017). The regulatory role of ADAM10 in

the brain has been well-documented (Saftig and Lichtenthaler,

2015).

In our results, rs677066 is associated with inferior parietal

left in all three time points, while it is associated with middle

frontal gyrus left at both 6 months and 12 months, but not

at baseline., and it is associated with superior temporal gyrus

left only at month 12. In existing literature, rs677066 (gene:

CR1) is among the top SNPs to be related with AD gene

pathway implicated in Alzheimer’s disease (Silver et al., 2012).

It was also found to play a role in the spontaneous idiopathic

preterm birth (McElroy, 2013). The CR1 gene encodes a type I

membrane glycoprotein that typically mediates cellular binding

FIGURE 5

Venn diagram presenting relations of SNPs selected at di�erent time

points.

with immune complexes (Schifferli et al., 1988). The exact

molecular mechanism of CR1’s involvement with Alzheimer’s is yet

to be elucidated.

The role of DAPK1 (SNP rs10512186) and NEDD9 (SNP

rs3734404) in the brain are not documented based on existing

literature, but their functionalities can be inferred. DAPK1

(rs10512186) may be related to the late-onset of Alzheimer’s disease

as it is only selected at month 6 and month 12. Functionally,

DAPK1 is a death-associated protein kinase that mediates a number

of cellular processes including apoptosis and autophagy (Singh

et al., 2016). The genetic variations in DAPK1 are known to be

related with late-onset of Alzheimer’s disease (Li et al., 2006).

NEDD9 (neural precursor cell expressed developmentally

down-regulated protein 9) plays a key role in tyrosine-kinase

signaling related to cell adhesion (Regelmann et al., 2006). The role

of rs3734404/NEDD9 in AD is incomplete and inconsistent: some

literature argued its functionalities with late-onset Alzheimer’s

disease (Strittmatter et al., 1993; Li et al., 2007) while some

literature reported no association between the SNP genotype and

AD (Chapuis et al., 2008). In our results, NEDD9 is associated with

two regions only at month 6—superior occipital gyrus right and

superior parietal gyrus right, indicating a transient role of the gene

in disease development.

In our results, the MTHFR rs2274976 polymorphism is

associated with superior parietal gyrus right at baseline. The

presence of another MTHFR polymophism, rs180113 is associated

with increased risk for Alzheimer’s disease, adult depression, and

neural tube defects in the fetus, etc (Trimmer, 2013). The gene

MTHFR codes the protein methylenetetrahydrofolate reductase,

which catalyzes a reaction involving the vitamin folate, and also

plays a role processing amino acids (Wan et al., 2018). The level
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TABLE 4 Selected SNPs with related anatomical regions at di�erent time points.

SNP #regions Regions at baseline Regions at
month 6

Regions at
month 12

Lobes

rs16940638 Gene ADAM10 bl: 38 m6: 33 m12: 33 Cingulum_Ant_L

Cingulum_Ant_R

Cingulum_Post_L

Cingulum_Post_R

Frontal_Mid_L

Frontal_Mid_Orb_L

Frontal_Mid_Orb_R

Frontal_Mid_R

Frontal_Sup_L

Frontal_Sup_Medial_L

Frontal_Sup_Medial_R

Frontal_Sup_R Fusiform_L

Fusiform_R Hippocampus_L

Hippocampus_R

Occipital_Inf_L

Occipital_Inf_R

Occipital_Mid_L

Occipital_Mid_R

Occipital_Sup_L

Occipital_Sup_R

ParaHippocampal_L

ParaHippocampal_R

Parietal_Inf_R Parietal_Sup_L

Precuneus_L Precuneus_R

Rectus_L Rectus_R

Temporal_Inf_L

Temporal_Inf_R

Temporal_Mid_L

Temporal_Mid_R

Temporal_Pole_Mid_L

Temporal_Pole_Mid_R

Temporal_Pole_Sup_R

Temporal_Sup_R

Cingulum_Ant_L

Cingulum_Ant_R

Cingulum_Post_L

Cingulum_Post_R

Frontal_Mid_Orb_L

Frontal_Mid_Orb_R

Frontal_Mid_R

Frontal_Sup_L

Frontal_Sup_Medial_L

Frontal_Sup_Medial_R

Frontal_Sup_R

Fusiform_L Fusiform_R

Hippocampus_L

Hippocampus_R

Occipital_Inf_L

Occipital_Inf_R

Occipital_Mid_L

Occipital_Sup_L

Occipital_Sup_R

ParaHippocampal_R

Parietal_Inf_R

Parietal_Sup_L

Precuneus_L

Precuneus_R Rectus_L

Rectus_R

Temporal_Inf_L

Temporal_Inf_R

Temporal_Pole_Mid_L

Temporal_Pole_Mid_R

Temporal_Pole_Sup_R

Temporal_Sup_R

Cingulum_Ant_L

Cingulum_Ant_R

Cingulum_Post_L

Cingulum_Post_R

Frontal_Mid_Orb_L

Frontal_Mid_Orb_R

Frontal_Mid_R

Frontal_Sup_L

Frontal_Sup_Medial_R

Frontal_Sup_R

Fusiform_L Fusiform_R

Hippocampus_L

Hippocampus_R

Occipital_Inf_L

Occipital_Inf_R

Occipital_Mid_L

Occipital_Mid_R

Occipital_Sup_L

Occipital_Sup_R

ParaHippocampal_R

Parietal_Inf_R

Parietal_Sup_L

Precuneus_L

Precuneus_R Rectus_L

Rectus_R

Temporal_Inf_R

Temporal_Mid_L

Temporal_Pole_Mid_L

Temporal_Pole_Mid_R

Temporal_Pole_Sup_R

Temporal_Sup_R

Frontal occipital

parietal temporal

rs10512186 Gene DAPK1 bl: 0 m6: 17 m12: 21 Fusiform_L Fusiform_R

Hippocampus_L

Hippocampus_R

Occipital_Inf_L

Occipital_Inf_R

Occipital_Mid_R

Precuneus_L Rectus_R

Temporal_Inf_L

Temporal_Inf_R

Temporal_Mid_L

Temporal_Mid_R

Temporal_Pole_Mid_R

Temporal_Pole_Sup_R

Temporal_Sup_L

Temporal_Sup_R

Frontal_Mid_L

Fusiform_L Fusiform_R

Hippocampus_L

Occipital_Inf_L

Occipital_Inf_R

Occipital_Mid_R

Occipital_Sup_L

Parietal_Sup_R

Precuneus_L

Precuneus_R Rectus_L

Rectus_R

Temporal_Inf_L

Temporal_Inf_R

Temporal_Mid_L

Temporal_Mid_R

Temporal_Pole_Mid_L

Temporal_Pole_Mid_R

Temporal_Sup_L

Temporal_Sup_R

Frontal occipital

parietal temporal

rs677066 Gene CR1 bl: 1 m6: 2 m12: 3 Parietal_Inf_L Frontal_Mid_L

Parietal_Inf_L

Frontal_Mid_L

Parietal_Inf_L

Temporal_Sup_L

Frontal parietal

temporal

rs3734404 Gene NEDD9 bl: 0 m6: 2 m12: 0 Occipital_Sup_R

Parietal_Sup_R

Parietal temporal

rs2274976 Gene MTHFR bl: 1 m6: 0 m12: 0 Parietal_Sup_R Parietal

of serum folate is lower in AD patients, and folate deficiency is

associated with higher risk of AD (Zhang et al., 2021; Prado et al.,

2023). Our results indicates the association may be more critical at

the onset of the disease. In addition, the variant of rs2274976 in

MTHFR results in an arginine-to-glutamic acid change at amino

acid 594. But as it is less frequent, its functionality is largely

unknown. It may need additional attention based on our result.

5. Conclusion and discussion

We have developed a novel Bayesian hierarchical model

in imaging genetics studies for simultaneous activation shape

estimation and variable selection. Our approach can jointly

estimate the brain activation regions after accounting for external

sources of clinical factors and genetic variation. To the best of our
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knowledge, currently there is no method that shares the same goal

with us. We also borrow the anatomical brain segmentation as

prior information. Our approach can detect important genetic and

demographic factors associated with activation intensities inside

activation regions. We applied the new method to an ADNI dataset

as real data application. The method yielded new results that are

interpretable, and pointed to some important loci that deserve

further biological investigations.

On the other hand, our method does suffer from some

limitations. First, our method uses the assumption that all averaged

intensities inside are shared across all activation regions as long

as they are anatomically the same, which is a relatively strong

assumption. Mathematically speaking, the µi can be further

extended to an activation-region-specific variable: µi,r , where r can

be pre-specified by some spatial clustering methods. Second, the

proposed method is limited by computational speed. It should be

optimized so that it can be scalable to larger number of SNPs which

is common to GWAS studies.

The study also has some limitations in its real data application.

In this study, we limited our analysis to 614 SNPs associated with

34 genes known to be potentially related to AD. The purpose is

to study which genotypes among the selection had an effect at the

brain image level during the first year of the onset the disease. Thus

genes whose relation with the disease manifests in later stages will

be not identified in this analysis. As an example, the Apolipoprotein

E (APOE) gene is a well-known risk factor due to its influence on

blood cholesterol. Although it was included in our analysis, APOE

was not found to be significantly associated with brain activation

in the FDG-PET data, presumably because APOE variants act in a

more global manner, and are not directly linked to the activation

level of brain regions in the specific data type.

In this work, the genetic data used only involved genotyping

data. Although genetic variations can shed some light on the

potential association between genes and brain region activation

during AD development, it cannot elucidate detailed molecular

mechanisms. In future works, we will try to include gene expression

and other data types to further study the mechanisms behind the

genetic associations.
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