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The hippocampus is a complex brain structure that plays an important role in 
various cognitive aspects such as memory, intelligence, executive function, 
and path integration. The volume of this highly plastic structure is identified 
as one of the most important biomarkers of specific neuropsychiatric and 
neurodegenerative diseases. It has also been extensively investigated in numerous 
aging studies. However, recent studies on aging show that the performance of 
conventional approaches in measuring the hippocampal volume is still far from 
satisfactory, especially in terms of delivering longitudinal measures from ultra-
high field magnetic resonance images (MRIs), which can visualize more boundary 
details. The advancement of deep learning provides an alternative solution 
to measuring the hippocampal volume. In this work, we  comprehensively 
compared a deep learning pipeline based on nnU-Net with several conventional 
approaches including Freesurfer, FSL and DARTEL, for automatically delivering 
hippocampal volumes: (1) Firstly, we evaluated the segmentation accuracy and 
precision on a public dataset through cross-validation. Results showed that the 
deep learning pipeline had the lowest mean (L  =  1.5%, R  =  1.7%) and the lowest 
standard deviation (L  =  5.2%, R  =  6.2%) in terms of volume percentage error. (2) 
Secondly, sub-millimeter MRIs of a group of healthy adults with test–retest 3T 
and 7T sessions were used to extensively assess the test–retest reliability. Results 
showed that the deep learning pipeline achieved very high intraclass correlation 
coefficients (L  =  0.990, R  =  0.986 for 7T; L  =  0.985, R  =  0.983 for 3T) and very small 
volume percentage differences (L  =  1.2%, R  =  0.9% for 7T; L  =  1.3%, R  =  1.3% for 3T). 
(3) Thirdly, a Bayesian linear mixed effect model was constructed with respect to 
the hippocampal volumes of two healthy adult datasets with longitudinal 7T scans 
and one disease-related longitudinal dataset. It was found that the deep learning 
pipeline detected both the subtle and disease-related changes over time with 
high sensitivity as well as the mild differences across subjects. Comparison results 
from the aforementioned three aspects showed that the deep learning pipeline 
significantly outperformed the conventional approaches by large margins. 
Results also showed that the deep learning pipeline can better accommodate 
longitudinal analysis purposes.

OPEN ACCESS

EDITED BY

Baptiste Magnier,  
Mines-Telecom Institute Alès, France

REVIEWED BY

Norman Scheel,  
Michigan State University, United States  
Long Xie,  
University of Pennsylvania, United States

*CORRESPONDENCE

Xiaoying Tang  
 tangxy@sustech.edu.cn  

Fatima A. Nasrallah  
 f.nasrallah@uq.edu.au

RECEIVED 12 June 2023
ACCEPTED 04 December 2023
PUBLISHED 14 December 2023

CITATION

Lyu J, Bartlett PF, Nasrallah FA and 
Tang X (2023) Toward hippocampal volume 
measures on ultra-high field magnetic 
resonance imaging: a comprehensive 
comparison study between deep learning and 
conventional approaches.
Front. Neurosci. 17:1238646.
doi: 10.3389/fnins.2023.1238646

COPYRIGHT

© 2023 Lyu, Bartlett, Nasrallah and Tang. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 14 December 2023
DOI 10.3389/fnins.2023.1238646

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1238646﻿&domain=pdf&date_stamp=2023-12-14
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238646/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238646/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238646/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238646/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238646/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1238646/full
mailto:tangxy@sustech.edu.cn
mailto:f.nasrallah@uq.edu.au
https://doi.org/10.3389/fnins.2023.1238646
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1238646


Lyu et al. 10.3389/fnins.2023.1238646

Frontiers in Neuroscience 02 frontiersin.org

KEYWORDS

deep learning, convolutional neural network, hippocampus, longitudinal study, aging, 
volume estimation

1 Introduction

The hippocampus plays a vital role in memory function (Scoville 
and Milner, 1957), intelligence (Reuben et  al., 2011), executive 
function, and path integration (Yamamoto et  al., 2014). The 
hippocampal formation is highly plastic, and its atrophy has been 
identified as one of the earliest signs of age-related brain changes in 
the healthy human beings (Hasan and Glees, 1973; Hubbard and 
Anderson, 1981; Varma et al., 2016). Therefore, the hippocampus is of 
significant interest in clinical studies that aim to preserve brain 
volume. Evidence suggests that exercise intervention may be one of 
the most promising ways to increase and preserve hippocampal 
volume. Several studies have shown that older adults exhibit significant 
increases in hippocampal volume after aerobic exercise intervention 
(Erickson et al., 2011; Rosano et al., 2017; Teixeira et al., 2018). A 
recent meta-analysis study revealed a non-significant increase of 1.2% 
in the total hippocampal volume in the exercise group and a significant 
decrease of 0.72% in the control group (Wilckens et  al., 2021). 
Therefore, highly accurate and precise approaches for measuring the 
hippocampal volume are essential.

Magnetic resonance images (MRIs) provide an important tool for 
in-vivo volumetric assessment of the hippocampus. Early studies 
investigating hippocampal volume changes following exercise adopted 
a manual segmentation approach (Niemann et al., 2014; Maass et al., 
2015; Jonasson et al., 2016). Manual delineation is time-consuming, 
expertise-requiring, and of large inter- as well as intra-rater 
variabilities. Automatic methods based on T1-weighted MRIs have 
been explored and applied to measure the hippocampal volumes, with 
Freesurfer (Fischl, 2012) and the FMRIB Software Library (FSL) 
(Jenkinson et  al., 2012) being two of the mostly employed 
segmentation tools in exercise studies (Firth et al., 2018; Wilckens 
et al., 2021). Voxel-based morphometry such as DARTEL is also a 
popular alternative to identify volumetric changes in exercise-related 
studies (Erickson et al., 2014; Zhou et al., 2021). These methods can 
well accommodate detecting the hippocampal volume change in 
neurodegenerative diseases such as Alzheimer’s disease (annual 
atrophy of 4.66%) (Barnes et al., 2009) yet show vulnerable test–retest 
reliabilities in exercise-related studies. Utilizing FSL, a considerable 
number of healthy adults exhibited annual volume changes of over 5% 
in the hippocampus (Erickson et al., 2011; Rosano et al., 2017), which 
fell outside the range of the typically-reported age-related annual 
hippocampal atrophy of 0.8 to 1.7% (Raz et  al., 2005). Utilizing 
Freesurfer, the results revealed no significant group effect on the 
volume change in the hippocampus after exercise intervention 
(Jonasson et  al., 2016; Thomas et  al., 2016). Consequently, these 
studies were inconsistent in the enhancing effects of exercise on 
hippocampal volume. The variability raises inquiries about the extent 
to which or whether exercise can be considered a clinically effective 
approach for increasing hippocampal volume.

Ultra-high field MRI (e.g., 7 T) is gaining popularity due to its 
higher signal-to-noise ratios, high-resolution acquisitions and better 

contrast, visualizing more details in the hippocampus and its 
boundary (Okada et al., 2022). This provides an opportunity to obtain 
conclusive results in exercise-related studies. However, current 
automated approaches fail to leverage the high signal-to-noise ratio 
and submillimeter resolution of ultra-high field MRI. Only two 
existing exercise studies use ultra-high field imaging, one relying on 
manual segmentation (Maass et al., 2015) and the other confronting 
a large volume change issue when using FSL (Rosano et al., 2017). This 
is because current methods are based on 1.5T or 3T atlases and work 
in a millimeter space, which cannot effectively accommodate 7T 
images due to the high intensity inhomogeneity and data complexity 
(Bazin et al., 2014). In such context, there is an increasing need for an 
automated volumetric analysis tool that has strong test–retest 
reliability and can well generalize to ultra-high field MRIs for 
exercise studies.

Deep learning has been used for brain image segmentation 
(Greve et al., 2021; Pardoe et al., 2021; Svanera et al., 2021; Balboni 
et al., 2022), but it differs from conventional approaches in that it 
learns non-linear mappings at both intensity and semantic levels in 
an end-to-end manner with no need of utilizing hand-crafted 
features. Deep learning-based segmentation methods have been 
found to improve over conventional approaches by considerable 
margins in terms of both segmentation accuracy and inference 
efficiency (Dolz et al., 2018; Brusini et al., 2020; Wu and Tang, 2021). 
Nevertheless, deep learning-based hippocampal segmentation has 
not been adequately validated in longitudinal settings. In addition, 
the test–retest reliability of deep learning-based hippocampal 
segmentation methods, especially in healthy adults and ultra-high 
field MRIs, remains under investigated.

To address these gaps, we  present and validate a fully-
automated deep learning pipeline equipped with nnU-Net which 
is an extensively validated deep learning method (Isensee et al., 
2021) for hippocampal segmentation from T1-weighted MRIs. To 
enhance robustness and avoid overfitting, we included training 
datasets from multiple scanners and populations. Cross-validation 
was performed to validate the accuracy of the evaluated deep 
learning pipeline in terms of volume percentage error and Pearson 
correlation coefficient of the bilateral hippocampal volumes. 
Additionally, we benchmarked the test–retest reliability on three 
submillimeter MRI datasets of healthy subjects and one disease-
related MRI dataset from different scanners and acquisition 
protocols, including two 7T MRI datasets and two 3T MRI 
datasets, using intraclass correlation coefficient (Shrout and 
Fleiss, 1979), volume percentage difference and Bayesian linear 
mixed effect modeling (Tustison et  al., 2018). Comprehensive 
comparisons with three conventional approaches including 
Freesurfer, FSL and DARTEL were conducted. Our study aims to 
determine whether deep learning outperforms conventional 
approaches for hippocampal volume measurement in healthy 
subjects and whether it is possible to detect subtle changes based 
on 7T MRIs.
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2 Materials and methods

2.1 Subjects

We included three publicly available datasets with test–retest or 
longitudinal MRIs from healthy aging subjects to validate and 
compare the test–retest reliability between deep learning and 
conventional hippocampal segmentation approaches. The structural 
MRIs in these three datasets were all of submillimeter isotropic 
resolutions, acquired from either 3T or 7T scanners. We also included 
longitudinal data from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI)-3 to further validate the effectiveness of the deep 
learning pipeline.

 • The Human Connectome Project (HCP) test–retest dataset (Van 
Essen et al., 2013) included 45 healthy adults aged 22–35 years 
(M = 13, F = 32) with structural imaging data. T1-weighted 
images were acquired from a customized Siemens 3 T 
“Connectome Skyra” scanner (TR/TI/TE = 2400/1000/2.14 ms) at 
the Washington University in St. Louis. The voxel dimensions 
were 0.7 mm × 0.7 mm × 0.7 mm, and the intervals between test 
and retest scans varied from 1 to 11 months.

 • The Toward Optimizing MRI Characterization of Tissue 
(TOMCAT) imaging dataset (Shaw et  al., 2020) included 7 
healthy subjects (age: 26.29 ± 3.35 years, sex: M = 4, F = 3). 
T1-weighted images were acquired from a 7T Siemens Magnetom 
scanner (TR/TI/TE = 4300/840/2.5 ms) at the University of 
Queensland, all with a 0.75 mm isotropic voxel size. There were 
three scanning sessions for each subject with a three-year interval 
between session one and session two and a 45-min interval 
between session two and session three, the latter two sessions of 
which were used in the evaluation of test–retest reliability.

 • The CEREBRUM-7T Glasgow dataset (Svanera et  al., 2021) 
included 76 healthy subjects (age: 25.89 ± 4.89 years), 34 of which 
had longitudinal MRIs with between 2 and 7 follow-up sessions 
varying from 1 month to 6 months. T1-weighted images were 
acquired from a 7T Siemens Magnetom scanner (TR/TI/
TE = 4680/−/2.07 ms) at the Queen Elizabeth University Hospital, 
UK, all with a 0.63 mm isotropic voxel size.

 • The ADNI3 dataset (adni.loni.usc.edu) included 64 subjects (age: 
77.28 ± 7.07 years, sex: M = 36, F = 28), consisting of 5 cognitively 
normal (CN), 59 mild cognitive impairment (MCI). Data was 
downloaded in August 2023 and the inclusion criteria was that 
participants had 3D isotropic full-brain T1w MRIs and been 
scanned three times. The scanning protocol is provided in http://
adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-
protocols.pdf. The clinical data is provided in 
Supplementary materials.

2.2 Image analysis

2.2.1 Deep learning pipeline
In this study, we adopted nnU-Net as our deep learning approach 

to segment the hippocampus. nnU-Net (Isensee et al., 2021) is a deep 
learning-based segmentation toolbox that automatically configures 
preprocessing, network parameters, training strategy and 

post-processing according to the imaging modality, image sizes, voxel 
spacings and class ratios. Without any expert knowledge and manual 
intervention, nnU-Net can achieve state-of-the-art performance in 
most biomedical segmentation tasks.

We used a coarse-to-fine pipeline to further leverage nnU-Net. 
We first applied an nnU-Net to coarsely segment the hippocampus 
from the native whole brain T1-weighted images. The local region 
surrounding the hippocampus was then cropped according to the 
coarse segmentation. A second nnU-Net was applied to finely segment 
the hippocampus from the cropped volumes, resulting in the final 
segmentation results. By ignoring the noise and redundant 
information outside the local volume surrounding the hippocampus, 
this pipeline provided more accurate segmentation. To fully exploit 
the spatial information at a submillimeter resolution, normalization 
techniques such as registration to the standard MNI152 1 mm space 
were not employed. Brain extraction was also not required since the 
pipeline worked in a coarse-to-fine manner. All input data were 
resampled into 0.5 × 0.5 × 0.5 mm3 isotropic resolution through 
bicubic interpolation.

We included the following three publicly available datasets 
differing in scanner, population, and image protocol to train the deep 
learning pipeline.

 • The Alzheimer’s Disease Neuroimaging Initiative-Harmonized 
Hippocampal Protocol (ADNI-HarP) dataset (Boccardi et al., 
2015) is a subset of the original ADNI dataset, containing 
T1-weighted MRIs of 135 individuals with hippocampal 
delineations from five qualified tracers. The labels were corrected 
and finalized according to the HarP protocol. Among all subjects, 
44 were cognitively normal, 46 were mild cognitive impaired 
(MCI), and 45 were Alzheimer diseased. 68 scans were acquired 
from a 1.5 T scanner, and the other 67 scans were acquired from 
a 3 T scanner. Detailed information about the scanning machines 
and the corresponding acquisition protocols can be  found at 
https://www.adni-info.org/scientists/MRIProtocols.aspx. All 
scans were rigidly aligned to the MNI ICBM 152 space with 
1 × 1 × 1 mm3 voxel dimensions.

 • The Medical Segmentation Decathlon (MSD) hippocampus 
dataset (Simpson et al., 2019) consisted of T1-weighted MRIs 
from 90 healthy subjects and 105 subjects with a non-affective 
psychotic disorder, taken from the Psychiatric Genotype/
Phenotype Project at Vanderbilt University Medical Center. The 
images were acquired from a 3 T Philips Achieva scanner (TR/
TI/TE = 860/800/3.7 ms). Manual tracing of the hippocampus 
following a specific protocol (Pruessner et al., 2000; Woolard and 
Heckers, 2012) was provided. Only the cropped regions of 
interest were provided, and the image voxel sizes were all 1 mm3.

 • The Penn Memory Center (PMC) atlas set (Xie et  al., 2019) 
consisted of MRIs from 15 cognitively normal controls and 14 
amnestic MCI patients scanned on a 3 T Siemens Trio scanner 
(TR/TI/TE = 1600/950/3.87 ms) at the University of Pennsylvania. 
The native T1-weighted images were all of 1 × 1 × 1 mm3 isotropic 
resolution and have been denoised for Rician noise to 
0.5 × 0.5 × 1.0 mm3. The procedure of manually segmenting the 
hippocampus also followed the HarP protocol.

For nnU-Net in the coarse stage, we trained the model on whole-
brain volumes from the ADNI-HarP dataset. For nnU-Net in the fine 
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stage, we used cropped volumes surrounding the hippocampus from 
the ADNI-HarP, MSD, and PMC datasets to train the model. 
Specifically, we cropped the volumes based on the provided ground-
truth labels for the ADNI-HarP dataset, while the cropped volumes 
were already provided for the MSD and PMC datasets. We split the 
datasets into training and validation sets, with an 80:20 ratio. The 
validation sets were exclusively used for monitoring the training 
process and preventing overfitting, and were never used during 
training. The final model was chosen based on the best segmentation 
performance on the validation set. The training and validation sets 
consisted of images from different datasets with equal proportions.

The pipeline was implemented using Python version 3.9.5 with 
PyTorch version 1.11.0 and nnU-Net version 1.7.0. The whole pipeline 
took approximately 6 h to train on a workstation equipped with an 
Intel Xeon Gold CPU 6132 and NVIDIA Tesla V100, with 4 h for the 
coarse stage and 2 h for the fine stage. The inference time for each scan 
depended on the image size, typically being less than 10 s/scan.

2.2.2 Freesurfer pipeline
Registration-based hippocampal segmentation was carried out 

using Freesurfer v7.2 (Massachusetts General Hospital, Harvard 
Medical School1). Briefly, T1-weighted images were affine registered 
to the MNI305 space and brain-extracted, followed by an initial 
volumetric labeling process. The subcortical volume segmentation was 
finalized through a high dimensional nonlinear volumetric alignment 
to the MNI305 atlas. Detailed technical information can be found 
elsewhere (Fischl et al., 2002).

2.2.3 FSL pipeline
Hippocampal segmentation was also performed using a model-

based approach with FSL’s FMRIB Integrated Registration and 
Segmentation Tool (FIRST). The shape and appearance models based 
on multivariate Gaussian assumptions used in FIRST were constructed 
from manual segmentation, as detailed in Patenaude et al. (2011). 
During inference, FIRST searches through linear combinations of 
shape models of variation to obtain the most probable shape instance 
based on the intensity information of a given T1-weighted image 
of interest.

2.2.4 DARTEL pipeline
We also utilized a voxel-based morphometry approach for 

longitudinal structural brain imaging analysis (Mills and Tamnes, 
2014), the method of which is also commonly seen in exercise studies 
concerning hippocampal volume measurements. Such voxel-based 
morphometry analysis was conducted using DARTEL (Ashburner, 
2007), a component of the Statistical Parametric Mapping software 
package (SPM12)2 that runs on MATLAB R2021a. DARTEL initially 
segmented a T1-weighted image into grey matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF). Subsequently, the segmented 
GM and WM volumes were rigidly aligned across all subjects to create 
an initial template. The images were then iteratively warped to the 
template using diffeomorphic registrations. After warping, the images 
were affine transformed to MNI152 space, modulated with Jacobian 

1 https://surfer.nmr.mg.harvard.edu

2 https://www.fil.ion.ucl.ac.uk/spm/

determinant and smoothed using a Gaussian kernel. We empirically 
set the full-width at half maximum (FWHM) of the Gaussian 
smoothing kernel to be 4, with lower values having been suggested for 
subcortical regions with less variability (Shen and Sterr, 2013). All the 
other parameters in DARTEL were set to be their default values. The 
resulting smoothed images represented the regional tissue volumes, 
with the hippocampal volume obtained by masking the hippocampal 
region with MNI152.

2.3 Statistical analysis

We compared the performance of different volume measurement 
approaches from multiple perspectives, including accuracy, test–retest 
reliability, and longitudinal modeling.

The hippocampal volume accuracy was measured by the volume 
percentage error (VPE):

 
VPE

v v

v

pred gt

gt

�
�

100·

where vpred  is the predicted volume and vgt is the ground-truth 
volume from manual segmentation. A VPE closer to zero indicates a 
lower systematic error, and a lower standard deviation suggests a 
higher precision. However, the hippocampal delineation protocols for 
the atlases used in different methods may differ. We further employed 
the Pearson correlation coefficient (CC) between the predicted and 
ground-truth volumes, wherein CC > 0.9 indicates very strong 
correlation, 0.7 < CC < 0.9 indicates strong correlation, 0.4 < CC < 0.7 
indicates moderate correlation and CC < 0.4 indicates weak or 
negligible correlation (Schober et al., 2018).

To assess the test–retest reliability of the volume measurements, 
we first used the intraclass correlation coefficient (ICC) (Shrout and 
Fleiss, 1979; Bland and Altman, 1996) based on a single rater (k = 1), 
consistency, two-way mixed-effects model. We interpreted ICC values 
less than 0.75 as poor reliability, values between 0.75 and 0.95 as good 
reliability, and values greater than 0.95 as excellent reliability (Koo and 
Li, 2016). Second, we  calculated the volume percentage 
difference (VPD):

 
VPD

v v
v v
test retest

test retest
� �

� �
�

100
2

where vtest  points to the volume measure of the test session and 
vretest points to the volume measure of the re-test session. A smaller 
value indicates a better reliability.

For data with more than two sessions, we adopted a longitudinal 
Bayesian linear mixed effects (BLME) model (Tustison et al., 2018) to 
assess the relationships between longitudinal and cross-sectional 
results while accounting for subject-specific trends. For each region of 
interest, the BLME model can be formulated as

 
V N tij i i~ � � ��� �,

2
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where Vij  denotes the ith subject’s volume measurement at the jth 
timepoint and t  denotes the normalized time from baseline by month. 
In a BLME model, Ä is interpreted as the between-subject variability 
and Ã is interpreted as the within-subject variability. A larger Ä and a 
smaller Ã are simultaneously demanded, since we expect the volume 
as a biomarker to discriminate between subjects but still preserve 
within-subject reproducibility. As such, we  finally employed a 
summary measure named as the variance ratio

 
r � �

�

wherein a higher value indicates a less biased volume measurement.
To assess the statistical significance of our results, we first verified 

whether the distributions of VPE and VPD were Gaussian using 
Kolmogorov–Smirnov normality tests (p < 0 05. ). We then used paired 
t-tests or Wilcoxon matched-pairs signed rank tests, depending on 
whether the distribution is Gaussian or non-Gaussian, to test for 
significant differences between two distributions. Additionally, 
we performed an F-test to compare the variances of VPE values and 
determined whether the deep learning pipeline was more precise than 
conventional methods. We performed a Fisher’s z-test to compare the 
CCs whether the deep learning pipeline was more accurate than 
conventional methods. We defined statistical significance for these tests 
as p < 0 01. . For ICC scores, we considered two scores to be significantly 
different if there was no overlap between the confidence interval (CI) of 
one ICC score and the point estimate of the other. For the variance ratio, 
between-subject variability, and within-subject variability, we applied 
the same logic to determine statistical significance as that for ICC 
scores. More statistical details refer to Supplementary materials.

3 Results

3.1 Accuracy and precision

We compared the accuracy and precision of the hippocampal 
volume measurement on the ADNI-HarP dataset for the four different 
methods of interest: the deep learning pipeline based on nnU-Net 
(DL), Freesurfer, DARTEL, and FSL. To obtain the results for DL, 
we  conducted 5-fold cross-validation. As shown in Table  1, DL 
exhibited the lowest systematic error, with mean VPE values of 1.3 and 
1.5% for the left and right hippocampus. The Wilcoxon matched-pairs 
signed rank test revealed that DL had significantly lower absolute VPE 
values than Freesurfer, DARTEL, and FSL in the bilateral hippocampal 
volumes. Furthermore, DL exhibited the best precision, with standard 
deviations of 5.2 and 6.2% for the left and right hippocampus, as 
determined by the F-test.

Figure 1 illustrates the correlations between the automatically-
measured hippocampal volumes obtained by DL, Freesurfer, 
DARTEL, as well as FSL and the manually-derived volumes. The 

automatic volumes obtained from all the four methods showed 
significant positive correlations with the manually-derived ones. DL 
significantly outperformed the other methods, with CCs of 0.9729 and 
0.9559 for the left and right hippocampus, respectively, indicating very 
strong correlations with the manually-derived volumes. Our results 
demonstrated outstanding accuracy and precision of DL for 
hippocampal volume measurement.

3.2 Test–retest reliability

We compared the test–retest reliability on the HCP and TOMCAT 
datasets. Table  2 summarizes the ICC scores of the hippocampal 
volumes measured by DL, Freesurfer, FSL, and DARTEL. On the HCP 
dataset, DL exhibited significantly higher ICC scores for both left and 
right hippocampus than both Freesurfer and FSL but lower than those 
obtained from DARTEL. On the other hand, DL yielded the highest 
ICC scores among all the four methods on the TOMCAT dataset.

Figure 2 presents VPD’s medians and interquartile ranges between 
test and re-test sessions for the four different volume measurement 
approaches. DL demonstrated the second-highest consistency in 
volume on the HCP dataset and the highest consistency on the 
TOMCAT dataset. The Wilcoxon matched-pairs signed rank test 
showed that DL had significantly lower VPD than Freesurfer and FSL 
for both left and right hippocampus on the HCP dataset. However, it 
achieved higher VPD than DARTEL on the right hippocampal 
volume. On the TOMCAT dataset, we  observed that DL yielded 
significantly lower VPD than Freesurfer and FSL in the left 
hippocampal volume.

3.3 Longitudinal Bayesian linear mixed 
effects modeling

To further assess the performance of the four volume 
measurement approaches, we compared the variance ratio, between-
subject variability, and within-subject variability using a BLME model 
on the CEREBRUM dataset. The means and 95% confidence intervals 
(CIs) of the measures are presented in the upper row of Figure 3. The 
results showed that DL had the highest variance ratio, the second 
highest between-subject variability, and the lowest within-subject 
variability among all the four methods under comparison. Specifically, 
DL exhibited significantly higher variance ratio than all other methods 
for both left and right hippocampus. For between-subject variability, 
DL had a higher value than DARTEL for both left and right 
hippocampus, and Freesurfer for the left hippocampus only, with 
overlapping 95% CIs. However, it showed lower values than 
FSL. Regarding within-subject variability, DL achieved significantly 
lower values than all other methods for both left and right 
hippocampus. The middle row of Figure 3 presents the results on the 
TOMCAT dataset. DL demonstrated the highest variance ratio, the 
second highest between-subject variability and the lowest within-
subject variability for the left hippocampus and the second highest 
variance ratio, the highest between-subject variability and the second 
lowest within-subject variability for the right hippocampus, yet not 
significant. These findings demonstrated the superior performance of 
DL, in terms of variance ratio and within-subject variability, indicating 
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that it can capture subtle changes in the hippocampal 
volume measurements.

The lower row of Figure 3 illustrates the results on the ADNI3 
dataset. DL obtained the highest variance ratios for both left and right 
hippocampus. Specifically, DL had a significantly higher between-
subject variability than the second-best method DARTEL, while 
having comparable within-subject variability. These findings indicated 
that DL not only excels in the context of healthy, younger individuals, 
but also displays robust reliability when it comes to detecting disease-
related changes within datasets marked by extended follow-up periods 
and subjects afflicted by medical conditions.

4 Discussion

In this study, we evaluated the performance of a deep learning 
pipeline based on nnU-Net and three conventional approaches, 
including Freesurfer, DARTEL, and FSL, for measuring hippocampal 
volumes from submillimeter T1-weighted MRIs. The results showed 
deep learning could enhance hippocampal volume measurement in 
terms of accuracy, precision, and test–retest reliability, particularly for 
ultra-high field MRIs, and is able to detect subtle changes in the 
hippocampal volumes of healthy adults after an exercise intervention.

Cross-validation experiments on ADNI-HarP were conducted to 
validate the accuracy and precision of DL. The results demonstrated 

that DL significantly reduced the systematic difference in volume 
measurements compared to DARTEL, namely −3.3 to 1.5% for the left 
hippocampus and − 4.4 to 1.7% for the right hippocampus, in terms 
of the mean VPE values. Such improvements were consistent with 
those reported by a previous study (Balboni et al., 2022) and shall 
be attributed to the ability of deep learning to utilize both interpretable 
features (e.g., shape, intensity) and latent features in high-dimensional 
spaces. Furthermore, the convolutional layers used in nnU-Net 
allowed the model to capture long-term voxel dependencies, leading 
to superior performance. On the other hand, segmentation-based 
conventional methods, such as Freesurfer and FSL, achieved 
substandard performance due to their different boundary definitions 
of the hippocampus (Fischl et al., 2002; Patenaude et al., 2011). This 
conclusion was also supported by their 25th and 75th percentiles. VPE’s 
standard deviation indicated precision, with DL significantly 
outperforming Freesurfer by 8.5 and 4.5% for the left and right 
hippocampus, and similar degrees over other conventional methods. 
We also used the correlation coefficient to evaluate the correlation 
between automated volume measurements and manual ones, 
excluding the effect of different hippocampal definitions. The results 
showed a very strong correlation for DL and strong correlations for 
Freesurfer and FSL. However, DARTEL only showed moderate 
correlation since it smoothed voxels of sharper changes and tended to 
predict a conservative volume close to the one in the atlas. This is 
illustrated in Figure 1, where DARTEL seldom predicted extreme 

TABLE 1 Statistical values including median, mean, 25th percentile, 75th percentile and standard deviation of volume percentage error (VPE) for each 
method for hippocampal volume measurements on ADNI-HarP.

Median Mean 25th percentile 75th percentile Standard 
deviation

L R L R L R L R L R

DL 1.3% 1.3% 1.5% 1.7% −1.5% −2.0% 3.8% 4.7% 5.2% 6.2%

Freesurfer 24.7% 21.9% 26.2% 23.4% 16.3% 16.4% 34.0% 30.8% 13.7% 10.7%

DARTEL −3.8% −4.5% −3.3% −4.4% −14.5% −14.6% 6.2% 3.7% 16.1% 16.7%

FSL 22.1% 21.4% 20.9% 21.3% 13.1% 11.9% 29.7% 31.2% 12.5% 14.5%

A VPE closer to zero indicates a lower systematic error, and a lower standard deviation suggests a higher precision.

FIGURE 1

Pearson correlation coefficient analyses between automated methods and manual delineation on ADNI-HarP: scatter plots wherein each solid line 
shows a linear fit with 95% confidence interval. A higher r value indicates stronger correlation.
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volumes. It should be noted that the conventional methods were not 
trained or developed on the same set of manual annotations while DL 
was trained on those datasets. This is also one of the factors 
contributing to their significant differences.

We did not compare the accuracy and precision between the 
methods on MSD since it only provides cropped regions of interest, 
whereas Freesurfer, FSL, and DARTEL operate exclusively on 
complete MRIs. Similarly, PMC’s limitation lies in its provision of 
denoised images, which significantly impacts the efficacy of Freesurfer 
and DARTEL, as these methods typically demand original or 
minimally processed images. To ensure fair comparison, we  only 
evaluate the accuracy and precision of these methods on ADNI-
HarP. Nevertheless, we assessed the segmentation performance of DL 
on MSD and PMC. Supplementary Tables S1, S2 show the VPE 
statistics on MSD and PMC, respectively. Supplementary Figure S1 
illustrates the Pearson correlation coefficients (CCs) between 
DL-derived hippocampal volumes and manually obtained volumes on 
HarP, MSD, and PMC datasets. We also investigate whether nnU-Net 
exhibits segmentation bias across these three manually segmented 
datasets. Fisher’s z-test revealed that CC on PMC is significantly larger 

than those on HarP and MSD, and CC on HarP is significantly larger 
than that on MSD. This discrepancy can be  attributed to the 
congruence between HarP and PMC in manual tracing protocol, with 
the latter having superior image quality due to prolonged imaging 
acquisition. Deep learning model will fit better to those cases with 
distinct boundaries and superior contrast, aligning with PMC’s 
attributes. Hence, DL achieved notably higher accuracy on 
PMC. These outcomes underscore the prospect of DL capitalizing on 
ultra-high field MRIs more effectively.

We qualitatively compared the segmentation results from DL, 
Freesurfer and FSL on the TOMCAT and HCP datasets. DARTEL was 
not included since it did not estimate the volume by directly 
segmenting the hippocampus. As shown in Supplementary Figure S2, 
DL’s segmentation outcomes exhibited superior qualities, characterized 
by smoother and more congruent boundaries aligned adeptly with the 
hippocampal regions, when compared to Freesurfer and 
FSL. Importantly, both Freesurfer and FSL exhibited a tendency 
toward over-segmentation, particularly apparent within the CA1 and 
SUB regions. The comparisons illustrated the superiority of 
DL. Moreover, the boundary artifacts evident in the segmentations 
from Freesurfer and FSL revealed their limited ability to harness high-
resolution information effectively.

Test–retest reliability was assessed by ICC and VPD. We found 
excellent levels of consistency for DL on the HCP and TOMCAT 
datasets. The ICC values on TOMCAT (7T) were even higher than 
those on HCP (3T), indicating that DL took advantages of higher 
signal-to-noise ratio and better contrast provided by ultra-high field 
MRIs. In contrast, DARTEL and FSL suffered from high intensity 
inhomogeneity, inducing decreased performance to varying degrees. 
DARTEL’s parametric bias correction model developed to deal with 
intensity nonuniformity was not suitable for ultra-high field MRI, 
leading to decrease in performance (Ashburner and Friston, 2005). 
FSL’s intensity priors for the appearance models only worked for 1.5T 
and 3T MRIs, resulting in poor reliability on TOMCAT and even 
failure in some cases. Freesurfer performed slightly better in terms of 
ICC on TOMCAT but not HCP, which could be due to the relatively 
small sample size (N = 7) of TOMCAT. In terms of VPD, DL had 
medians of 1.04 and 1.21% on HCP and 1.23 and 0.88% on TOMCAT, 
respectively for the left and right hippocampus. Specifically, 81.1% of 
the VPD values on HCP and 78.6% on TOMCAT were less than 2%. 
These test–retest reliability values can be  useful for assessing 

TABLE 2 Intraclass correlation coefficients (ICCs) with their 95% 
confidence intervals for hippocampal volumes from different methods on 
HCP and TOMCAT.

HCP TOMCAT

L R L R

DL 0.985 (95% 

CI: [0.973, 

0.992])

0.983 (95% 

CI: [0.970, 

0.991])

0.990 (95% 

CI: [0.944, 

0.998])

0.986 (95% 

CI: [0.919, 

0.998])

Freesurfer 0.893 (95% 

CI: [0.813, 

0.939])

0.923 (95% 

CI: [0.864, 

0.957])

0.959 (95% 

CI: [0.781, 

0.993])

0.969 (95% 

CI: [0.830, 

0.995])

DARTEL 0.995 (95% 

CI: [0.991, 

0.997])

0.995 (95% 

CI: [0.991, 

0.997])

0.976 (95% 

CI: [0.869, 

0.996])

0.959 (95% 

CI: [0.783, 

0.993])

FSL 0.935 (95% 

CI: [0.885, 

0.964])

0.922 (95% 

CI: [0.862, 

0.956])

0.816 (95% 

CI: [0.257, 

0.966])

0.047 (95% 

CI: [−0.682, 

0.729])

A higher ICC value indicates better test–retest reliability.

FIGURE 2

Boxplots with medians and interquartile ranges of volume percentage differences (VPDs) for different methods on HCP and TOMCAT. A lower VPD 
indicates better test–retest reliability.
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hippocampal volume changes after exercise intervention (1.2%) 
(Wilckens et al., 2021) and annual age-related atrophy rate (0.8–1.7%) 
(Raz et al., 2005). We also found that DARTEL outperformed FSL and 
Freesurfer in terms of VPD. However, DARTEL was less commonly 
used in previous exercise studies, possibly due to its inability to allow 
for manual inspection or correction, and the regularization effect of 
Gaussian smoothing may weaken its ability to detect subtle changes. 
These limitations might also be the reason why DARTEL achieved 
significantly lower VPD values than Freesurfer. To investigate the 
effect, we employed distinct Full Width at Half Maximum (FWHM) 
parameters on TOMCAT. We specifically tested FWHM values at 1, 
2, and 4 mm. As presented in Supplementary Figure S3, higher 
FWHM settings corresponded to lower mean volume percentage 
difference (VPD) values. This trend suggested that selecting smaller 
FWHM values may potentially mitigate the extent of smoothing 
implemented by the DARTEL procedure. This, in turn, could augment 
the method’s responsiveness to subtle voxel variations, encompassing 
both expansion and contraction phenomena. Despite this observation 
pointing toward higher sensitivity with smaller FWHM settings, our 
analyses did not yield any statistically significant difference due to the 
sample size.

BLME was used to fit the longitudinal data from the CEREBRUM 
dataset. Between-subject variability, within-subject variability, and 

variance ratio were used to evaluate the model. A higher variance ratio 
characterized by both higher between-subject variability and lower 
within-subject variability indicates better performance in a 
longitudinal study. Our results showed that DL outperformed other 
methods, with a significantly higher variance ratio. Specifically, it had 
means of 7.70 and 9.83 for the left and right hippocampus, while the 
second-best method, FSL, had means of 1.92 and 1.77. The advantage 
of DL was established by its superior within-subject variability, which 
serves as an indirect measure of test–retest reliability. Additionally, it 
demonstrated adequate between-subject variability, suggesting that it 
did not simply predict uniform volumes to achieve high test–retest 
reliability. In contrast, Freesurfer and DARTEL showed significantly 
decreased test–retest reliability compared to that on ADNI3, 
indicating their vulnerability to ultra-high field MRIs. DARTEL relies 
heavily on the quality of tissue segmentation (GM, WM, CSF), 
attaining unsatisfactory results on the CEREBRUM dataset. Freesurfer, 
on the other hand, may experience abnormal cross-correlation 
between CEREBRUM 7 T images and its 1.5 T MNI305 atlas, leading 
to failure of convergence in registration and unsatisfactory 
hippocampal segmentation. Although Freesurfer v7 has been 
improved for ultra-high field MRIs, similar findings were also 
reported in previous studies (Svanera et al., 2021). The diminished 
performance of Freesurfer on 7 T data underscored the necessity for a 

FIGURE 3

Boxplots with means and 95% confidence intervals of the variance ratio, between-subject variability and within-subject variability for all four methods 
under comparison on CEREBRUM-7T, TOMCAT, and ADNI3. The higher variance ratios indicate better discrimination between subjects, and higher 
within-subject reproducibility between the test–retest conditions.
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novel tool that can harness the unique advantages presented by ultra-
high field imaging. Such a tool would be well poised to uncover the 
subtle volume changes—typically around 1%—that are integral to 
exercise-related studies. The results evidently showed the robustness 
of DL with respect to ultra-high field MRIs across scanning 
acquisition protocols.

The performance of deep learning models is largely influenced 
by the training datasets (Zhang et al., 2020; Guan et al., 2021; Lyu 
et al., 2022). In order to achieve optimal performance, it is crucial 
for testing images to follow a similar distribution to that of the 
training images. To increase the generalizability of our DL, 
we  included MRIs from different populations, scanners, and 
acquisition protocols by mixing multiple datasets as a bigger 
training set, following the methodology of previous literature 
(Balboni et al., 2022). In Supplementary Figure S4, we presented 
sample images from each dataset. This graphical representation 
qualitatively underscored the observable domain gaps between the 
training and evaluation datasets. To offer a more intuitive insight, 
we  employed Supplementary Figure S5 to visualize the latent 
distribution of all datasets using t-SNE (van der Maaten and 
Hinton, 2008) dimension reduction. Notably, our analysis revealed 
that the training datasets and evaluation datasets exhibited minimal 
overlap within the latent space. This observation underscored the 
inherent diversity in both our training and evaluation data, 
corroborating the effectiveness of our approach. However, we found 
that increasing generalizability may lead to a slight decrease in 
performance on specific datasets. To address this issue, we selected 
the PMC atlas set as the training set based on visual inspection and 
tested on TOMCAT. Our results demonstrated that DL ‘s 
performance was further improved, with the median VPD 
decreasing from 1.23 to 0.29% for the left hippocampus and from 
0.88 to 0.24% for the right hippocampus (Supplementary Figure S6). 
This suggests that a specifically developed deep learning model is 
preferable over a generic toolbox like FSL and Freesurfer. The 
nnU-Net model involved in the DL of this study provides an 
accessible solution for neuroscientists to develop their own deep 
learning models without requiring too much expert knowledge. All 
needed is to prepare a training dataset visually similar to the 
clinically-concerned target data, and train the model for a few hours 
with graph processing units (GPU). Another potential solution is 
to build a multi-atlas based deep learning model, which 
automatically selects a suitable set of atlases with respect to 
histograms or deep image features and performs segmentation with 
its corresponding model.

In the BLME model, the normalized time from baseline by month 
is the only variable. This may affect its statistical power on the ADNI3 
dataset since it cannot track disease-related changes. In our future 
work, a more sophisticated model and more data such as the ADNI1 
dataset will be  included to detect disease-related changes and 
statistically compare the performance of various pipelines in 
distinguishing between diagnostic groups.

Only 3T atlases were adopted as the training dataset in this study, 
which may have potentially affected the performance of the deep 
learning model when applied to 7T data. However, our findings 
indicate that DL was not affected by the field strength and voxel 
dimension, even without any preprocessing or inhomogeneity 
correction. It is surprising that DL was also able to overcome the 

challenge of high intensity inhomogeneity in 7T images 
(Supplementary Figure S7), possibly due to its extensive data 
augmentation, which effectively varies the intensity profiles and 
regularizes the segmentation model. Nevertheless, the limited 
training data used in this study remains a key limitation, and future 
studies will aim to incorporate submillimeter ultra-high field MRIs 
with expert hippocampal annotation into the training dataset to 
further enhance the robustness and performance of the evaluated 
deep learning model.

The relatively small sample size of TOMCAT (N = 7) also limits 
the impact of our study. Although we  observed non-significant 
improvements over Freesurfer and FSL for both hemispheres due to 
their high variability in VPD and ICC, we included a submillimeter 
3T dataset (N = 45) to strengthen our findings. Additionally, 
we  included a larger 7T dataset (N = 34) and the well-established 
ADNI3 dataset (N = 64) but were unable to conduct test–retest 
statistics in terms of ICC and VPD due to the various timepoints and 
intervals. Future studies will involve more test–retest data from 7T 
scanners to improve the generalizability of our findings. Overall, as 
DL consistently outperformed other methods on multiple datasets, 
we conclude that deep learning is a reliable and promising approach 
for longitudinal studies of exercise in healthy adults.

5 Conclusion

In conclusion, using VPE and CC, we  demonstrate that deep 
learning has remarkable accuracy and precision and outperforms 
conventional methods. We also show that DL has superior test–retest 
reliability, as assessed by VPD and ICC, which is within the level of 
age-related atrophy. Additionally, we apply the BLME model to a large 
longitudinal dataset with ultra-high field MRIs, showing that deep 
learning allows to sensitively detect subtle changes over time and the 
slight differences across subjects. Our results not only indicate that 
deep learning predicts a more reliable hippocampal volume than 
conventional approaches, especially on ultra-high field MRIs, it is also 
more reliable in its performance which is promising for longitudinal 
studies involving hippocampal measures.
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