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Hand rehabilitation in chronic stroke remains challenging, and finding markers 
that could reflect motor function would help to understand and evaluate the 
therapy and recovery. The present study explored whether brain oscillations in 
different electroencephalogram (EEG) bands could indicate the motor status and 
recovery induced by action observation-driven brain–computer interface (AO-
BCI) robotic therapy in chronic stroke. The neurophysiological data of 16 chronic 
stroke patients who received 20-session BCI hand training is the basis of the 
study presented here. Resting-state EEG was recorded during the observation 
of non-biological movements, while task-stage EEG was recorded during the 
observation of biological movements in training. The motor performance was 
evaluated using the Action Research Arm Test (ARAT) and upper extremity Fugl–
Meyer Assessment (FMA), and significant improvements (p  <  0.05) on both scales 
were found in patients after the intervention. Averaged EEG band power in the 
affected hemisphere presented negative correlations with scales pre-training; 
however, no significant correlations (p  >  0.01) were found both in the pre-training 
and post-training stages. After comparing the variation of oscillations over 
training, we  found patients with good and poor recovery presented different 
trends in delta, low-beta, and high-beta variations, and only patients with good 
recovery presented significant changes in EEG band power after training (delta 
band, p  <  0.01). Importantly, motor improvements in ARAT correlate significantly 
with task EEG power changes (low-beta, c.c  =  0.71, p  =  0.005; high-beta, 
c.c  =  0.71, p  =  0.004) and task/rest EEG power ratio changes (delta, c.c  =  −0.738, 
p  =  0.003; low-beta, c.c  =  0.67, p  =  0.009; high-beta, c.c  =  0.839, p  =  0.000). 
These results suggest that, in chronic stroke, EEG band power may not be a good 
indicator of motor status. However, ipsilesional oscillation changes in the delta 
and beta bands provide potential biomarkers related to the therapeutic-induced 
improvement of motor function in effective BCI intervention, which may be useful 
in understanding the brain plasticity changes and contribute to evaluating therapy 
and recovery in chronic-stage motor rehabilitation.
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1 Introduction

Stroke has been the leading cause of acquired disability in 
adults globally for decades (Mendis, 2013). Although the mortality 
rate declined with improved healthcare, approximately 80% of 
stroke victims still experience motor impairment, and more than 
30% of patients suffer despite intensive rehabilitation (Lai et al., 
2002; Young and Forster, 2007). It is worse for the chronic group 
with severe motor impairments in the upper limbs. On the one 
hand, effective interventions like constraint-induced movement 
therapy (CIMT) may not be applicable to those patients without 
enough residual active movement (Thrasher et al., 2008). On the 
other hand, motor recovery in chronic stroke is more challenging 
due to the decreasing plasticity of spontaneous recovery (Cassidy 
and Cramer, 2017). Since the upper limbs, especially the hands, play 
a significant role in daily activity, exploring novel rehabilitation 
therapies for hand motor recovery in this group is essential 
(Neumann, 2016). Robot-assisted therapy (RAT) and motor 
imagery (MI) have been introduced to enhance motor recovery for 
stroke patients through passive motion or mental practice. However, 
although these interventions benefit training without requiring 
patients’ residual ability, rehabilitation effectiveness is still limited 
by a lack of active engagement (Kwakkel et al., 2008; Ietswaart et al., 
2011). Recent advances in brain–computer interface (BCI) 
technology offer a novel method that could extract the motor 
intention of patients executing MI to support active rehabilitation 
training. Related studies have shown promising results that 
MI-actuated BCI improves motor ability more than pure MI or 
sham BCI (Ramos-Murguialday et  al., 2013; Ang et  al., 2014; 
Pichiorri et  al., 2015). However, this intervention still faces 
limitations in practical use (Mulder, 2007; Baniqued et al., 2021). 
First, BCI may not be easy for everyone due to the “BCI illiteracy” 
phenomenon or the limited training schedule in clinical 
environments (Blankertz et  al., 2009; Horowitz et  al., 2021). In 
addition, most stroke subjects show more difficulty executing MI 
tasks than healthy subjects because of brain impairment in motor-
related areas (Mulder, 2007). Worse situations occur in severe 
patients because they can hardly perform effective MI or fall into 
fatigue quickly under effortful attempts. Recent studies found that 
action observation (AO) could also activate sensorimotor features, 
as in MI and motor execution tasks (Friesen et al., 2017; Hardwick 
et  al., 2017). In addition, repeated AO could induce plasticity 
changes by activating the mirror neuron system (MNS) (Rizzolatti 
and Sinigaglia, 2010; Agosta et al., 2017). These inspired studies 
combined AO in the BCI system, where stronger event-related 
desynchronization (ERD) responses are found than in pure MI-BCI 
(Kondo et al., 2015; Ono et al., 2018; Nagai and Tanaka, 2019). 
However, most of these studies focused on healthy subjects, while 
related endeavors in the clinical rehabilitation of stroke subjects are 
still insufficient.

Another major concern in exploring novel interventions in 
chronic stroke is better evaluating the motor deficits and 
understanding the therapeutic-induced improvement during 
rehabilitation neurologically. On the one hand, the recovery in 
post-stroke motor rehabilitation is usually heterogeneous. Except 
for individual factors such as age, time since stroke, and related 
complications, a variety of neuro-clinical factors, such as the degree 

of brain lesion and neural status, would also affect the patient’s 
recovery (Riley et al., 2011; Chang et al., 2013; Feng et al., 2015; Kim 
and Winstein, 2017). On the other hand, chronic stroke recovery is 
more challenging with the decreasing plasticity of spontaneous 
recovery and depends more on intervention-induced plasticity 
(Cassidy and Cramer, 2017). The routinely used assessment of 
motor recovery is on clinical scales, which are semi-objective and 
limited in monitoring the underlying neural factors. Hence, recent 
studies have focused on finding neural biomarkers that could serve 
as an additional physiological approach to probe brain status and 
reflect the extent of post-stroke functional recovery (Kim and 
Winstein, 2017). Potential biomarkers have been found in 
physiological measuring tools such as Functional magnetic 
resonance imaging (fMRI) and magnetoencephalograms (MEG) 
(Várkuti et al., 2013; Kim and Winstein, 2017).

Compared with these tools, electroencephalography (EEG) 
offers another economical and widely available choice, making it a 
more practical approach in clinical environments for rehabilitation 
(Gerloff et al., 2006; Ang and Guan, 2016). In addition, the EEG is 
easy to implement in EEG-based BCI interventions. However, 
most related investigations of EEG markers focused on acute or 
subacute-stage patients, and studies concerned with chronic 
patients are still lacking (Foreman and Claassen, 2012; Assenza 
et al., 2017; Trujillo et al., 2017; Bentes et al., 2018). Notably, EEG 
oscillations in different bands themselves play roles in reflecting 
the physiological and pathological status of the neural systems. For 
example, the increasing low-frequency power (delta and theta 
bands) and decreasing high-frequency power (alpha and beta 
bands) are believed to reflect the severity of acute neurological 
deficits (Rabiller et  al., 2015; Assenza et  al., 2017). Apart from 
reflecting the motor status, the EEG features may also promote an 
understanding of varied recovery resulting from additional factors 
during rehabilitation. For instance, a previous study found that 
patients under different interventions have different EEG indicators 
(Mane et al., 2019). We infer that patients with varying degrees of 
recovery may also differ in EEG features after experiencing 
different neural processes in training. Overall, how these EEG 
oscillations would act in chronic stroke and whether related EEG 
features could reflect therapeutic-induced improvement in effective 
interventions remains to be determined.

To fill this gap, the present study aimed to explore whether 
brain oscillations in different EEG bands can reflect the motor 
status and recovery induced by novel BCI therapy in chronic stroke. 
Specifically, an AO-BCI robotic hand training intervention was 
studied in a clinical environment, and the motor scales were 
assessed before and after the training. The correlations between 
EEG band power and motor scales both before and after the 
intervention were analyzed to study their feasibility in reflecting 
motor status by EEG band power in chronic stroke patients. In 
addition, we presented the difference in EEG variation during an 
intervention on patients with and without effective recovery 
[whether the minimal clinically important difference (MCID) was 
reached] (van der Lee et al., 2001; Wagner et al., 2008). Moreover, 
we examined which EEG rhythm variations correlate with motor 
function improvement and their potential as markers in reflecting 
therapeutic-induced neuroplasticity changes and guiding 
rehabilitation intervention in chronic stroke patients.
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2 Materials and methods

2.1 Subjects

All the subjects with chronic stroke were recruited via public 
information (the Hong Kong Stroke Association and hospitals) all 
over Hong Kong SAR, China. They had given their written, informed 
consent according to the Declaration of Helsinki. The Joint Chinese 
University of Hong Kong-New Territories East Cluster Clinical 
Research Ethics Committee (CUHK-NTEC CREC) approved the 
experimental protocol (agreement #2014.705-T). This study is also 
registered at www.clinicaltrials.gov with the study identifier 
NCT02323061. Subjects recruited in this study satisfied the following 
inclusion criteria: (1) had a unilateral ischemic brain injury or 
intracerebral hemorrhage at least 6 months after the onset of a single 
stroke without other diagnosed neurological deficits; (2) had sufficient 
cognition to follow simple instructions, as well as understand the 
content and purpose of the experiment assessed by Mini-Mental State 
Examination (MMSE>21) (Mowla and Zandi, 2006); (3) had 
moderate-to-severe motor disability at the paretic upper limb assessed 
by upper extremity Fugl–Meyer Assessment (FMA) (Fugl-Meyer 
et al., 1975) and Action Research Arm Test (ARAT) (van der Lee et al., 
2002). In addition, subjects with the following reasons were excluded 
from the study: (1) cannot perform the training tasks for more than 
30 min due to eye discomfort; (2) are not motivated to participate after 
being informed of the study details. This enrollment process resulted 
in 16 subjects being involved in the study. Eleven subjects finished the 
AO-driven BCI robotic hand training, and five subjects finished the 
sham-BCI training. The demographical and clinical characteristics of 
the recruited subjects are shown in Table 1. Age is expressed in years. 
Time since stroke (TSS) is expressed in years. ARAT: Action Research 
Arm Test ranged from 0 (most affected) to 57 (least affected); and 

FMA: Fugl-Meyer Assessment Scale, upper limb section ranged from 
0 (most affected) to 66 (least affected). ARAT assessment forms for 
two stroke subjects (S6 and S7) were missing in the hospitals.

2.2 Rehabilitation system and protocol

All subjects received training of 20 sessions (days) within 
5 ~ 7 weeks. ARAT and FMA clinical scales were applied pre-training, 
and immediately after the 20 sessions of training, EEGs were collected 
all over the training sessions. During the intervention, each subject 
was seated on a height-adjustable chair with their (1) right elbow 
positioned at 90 degrees abduction, (2) right elbow flexed 90 degrees, 
(3) right arm pronated such that the palm is directed medially, and (4) 
wrist positioned neutrally without any flexion/extension. An armrest 
supported and kept the subject’s arm in position. (5) The hand was put 
on the table comfortably. The experimental setup and training 
paradigm for BCI-based robotic hand intervention are shown in 
Figure  1 (Tong et  al., 2013; Sun et  al., 2017). In specific training 
sessions, subjects followed the instructions in training paradigms, 
each containing 100 repeated trials. Before the training task in each 
session, the baseline EEG of all subjects was measured in the resting 
state. Observation of biological and non-biological movement 
paradigms was used in the baseline measurement and training of 
patients in the AO-driven BCI intervention (Oberman et al., 2013; 
Frenkel-Toledo et al., 2014). The experimental conditions were as 
follows: (1) observation of biological movement: observing a video 
showing reaching and grasping a cup with the affected hand or a video 
showing releasing the cup. The video clip included 144 frames with 
1920 × 1080 pixels in each frame. (2) Observation of non-biological 
movement: observing a video generated by decomposing the video 
clip of biological movement into frames (24 frames per second), and 

TABLE 1 Stroke subjects’ demographic data.

Subjects Age(y)/Sex TSS(y) BCI Type Affected hand ARAT FMA

S1 68/F 3 AO-BCI Left 14 25

S2 65/M 8 AO-BCI Right 10 22

S3 46/M 1 AO-BCI Left 3 19

S4 48/F 1 AO-BCI Left 8 36

S5 58/M 10 AO-BCI Right 15 22

S6 65/M 4 AO-BCI Right \ 25

S7 34/M 1 AO-BCI Left \ 27

S8 59/M 11 AO-BCI Left 28 24

S9 66/M 1 AO-BCI Left 8 13

S10 46/M 1 AO-BCI Left 16 17

S11 47/M 2 AO-BCI Right 15 20

S12 48/F 3 Sham-BCI Left 10 28

S13 45/M 2 Sham-BCI Left 13 20

S14 46/M 1 Sham-BCI Left 21 33

S15 58/F 3 Sham-BCI Left 15 24

S16 56/M 5 Sham-BCI Right 9 12

Mean 54.7 3.6 \ \ 13.2 22.9

SD 10.6 3.2 \ \ 5.9 6.2
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every frame was spatially scrambled (192*108 fragments in each 
frame), ensuring that the hand action could no longer be recognized. 
During the observation, no body movement or chewing was allowed. 
The timing of the experimental sequences and behavior tasks for 
observation of non-biological and biological movements are shown in 
Figures  1B,C. During the training stage of observing biological 
movements, 2 s of the dark screen were first displayed, followed by a 
white cross for 2 s. A text cue (hand grasp or open) was then displayed 
for 2 s. Then, a video clip with a duration of 6 s was shown. Subjects 
were asked to observe the actions and try to minimize eye-blinking. 
A robotic hand was activated as feedback based on the scores of mu 
suppression (Perry and Bentin, 2009; Tong et al., 2013; Sun et al., 

2017). The trial ended with 2 s of dark screen. The experiment 
paradigm for observing non-biological movements in the resting stage 
was similar to biological movements except for different cues, and no 
feedback was provided. In addition to the patients experiencing sham-
BCI, the timing of the paradigm was the same as in the AO-BCI 
training, except that the feedback was presented randomly. The 
presentation of the paradigm was controlled by the Psychophysics 
Toolbox 3.0 (Brainard and Vision, 1997).1

1 http://psychtoolbox.org/

FIGURE 1

(A) Experimental setup of the BCI training and the analysis of offline data in biomarker analysis. (B) The timeline of recording resting state EEG while 
observation of non-biological movements. (C) The timing for BCI training while observation of biological movements.
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2.3 EEG acquisition and analysis

EEG signals were referenced to a unilateral earlobe, grounded at 
frontal position (Fpz), and sampled at 256 Hz using a g.USBamp (g.Tec 
Medical Engineering GmbH, Austria) system with 16 active electrodes 
(g.LADYbird). The active electrodes were composed of a sintered Ag/
AgCl crown with a 2-pin safety connector. Compared with the passive 
electrodes, the active electrodes could improve the signal-to-noise ratio 
(SNR) to make the acquired EEG signals less affected by motion artifacts 
and electromagnetic interference. Electrodes were placed using the cap 
g.GAMMAcap (g.Tec Medical Engineering GmbH, Austria), thus 
allowing a fast placement. EEG signals were also online band-pass 
filtered from 2 to 60 Hz and notch-filtered between 48 and 52 Hz to 
remove artifacts and power line interference. All active electrodes were 
filled properly with conductive gel, and the active electrode system 
assured a transmission impedance of below 1 kOhm. According to the 
International 10–10 system, the electrodes were placed over the central 
area to obtain the neural activities related to the motor cortex. EEG data 
were analyzed using MATLAB (MathWorks, Natick, MA).

Many researchers believe that mu suppression is associated with the 
activation of MNS in human brains (Perry and Bentin, 2009; Bartur 
et al., 2015). In online analysis, mu suppression scores are calculated to 
provide feedback on training tasks. C3 or C4 was selected according to 
the subject’s ipsilesional side to compute the mu suppression. The value 
of the mu suppression score was equal to the negative difference in mu 
power between the observation of biological movement and 
non-biological movement, divided by the mu power during the 
observation of non-biological movement (the baseline) and multiplied 
by 100 (Oberman et al., 2008; Braadbaart et al., 2013; Sun et al., 2017).

In offline analysis, artifacts were rejected by visual inspection, and 
trials with artifacts were deserted (Kaya, 2019). Power spectra of 
artifact-free EEGs were computed using a Fast Fourier Transform at 
0.5 Hz intervals (using a Hanning window). The mean spectral power 
(averaged of all artifact-free trials for each electrode) of each training 
session was calculated in the theta (4–8 Hz), mu (8–12 Hz), low-beta 
(16–20 Hz), and high-beta (20–24 Hz) frequency ranges (Pfurtscheller 
et al., 1998, 2002). Instead of restricting our analysis over C3 and C4 
electrodes (Pineda, 2005; Oberman et  al., 2013), we  computed 
averaged power at more sites in the lesion brain that are related to 
motor function (left hemisphere: FC3, FC1, C3, C1, CP3, and CP1; 
right hemisphere: FC4, FC2, C4, C2, CP4, and CP2). These electrodes 
lie over the main areas related to motor function (including pre-motor, 
primary, and supplementary motor cortex) and related areas such as 
the somatosensory association cortex, which is involved in tactile 
sensation and perception of limb location. These are also engaged in 
identifying the postures and gestures of other people and also cover a 
major part of the mirror neuron system (Reed and Caselli, 1994; 
Carlson, 2012). Three kinds of EEG features in these bands are applied 
for further analysis: absolute band power in the resting stage, absolute 
band power in the task stage, and the ratio of task band power relative 
to resting-stage band power.

2.4 Statistical analysis

The main process is illustrated in Figure 1A. For proper estimation 
of the statistical significance with a small sample size, the 
non-parametric permutation testing method was employed (Nichols 

and Holmes, 2002; Philips et  al., 2017; Trujillo et  al., 2017). The 
two-tailed Spearman’s correlation was adopted for analyzing 
relationships between EEG power (in different bands) and clinical 
scales (ARAT and FMA), including pre-training, post-training, and 
variations after the intervention. We calculated the power using the 
QFAB Bioinformatics, ANZMTG Statistical Decision Tree, and Power 
Calculator, v1.0. Assuming a Spearman’s rank correlation coefficient 
of 0.7 ± 0.1 between the QEEG indices at T0 and motor outcome, the 
recommended sample size was 9–19 subjects to achieve a statistical 
power of 80% with a significance level of 0.05. Thus, the sample size 
of 16 in this study was sufficient. The Bonferroni correction was used 
to adjust the alpha, which provides a conservative method to address 
the type I error in multiple comparisons. An adjusted alpha value of 
0.01 was used to correct for analysis across five frequency bands.

The comparisons between the clinical scales before and after 
intervention were made using the paired Wilcoxon signed-rank test. 
The unpaired Wilcoxon signed-rank test was also used to compare the 
difference in power variation in 20 sessions between subjects with 
(reaching MCID, ARAT: 5.7 points, FMA: 5.2 points) and without 
(not reaching MCID) effective recovery. All statistical work was 
performed using SPSS 19 (SPSS Inc., Chicago, Illinois, USA).

3 Results

3.1 Clinical improvements

The clinical scale before and after training is shown in 
Supplementary Table S1. Significant changes in ARAT and FMA after 
intervention were found compared with scales before training 
(△ARAT, 6.1 ± 6.8, p = 0.017; △FMA, 3.7 ± 4.4, p = 0.005). In 
addition, 82% of these patients improved more than the MCID in 
ARAT or FMA scores after the AO-BCI intervention.

3.2 EEG power and motor status

To investigate whether the EEG power feature could reflect motor 
status, we analyzed the correlation between the contralateral average 
EEG power and the clinical scales (Supplementary Tables S2, S3). 
However, no significant results were found both in pre-training and 
post-training data, as presented in Figure 2, which signifies that EEG 
power is not an effective indicator for monitoring motor status. 
Nonetheless, we found negative correlations between EEG power in 
all bands and motor status before training both during the rest and the 
task stages, especially in delta, theta, and low-beta frequencies (rest: 
low-beta c.c = −0.54, p = 0.046; task: delta c.c = −0.56, p = 0.036, and 
theta c.c = −0.61, p = 0.022) with ARAT. After training, these 
correlation relationships varied and tended to weaken negative or even 
positive correlations.

3.3 EEG variations

Comparing the averaged EEG power of all patients before and 
after the intervention, we did not find any significant differences in 
any frequency bands (as presented in Supplementary Table S4). 
However, in patients with effective recovery (reaching the MCID in 
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ARAT or FMA in 9 subjects), we found improvements with significant 
levels in delta band power (task and task/rest, p < 0.01), as presented 
in Supplementary Table S5.

The averaged contralateral EEG power variation (relative to the 
first session) during 20 sessions of training is presented in Figure 3. 
Considerable power differences were found in resting-state delta band 
EEG between patients with or without effective recovery, in which 
patients with better recovery showed lower delta power with training. 
In task EEG, patients with effective recovery showed higher power in 
the high-beta bands (p < 0.01 in three sessions). The task/rest power 
presented the results with both higher power in the delta (p < 0.01 in 
five sessions) and high-beta (p < 0.01 in four sessions) bands.

3.4 EEG variation and motor recovery

The correlation between averaged EEG variation after training in 
the affected hemisphere and motor improvements is presented in 
Table 2. Specifically, no significant negative correlations were found 
between band power changes during the resting stage and clinical 
improvements in ARAT or FMA, as shown in Figure 4. In task EEG 
(Figure  5), significant positive correlations between clinical 
improvements in ARAT and absolute power changes in the low-beta 
(c.c = 0.71, p = 0.005) and high-beta (c.c = 0.71, p = 0.004) bands were 
found. The most significant correlations with clinical improvements 
were found in the task ratio EEG power variation, in which positive 
correlations were found in the delta (c.c = −0.738, p = 0.003), low-beta 
(c.c = 0.67, p = 0.009), and high-beta (c.c = 0.839, p = 0.0002) bands 
(Figure  6). We  further analyzed the correlation between clinical 
improvements and variations in EEG power in different electrodes 
(Figure 7). For delta power, significant results (p < 0.01) were found in 
the electrode of CP1/CP2 (ARAT) during rest. For beta power, 
significant results were found in almost all involved electrodes (C1/
C2, C3/C4, CP1/CP2, CP3/CP4, and FC1/FC2) during the task. To 
prove the robustness of the observed effects, we further illustrated the 

variation of the averaged correlation coefficient and value of p (ΔEEG 
power vs. ARAT improvements) as a function of the number of 
subjects and trials in Supplementary Figures S2, S3. These correlation 
coefficients and p-values with significant results above were presented 
to be convergent with the increasing number of subjects and trials.

4 Discussion

4.1 EEG power and motor status

Previous studies that used EEG to reflect neurological deficits 
focused on acute rather than chronic stroke (Assenza et al., 2013; Wu 
et al., 2016; Assenza et al., 2017). These studies found that higher delta 
and lower beta waves signify more severe motor deficits post-stroke 
(Assenza et al., 2009; Dubovik et al., 2012; Finnigan and van Putten, 
2013; Assenza et al., 2017). In this study, we explored the utility of 
potential EEG biomarkers in the chronic stage and whether the well-
established role of EEG band power in reflecting motor status in early 
stroke could also be applicable in chronic stroke. However, we found 
no significant correlation (p < 0.01) between band power and motor 
scales both before and after the training, which may signify that EEG 
band power is not a reliable indicator of motor status in the chronic 
stage. Despite that, the correlation results also provide information to 
look into chronic stroke motor rehabilitation.

Specifically, in pre-training results, the ipsilesional delta waves 
(during rest and task stages) in the affected hemisphere and motor 
functions (ARAT and FMA) presented a negative correlation. This 
result also aligns with previous evidence in chronic stroke that 
increased low-frequency power is associated with brain lesions as 
measured by infarct volume (Cassidy et al., 2020; Barone and Rossiter, 
2021). In the acute stage, these pathological changes would 
immediately affect motor function, thus also presenting a negative 
correlation with functional scales. The same negative correlation result 
in our study may signify that pathological changes last to the chronic 

FIGURE 2

Correlation analysis between averaged contralateral EEG power and clinical scales pre-training and post-training. The values of the correlation 
coefficient (c.c) are presented in the color of circles. The value of ps are presented with the number in circles and related to the size of the circles 
(larger size corresponds to the lower value of p).
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stage (Barone and Rossiter, 2021). Currently, to the best of our 
knowledge, few groups have explored the correlation between EEG 
delta power and motor status in the chronic stage. Several recent 
studies investigated the quantitative EEG indicators (the ratio between 

EEG power in different frequency bands) instead of the absolute EEG 
power, as in our study (Finnigan and van Putten, 2013; Assenza et al., 
2017). Although we  got consistent results between low-frequency 
activity and motor status, no directly significant correlations were 

FIGURE 3

Average ipsilesional EEG power variation (relative to the first session) during 20 sessions of training. Rows show EEG in different bands. Columns show 
EEG in different states. Red lines and dots: patients with good recovery (reaching the MCID level). Black lines and dots: patients with poor recovery (not 
reaching the MCID level). Bold and dark lines: averaged data from patients with and without effective recovery. * indicates the significant (p  <  0.01) 
result in corresponding training session. ** represent significant results in two consecutive sessions.
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found either. For the results after the intervention, the correlation 
between delta power and motor scales changed in an inverse direction 
(weaker negative or positive correlation) compared with the 
pre-training results. Hence, these results may signify that, except for 
the initial brain impairments, other factors in later rehabilitation may 
also influence the EEG power in chronic stroke, thus making these 
correlation results insignificant or tending to be weaker.

Lower beta activity in acute stroke is usually associated with worse 
behavioral function (Assenza et  al., 2009; Dubovik et  al., 2012; 
Assenza et al., 2017). However, the pre-training result of our study 
indicates that this finding may not be applicable to patients in the 
chronic stage. On the contrary, we found excessive ipsilesional beta 
power during rest reflects worse motor function. Two roles of beta 
power have been found, which reflect the stroke-induced cortical 
deficits (decreased beta activity is generated for the death of brain cells 
in the affected area) or the compensatory changes in the motor deficit 
(increased beta power for the higher effort required for motor tasks) 

(Pogosyan et al., 2009; Foreman and Claassen, 2012; Rossiter et al., 
2014; Rabiller et al., 2015; Guerra et al., 2019). Previous studies in 
acute stroke support the former, while the result of higher beta power 
indicating worse motor function in our study is consistent with the 
latter. Only one directly related study in chronic stroke was found, and 
it supports our result that resting-stage beta band power in the affected 
hemisphere is associated with poor motor function (Thibaut et al., 
2017). For the post-training results on the beta band, we  found a 
similar variation as that in the delta band, in which weaker negative 
or inversely positive correlations were found compared with the 
pre-training results.

4.2 EEG variations and motor recovery

Considering the inconsistent correlations (band power vs. motor 
status) in the pre-training and post-training data, we investigated the 

TABLE 2 Correlation analysis of EEG variation and clinical scales improvements after training.

EEG state Delta Theta Alpha Lowbeta Highbeta

ARAT FMA ARAT FMA ARAT FMA ARAT FMA ARAT FMA

Rest
C.C −0.652 −0.538 −0.015 −0.448 0.099 −0.430 −0.159 −0.171 −0.407 −0.106

p 0.012 0.032 0.958 0.082 0.736 0.097 0.588 0.526 0.148 0.695

Task
C.C 0.637 0.134 0.200 −0.162 0.119 −0.216 0.707 0.406 0.714 0.331

p 0.014 0.620 0.492 0.548 0.685 0.422 0.005 0.118 0.004 0.211

Task 

ratio

C.C 0.738 0.309 0.189 0.136 0.137 −0.001 0.665 0.507 0.839 0.541

p 0.003 0.245 0.517 0.616 0.642 0.996 0.009 0.045 0.000 0.031

C.C., Correlation coefficients; p, p value. Significant results (p < 0.01) are bolded.

FIGURE 4

Correlation analysis of averaged (A) delta, (B) theta, (C) alpha, (D) low-beta, and (E) high-beta power variation in the affected hemisphere during rest 
and clinical scale variation after 20 sessions of training. Each point denotes data from one subject. Correlation analyses: two-tailed Spearman’s 
correlation coefficient.
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intervention-induced changes in these EEG band powers 
(Supplementary Table S4). However, we  did not find significant 
differences (p < 0.01) between pre-training and post-training EEG 

power. This result is consistent with one previous study and signifies 
that EEG power could not directly reflect the intervention mechanism 
during chronic rehabilitation (Trujillo et al., 2017). However, EEG 

FIGURE 5

Correlation analysis of averaged (A) delta, (B) theta, (C) alpha, (D) low-beta, and (E) high-beta power variation in the affected hemisphere during task 
and clinical scale variation after 20 sessions of training. Correlation analyses: two-tailed Spearman’s correlation coefficient (Significance: *p  <  0.01).

FIGURE 6

Correlation analysis of averaged (A) delta, (B) theta, (C) alpha, (D) low-beta, and (E) high-beta task/rest power ratio variation in the affected hemisphere 
and clinical scale variation after 20 sessions of training. Correlation analyses: two-tailed Spearman’s correlation coefficient. (Significance: *p  <  0.01, 
**p  <  0.001).
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changes in patients with effective recovery presented significant 
changes in delta band power (task and task/rest), as presented in 
Supplementary Table S5. Hence, we suspect that the different levels of 
recovery in training may also influence the EEG power for the 
underlying different neural activities, and we think that they should 
be considered together.

Comparisons between patients with and without effective 
recovery further verified that, during chronic stroke rehabilitation, the 
variation of EEG power is also influenced by the degree of recovery. 
As shown in Figure  3, patients with different degrees of recovery 
presented different trends in EEG power variations during training, 
and significant differences were found in the delta, low-beta, and high-
beta bands. The significant correlation results between EEG power 
changes (delta, low-beta, and high-beta) and motor recovery also 
provided consistent supporting evidence.

4.2.1 Delta band
Specifically, subjects with better motor improvement showed 

higher delta power (task and task/rest) increases. This observation is 
consistent with previous literature, in which Assenza et al. performed 
intermittent theta burst stimulation (iTBS) on healthy subjects and 

found that iTBS-induced plasticity can increase both motor-evoked 
potential (MEP) amplitude and delta power significantly (Assenza 
et  al., 2015; Assenza and Di Lazzaro, 2015). The authors 
demonstrated that delta waves during wakefulness, as well as those 
found during sleep in animal studies, are a sign of brain plasticity 
(Huber et al., 2004; Tononi and Cirelli, 2012). Hence, increased delta 
power in the chronic stage may indicate intervention-induced 
plasticity change, therefore resulting in motor improvements after 
training. EEG variation during sessions in our study also showed 
consistent results, in which patients with better recovery (with 
MCID of clinical scales) presented higher delta power than patients 
with worse recovery (without MCID of clinical scales) over 20 
sessions. In contrast, delta power variation at rest showed a negative 
correlation with motor improvement. This result may be interpreted 
as an increased demand for brain metabolism activity after effective 
training (Nagata, 1995; Finnigan and van Putten, 2013). Further 
investigation demonstrated that these recovery-related changes at 
rest mainly cover the region of the parietal lobe (CP1/CP2), as 
demonstrated in Figure  7 (Koessler et  al., 2009; Scrivener and 
Reader, 2022). Considering the physiological role of this area, this 
result may signify that increased brain metabolic activity is used for 

FIGURE 7

Significance of correlation between clinical improvements and variation of EEG power during rest and task in different electrodes.
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motor learning, somatosensory integration, and activation of the 
MNS even after training (Trobe, 2010). In addition, we found that 
delta power ratio (task/rest) variation (c.c = −0.637, p = 0.014) 
showed a stronger positive correlation than delta power variation 
during the motor-related task (c.c = −0.738, p = 0.003). It seems that 
opposite results of rest and task beta power makes the variation of 
task/rest delta power a better marker of intervention-
induced recovery.

4.2.2 Beta band
Pre- and post-intervention results showed that both low-beta 

and high-beta power variations positively correlate with 
intervention-induced motor improvements. Significant results were 
found in the task beta power and task/rest beta power ratios, whereas 
non-significant results were found in the resting-state beta power. 
Results of EEG variation during 20 sessions of training also 
presented that those patients with better recovery (reaching the 
MCID) had increased beta power (especially in the high-beta bands 
during task and task power ratio). In other words, the increased 
task-related beta power is a positive indicator of motor recovery. 
Previous studies have shown that beta oscillation plays a role in 
motor learning (Espenhahn et al., 2019; Barone and Rossiter, 2021). 
Thus, in our study, patients with increased beta power may undergo 
a more effective learning process and hence reach better 
improvements. In addition, the beta wave has also been associated 
with gamma-aminobutyric acid (GABA) levels. Both human and 
animal studies showed that decreased GABA levels would cause 
increased beta power (Feshchenko et al., 1997; Van Lier et al., 2004). 
Since GABA plasticity plays an important role in stroke recovery, 
our results suggest that increased beta power during training may 
indicate induced GABA plasticity changes (Paik and Yang, 2014; 
Blicher et  al., 2015). Consistent evidence is also found in other 
studies. For example, non-invasive cortical stimulation that enhances 
beta oscillations can promote motor learning and induce long-term 
plasticity in the motor cortex (Reis et al., 2009; Pollok et al., 2015). 
For the study of intervention, Penolazzi et al. (2010) found that beta 
waves in the EEG could be  a marker of brain plasticity in 
phonological training for dyslexic children (Penolazzi et al., 2010). 
Collectively, our study demonstrated, for the first time, that the beta 
activity variation could be  an indicator of motor relearning and 
recovery-related plasticity changes induced in a 20-session BCI 
motor therapy program for chronic stroke. We further investigated 
which electrodes would present these significant correlations 
between EEG features and improvements (Figure  7). Almost all 
involved electrodes (C1/C2, C3/C4, CP1/CP2, CP3/CP4, and FC1/
FC2) in beta power presented significant results, which signify that 
during the task, the motor learning process and the plasticity 
changes reflected by beta activity occurred in extensive areas related 
to motor function (Trobe, 2010).

4.3 AO-BCI intervention and clinical 
improvements

Motor recovery in chronic stroke is challenging due to the 
decreasing plasticity of spontaneous recovery (Cassidy and 
Cramer, 2017). In this study, the AO-driven intervention 

significantly improved motor function in chronic stroke (FMA and 
ARAT were 5 ± 7.1, p < 0.01, and 7.9 ± 5.13 points, p < 0.05), which 
is presented to be an effective complementary therapy to other BCI 
interventions for motor rehabilitation (Pichiorri et al., 2015). This 
improvement is comparable with that in recent BCI-based motor 
rehabilitation studies (Mane et al., 2020). Besides, compared with 
the MI-BCI therapy, the AO-driven therapy relies less on patients’ 
active ability as it training by action observation with the assistance 
of the mirror neuron system (Rizzolatti and Sinigaglia, 2010; 
Ramos-Murguialday et  al., 2013; Agosta et  al., 2017). This 
intervention offers another accessible choice for patients with 
difficulty executing motor imagery due to severe injury or the “BCI 
illiteracy” phenomenon. More importantly, we  found that this 
motor recovery is correlated with the EEG power variation in the 
delta and beta bands, which was associated with motor learning 
and plasticity change (Assenza et al., 2017; Guerra et al., 2019). 
These findings support the broader application of the AO-driven 
robotic hand intervention in future clinical rehabilitation to 
promote chronic-stage motor improvements and induce recovery-
related plasticity change in the brain.

In this chronic stroke rehabilitation study, EEG power and 
EEG power variation showed different trends in indicating better 
status or recovery. Unlike previous results found in acute stroke, in 
which higher delta and lower beta power are directly related to 
severe brain injury, our results signify that these EEG powers in 
chronic stages may underline different mechanisms (Assenza et al., 
2013; Finnigan and van Putten, 2013; Rabiller et al., 2015; Assenza 
et al., 2017). The pre-training EEG is related to the status of injury 
or function, while the EEG during training is a marker of plasticity 
change. Previous studies have found that spontaneous mechanisms 
mainly contribute to recovery in the acute stage, while recovery in 
the chronic stage is more dependent on therapeutic-induced 
mechanisms due to endogenous repair-related events becoming 
stable after 3 months post-stroke (Cramer et al., 2007; Overman 
and Carmichael, 2014; Bernhardt et al., 2017; Cassidy and Cramer, 
2017). However, future cohort studies are needed to investigate 
these variations dynamically by following patients from the acute 
to the chronic stage.

The ARAT and FMA scales consistently correlated with delta 
and beta band oscillations. However, significant findings were more 
prevalent in the ARAT scale than the FMA scale, and a greater 
percentage of patients showed improvement beyond the minimal 
clinically important difference (MCID) in ARAT (50%) compared 
to FMA (25%). Considering that we specifically aimed at the hand 
training intervention and ARAT is more elaborate in reflecting hand 
function than upper extremity FMA, this may explain why ARAT 
showed more significant results in our study (Fugl-Meyer et  al., 
1975; van der Lee et al., 2002). In addition, previous studies have 
found that for intervention in chronic stroke, ARAT is more 
responsive than upper-extremity FMA (van der Lee et al., 2001). 
Here, we provide neurophysiology evidence supporting ARAT as the 
clinical evaluation of upper-extremity motor function in chronic 
stroke. Notably, De Weerdt and Harrison suggested that FMA 
reflects more at the impairment level, while ARAT reflects more at 
the disability level (De Weerdt and Harrison, 1985). This is consistent 
with the delta and beta power variations in effective recovery as 
discussed above and may signify that the AO-based intervention 
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would contribute to recovery at the disability level more than the 
impairment level.

4.4 Prospects and limitations

We explored the electrophysiological biomarkers in chronic stroke 
during the intervention and found that EEG power (in the delta and 
beta bands) effectively reflects motor status and intervention-induced 
plasticity change. These results presented a useful electrophysiological 
tool for evaluating motor function and provided new insight into 
exploring neurophysiological variation during effective rehabilitation. 
However, future studies providing further verification on a larger scale 
are still needed to provide more substantial clinical evidence. 
Considering current research in the chronic stage is still scarce and 
small-sampled, studies employing multiple evaluation approaches 
may also help by providing multidimensional cross-evidence. For 
example, in addition to electrophysiological information, combining 
fMRI or rTMS with EEG would give a deeper understanding of these 
plasticity changes with extra spatial detail from hemodynamics and 
motor pathway physiology (Cassidy and Cramer, 2017).
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