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Objectives: Post-stroke depression (PSD) may be associated with the altered brain 
network property. This study aimed at exploring the brain network characteristics 
of PSD under the classic cognitive task, i.e., the oddball task, in order to promote 
our understanding of the pathogenesis and the diagnosis of PSD.

Methods: Nineteen stroke survivors with PSD and 18 stroke survivors with no 
PSD (non-PSD) were recruited. The functional near-infrared spectroscopy (fNIRS) 
covering the dorsolateral prefrontal cortex was recorded during the oddball task 
state and the resting state. The brain network characteristics were extracted using 
the graph theory and compared between the PSD and the non-PSD subjects. In 
addition, the classification performance between the PSD and non-PSD subjects 
was evaluated using features in the resting and the task state, respectively.

Results: Compared with the resting state, more brain network characteristics 
in the task state showed significant differences between the PSD and non-
PSD groups, resulting in better classification performance. In the task state, the 
assortativity, clustering coefficient, characteristic path length, and local efficiency 
of the PSD subjects was larger compared with the non-PSD subjects while the 
global efficiency of the PSD subjects was smaller than that of the non-PSD 
subjects.

Conclusion: The altered brain network properties associated with PSD in the 
cognitive task state were more distinct compared with the resting state, and the 
ability of the brain network to resist attack and transmit information was reduced 
in PSD patients in the task state.

Significance: This study demonstrated the feasibility and superiority of 
investigating brain network properties in the task state for the exploration of the 
pathogenesis and new diagnosis methods for PSD.
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1. Introduction

Post-stroke depression (PSD) is the most common 
neuropsychiatric complication after stroke (Taylor-Rowan et  al., 
2019). About one-third of stroke survivors suffer from PSD (Guo 
et al., 2022), which has a significant impact on their rehabilitation 
outcomes and quality of life (Paolucci, 2017). It has been demonstrated 
that early diagnosis, prevention and treatment of PSD are very 
important for stroke survivors (Koyanagi et al., 2021). However, the 
pathogenesis of PSD is still being investigated (Guo et  al., 2022). 
Currently, the diagnosis of PSD in clinics mainly relies on the 
subjective scale-based evaluation of patients’ emotion state and an 
objective indicator is urgently needed.

The combination of the modern brain imaging technology and 
the complex network theory, i.e., the graph theory provides a 
powerful tool to analyze the human brain networks (Power et al., 
2010; Wang and Wang, 2014). The study of brain functional networks 
provides a new perspective for understanding the pathological 
mechanism and then the assistance for the early diagnosis of 
neuropsychiatric diseases (Wang et al., 2021). Previous studies have 
suggested that PSD might be caused by the damage to some specific 
brain network (Boes et al., 2015). Zhang et al. (2019) scanned the 
amygdala in the affective network using the functional magnetic 
resonance imaging (fMRI) to study the characteristics of the brain 
functional network in the PSD patients with left temporal lobe 
infarction in the resting state. They found that PSD was closely 
related to the reorganization of the damaged brain networks mainly 
involving the amygdala and the prefrontal cortex. Similarly, Shi et al. 
(2017) collected the fMRI data from the cingulate cortex in the 
resting state and compared the topological properties of the default 
mode network (DMN) between the stroke survivors with and 
without PSD. The results showed that the functional connectivity of 
the anterior cingulate cortex with the prefrontal cortex, cingulate 
cortex, and motor cortex in PSD patients was significantly reduced. 
However, the functional connectivity of the anterior cingulate cortex 
with the hippocampus, parahippocampal gyrus, insula and amygdala 
was enhanced. These indicated that the pathogenesis of PSD was 
possibly related to the altered connectivity in the DMN. Balaev et al. 
(2018) further demonstrated that both the DMN and the salience 
network were changed in the PSD patients. In another resting-state 
fMRI study, Egorova et  al. (2018) found that the functional 
connectivity between the left dorsolateral prefrontal cortex and the 
right superior limbic gyrus in the PSD patients was significantly 
reduced, and the decline of the connectivity in the frontoparietal 
cognition control network was positively correlated with the severity 
of depression. In general, these studies found abnormal brain 
network connectivity at the prefrontal cortex, amygdala or 
hippocampus regions in the PSD patients. However, the brain 
network properties in the resting state were investigated the most, 
and furthermore their results were inconclusive for the cause of PSD 
from the view of altered brain functional networks.

Studies have shown that the pattern of brain functional 
connectivity in the task state was different from that in the resting state 
at both the neuron and system levels (Zhang et al., 2010; Cole et al., 
2014; Gerchen et al., 2014; Foster et al., 2015). With most resting-state 
networks still being identifiable in the task state (Cole et al., 2014; 
Krienen et al., 2014), the differences of the brain network connectivity 
between the resting and task conditions observed using the 

noninvasive functional neuroimaging techniques at the system level 
might be subtle. However, these differences are widely distributed 
across the brain. For example, based on the Human Connectome 
Project (HCP) task set, up to 38% of the connectivity were significantly 
different between the task and resting states (Barch et al., 2013; Cole 
et al., 2014). Kaufmann et al. (2017) recently reported that 76.2% of 
the connectivity were different across 6 tasks. Although the brain 
network topology may remain unchanged overall, the network 
functional connectivity indeed reconfigured in some ways when 
switching from the resting to the task state (Cole et al., 2014; Krienen 
et al., 2014). For example, the brain became less segregated and the 
functional connectivity was more stable in the task state (Di et al., 
2013). In addition, both the hub location and the communication 
frequency can be modulated by the participation of tasks. Therefore, 
compared with the resting state, it might provide us another alternative 
to explore the pathogenesis of PSD by investigating the brain network 
in the task state, due to its widely varied and more stable brain 
network connectivity.

Facial emotion recognition is one of the most commonly used 
tasks in the research of depression (Fusar-Poli et al., 2009), mainly 
involving two types of experiment paradigms. One is the explicit 
task that requires the subjects to judge the emotion categories, which 
is mostly used to study the emotional dysfunction in subjects with 
depression. The other one is the implicit task that requires the 
subjects to judge the gender with the presentation of different 
emotional expressions. This paradigm is typically used to estimate 
the ability of the brain to process emotional faces unconsciously. Via 
the facial emotion recognition tasks, researchers have obtained a 
certain understanding of the neural mechanism for the negative 
cognitive processing in patients with depression. However, there are 
some limitations in the facial emotion recognition tasks. Firstly, the 
expression pictures come from different countries, thus making it 
difficult to avoid the interference of race, age etc. Secondly, people 
from different countries with different cultures may have different 
degrees of recognition of the same expressions. Lastly, the gender 
might also affect the recognition of facial expressions because 
women generally have richer emotions and are more sensitive to 
expressions (Gard and Kring, 2007; Jenkins et al., 2018). Compared 
with the facial emotion recognition task, the classic ‘oddball’ task 
paradigm that is widely used in the event-related potential studies 
has no such limitations. For example, the P300 wave elicited in the 
oddball task is considered to be an endogenous evoked potential 
related to the cognitive function of brain (Polich, 2007). As a 
potential reliable biomarker for the advanced cognitive functions 
such as the attention and working memory (van Dinteren et al., 
2014), the P300 wave has been widely used for the assessment of 
cognitive disorders. It is commonly believed that there is a close 
relationship between the cognition and emotion. For example, early 
PSD aggravates the cognitive impairments in elderly male stroke 
patients (Shin et al., 2022). In addition, the impairment of working 
memory was believed to be an important indicator of the cognitive 
impairment in depression. Meanwhile, researchers have found that 
the P300 wave was a reliable psychological measurement in both 
depression and healthy individuals (Klawohn et al., 2020). Based on 
these research findings, it was hypothesized in this study that the 
oddball task, as a classic experiment paradigm for cognitive function 
assessing, may possibly get the damaged brain network associated 
with PSD involved and thereby, help obtain the brain network 

https://doi.org/10.3389/fnins.2023.1242543
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Peng et al. 10.3389/fnins.2023.1242543

Frontiers in Neuroscience 03 frontiersin.org

characteristics that can reflect the neural mechanism of 
PSD. Meanwhile, as far as we know, no previous studies have used 
the oddball task paradigm to investigate the brain network 
property of PSD.

Most previous studies on the brain network of PSD utilized the 
fMRI data to measure the metabolic activities in brain. As another 
non-invasive brain functional imaging technique, the functional near-
infrared spectroscopy (fNIRS) has the advantages of low cost, 
portability, and convenience for a variety of tasks (Ferrari and 
Quaresima, 2012; Hong and Khan, 2017) and more importantly, it has 
a higher temporal resolution than fMRI. Therefore, it has been applied 
in different clinical settings, especially in the field of neuroscience. 
Previous studies have shown that the oxyhemoglobin concentration 
(HbO) measured by fNIRS may be a useful tool for diagnosing PSD 
(Koyanagi et al., 2021). However, to the best of our knowledge, there 
is still a lack of studies that use the fNIRS signals to analyze the brain 
network of PSD patients.

In this study, in order to investigate the altered brain network 
characteristics of PSD in the task state and as a result, obtain the 
possible biomarkers for PSD diagnosis, the oddball task paradigm was 
performed by stroke survivors with and without PSD (non-PSD). The 
fNIRS data were collected under both the task and resting conditions, 
and the brain functional connectivity and network properties based 
on the graph theory were analyzed and compared between the PSD 
and non-PSD patients. Based on the previous studies, it was 
hypothesized that some of the altered brain network properties that 
accounts for PSD might be manifested in the task state other than the 
resting state, resulting in more distinct brain network connectivity 
patterns and characteristics in the cognitive task state compared with 
the resting state. Our results possibly provide a new perspective to 
explore the pathogeneses and new diagnosis methods for PSD.

2. Materials and methods

2.1. Subjects

All recruited subjects were post-stroke patients undergoing the 
rehabilitation therapy at the Rehabilitation Department of the First 
Affiliated Hospital of Xi’an Jiaotong University from June 2022 to 
November 2022. The inclusion criteria were as follows: (1) 30–85 years 
old; (2) stroke confirmed by computed tomography or magnetic 
resonance imaging; (3) first-ever stroke with the onset within 
1–12 months from then; (4) consciousness with the ability to finish 
the experiment task. The exclusion criteria were: (1) history of mental 
illness, such as schizophrenia, mood disorders; (2) substance abuse; 
(3) severe neurological impairment, such as hearing impairment and 
physical weakness; (4) metal implants in the brain, such as deep brain 
stimulators; (5) cranioplasty. This study was approved by the Ethics 
Committee of the First Affiliated Hospital of Xi’an Jiaotong University 
on March 27, 2021 (approval number: XJTU1AF2023LSK-2021- 
175), and all patients or their authorized representatives signed the 
informed consent.

All subjects were assessed using the Hamilton Depression Scale 
with 24 items (HAMD) that has been widely used in the diagnosis and 
severity assessment of depression, and higher scores indicate more 
severe depression. The assessment was performed by 2 trained 
psychiatrists in the hospital. All recruited subjects were divided into 2 

groups based on their HAMD scores. The subjects with the score 
higher than or equal to 8 constituted the PSD group. The other 
subjects with scores less than 8 constituted the non-PSD group. In 
addition, the Montreal Cognitive Assessment Test (MoCA) and the 
Mini-mental State Examination (MMSE) were performed to assess the 
cognitive state of subjects.

2.2. Experiment procedure

2.2.1. Oddball task paradigm
The classic oddball paradigm was used in this study. The subjects 

were presented with two kinds of auditory stimuli both at the intensity 
of 85 dB. The default or the non-deviant stimulus was a low-frequency 
tone at 1,000 Hz while the target or the deviant stimulus was a high-
frequency tone at 2,000 Hz (Figure 1A). Each stimulus lasted for 0.05 s 
and there was a random respond interval lasting 1 ~ 3 s between two 
adjacent stimuli. The total stimulation or task period lasted 360 s with 
25% as the deviant stimuli and 75% as the non-deviant stimuli. The 
subjects were requested to press the button using their thumbs of the 
unparalyzed side immediately after the deviant sound was heard. 
Before the task period, there was a 20-s resting period served as the 
baseline. The subjects were sat comfortably with their eyes closed and 
their bodies relaxed during the whole experiment, and asked to 
concentrated their attention on the auditory stimuli during the 
stimulation period.

2.2.2. Data recording
The NirScan-6000A system (Huichuang Medical Equipment Co., 

Ltd., Danyang, China) was used to record the fNIRS signals in this 
study. The wavelength of the near-infrared light used in this system 
was 730, 808 and 850 nm, respectively. Thirteen optodes were used 
including 7 light sources and 6 light detectors with an inter-optode 
distance of 3 cm. This optode configuration resulted in 14 channels of 
fNIRS signals in total covering the left and the right dorsolateral 
prefrontal (DLPF) cortex, respectively (Figure 1B). The sampling rate 
was 11 Hz and data recording was performed in a quiet and dark room.

2.3. Data processing

2.3.1. Preprocessing
The original light intensity signal was converted into the optical 

density (OD) signal for individual channels. Then, an automatic 
motion artifact removal procedure was performed using a sliding 
window method for individual channels. Specifically, within each 
0.5-s window, if the difference between the maximum and the 
minimum of the OD signal was more than 6 times the standard 
deviation of the whole trial, the window was considered to contain 
motion artifacts and the corresponding OD signal was discarded and 
then reconstructed using the spline interpolation method. The OD 
signal was then filtered using a band-pass filter between 0.01 and 
0.2 Hz to remove the components from the heart rate, the blood 
pressure and the respiratory activity. Lastly, the processed OD signal 
was converted into the HbO signal (Figure 1C) based on the modified 
Beer–Lambert law. The preprocessing was performed using the 
analysis program NirSpark (Danyang Huichuang Medical Equipment 
Co., Ltd., China).
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2.3.2. Brain network characteristics
Pearson correlation coefficients between the HbO signals of all 

possible pairs of channels were calculated using the data from the 
task and the resting period respectively, yielding two 14 × 14 
connectivity matrices for each subject. The Fisher-z transformation 
was then performed on the connectivity matrices. In this study, the 
GRETNA software (Wang et al., 2015) was used to estimate the 
brain network metrics according to the graph theory. Specifically, 
only positive connectivity was considered in this study by setting 
the negative matrix entries to zeros, and the connectivity matrices 
were then binarized using the sparsity threshold from 0.15 to 0.5 at 
intervals of 0.05. The threshold value was defined as the ratio of the 
number of retained edges divided by the maximum possible 
number of edges in the network. The global metrics including the 
small-world parameters [clustering coefficients (Cp), Gamma, 
Lambda, characteristic path length (Lp), Sigma], the local efficiency 
(Eloc), the global efficiency (Eg), the assortativity (r), and the 
hierarchy (b) were calculated. And the estimated nodal metrics 
included the nodal clustering coefficient (NCp), the nodal efficiency 
(Ne), the nodal local efficiency (NLe), the degree centrality (Dc), 
and the betweenness centrality (Bc). Since different metric values 
can be obtained under individual thresholds, the area under the 
curve (AUC) for each network metric was calculated for 
further analysis.

2.3.3. Classification between PSD and non-PSD 
patients

The diagnosis of a disease can be  eventually translated into a 
classification problem. In this study, in order to verify whether the 
PSD and non-PSD patients can be distinguished using the extracted 
brain network characteristics, they were grouped together as the 
features and the cost-sensitive support vector machine (Luts et al., 
2010) was used as the classifier that has been used in our previous 
studies (Zheng et al., 2016; Zheng and Xu, 2019). The classification 

accuracy defined as the ratio between the number of correctly 
identified patients and the total number of patients was used as the 
performance measurement. In order to avoid the in-sample 
optimization problem, the 8-fold cross-validation procedure was 
performed to evaluate the classification accuracy under the task and 
the resting condition, respectively.

2.3.4. Statistical analysis
The statistical analysis was performed using the SPSS (IBM SPSS 

Statistics for Windows, version 22.0, IBM Corp.). All comparison were 
performed between the PSD and non-PSD groups. Specifically, the 
demographic information was compared using the two-tail 
two-samples t-test for the measurement data and the Fisher’s exact test 
for the categorical data. The connectivity strength and the brain 
network characteristics were compared using the one-tail two-samples 
t-test. The normality was verify using the Shapiro–Wilk test. If the 
normality was not satisfied, the Kruskal-Wallis rank sum test was then 
used. The significant level was set at p < 0.05.

3. Results

3.1. Demographic information

The basic demographic and clinical information of the recruited 
subjects is listed in Table 1. The statistical analysis results showed that 
there was no significant difference in the age, gender and the education 
level between the PSD and the non-PSD group. As for the stoke type, 
lesion location, the time after stroke onset and the available hand to 
press the button, there was no significant difference between the two 
groups either. The HAMD score of the PSD group was significantly 
higher than that of the non-PSD group, while the MMSE and MoCA 
scores that mainly reflected the cognitive state showed no 
significant differences.

FIGURE 1

Experiment paradigm (A), the locations of the 13 optodes including 7 sources and 6 detectors (B) and the HbO signals of three channels from a 
representative subject (C).
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3.2. Functional connectivity strength

Each entry in the connectivity matrix quantifies the interaction 
strength of the HbO signals between two brain regions covered by 
the two corresponding channels separately. In order to investigate 
whether the connectivity strength was altered by the PSD, the 
connectivity matrix was compared entry-by-entry between the two 
groups under the resting and task conditions, respectively. The 
statistical analysis results showed that the connectivity between 
channel 4 and 6, and between channel 2 and 5 for the PSD group 
was significantly higher than the corresponding connectivity 
strength for the non-PSD group in the resting state (p < 0.05) 
(Figure 2A). Compared with the resting state, more connectivity 
showed significant differences between the two groups in the task 
state (Figure 2B). In contrast to the resting state, the connectivity 
strength reduced significantly for the PSD group compared with the 
non-PSD group (p < 0.05). For example, the most evident difference 
was that the connectivity between the middle front area (channel 7) 
and the lateral areas (channel 1, 3, 4, 10, 11, 13, and 14) was reduced 

for the PSD subjects compared with the non-PSD subjects in the 
task state.

3.3. Brain network characteristics

3.3.1. Global metrics
The estimated global metrics including the hierarchy (b), 

assortativity (r), local efficiency (Eloc), and global efficiency (Eg) in 
the task state are compared in Figures 3A,C,E,G, respectively, between 
the PSD and the non-PSD group. The AUC of the four metrics across 
different thresholds were then estimated for individual subjects and 
compared between the two groups (Figures 3B,D,F,H). The results 
showed that the hierarchy (p < 0.05) and the global efficiency (p < 0.01) 
of the PSD group was significantly lower than that of the non-PSD 
group. On the contrary, the assortativity and the local efficiency of the 
PSD group were significantly higher than that of the non-PSD group 
(p < 0.05). These four metrics in the resting state were also compared 
between the PSD and the non-PSD group. However, none of them 
showed significant differences (p > 0.05).

Figure 4 compares the small-world properties between the PSD 
group and the non-PSD group in the task state. The average of the 
clustering coefficients (Cp), characteristic path length (Lp), Gamma, 
and Lambda across subjects from the PSD group was higher than that 
from the non-PSD group (Figures 4A,C,E,G) for all thresholds while 
the metric Sigma was comparable between the two groups (Figure 4I). 
The further statistical analysis using the two-samples t-test of the AUC 
of individual metrics showed that the metric Cp, Lp and Lambda of 
the PSD group was significantly higher than that of the non-PSD 
group (p < 0.05) while there was no significant differences of the 
metric Gamma and Sigma (p > 0.05). These small-world parameters 
in the resting state were also compared between the two groups. 
However, none of these small-world parameters showed significant 
differences between the two groups (p > 0.05).

3.3.2. Nodal metrics
The AUC of individual nodal metrics were fist calculated across 

thresholds for individual channels and individual subjects and then 
compared between the PSD and the non-PSD group channel-by-
channel using the two-samples t-test. In the task state, the betweenness 
centrality (Bc) in channel 4 and 8 for the PSD group was significantly 
smaller compared with the non-PSD group (p < 0.05) (Figure 5A). The 
nodal efficiency (Ne) in channel 7, 8, 9, and 11 for the PSD group was 
also significantly reduced compared with the non-PSD group (channel 
8 and 9, p < 0.05; channel 7 and 11, p < 0.01) (Figure 5C). In contrast 
to the above two metrics, the nodal clustering coefficient (NCp) of 
channel 4 and 11 (Figure 5B), and the nodal local efficiency (NLe) of 
channel 4 (Figure 5D) for the PSD group was significantly higher than 
that for the non-PSD group (p < 0.05).

Compared with the task state, the variation of the nodal metrics 
between the two groups in the restring state shows different patterns. 
Firstly, the betweenness centrality (Bc) showed no significant 
difference in either of the 14 channels. Instead, the degree centrality 
(Dc) of channel 10 for the PSD group was significantly lower 
compared with the non-PSD group (p < 0.05) (Figure 5E). Secondly, 
even though there were also significant differences of the nodal 
clustering coefficient (NCp), the nodal efficiency (Ne) and the nodal 
local efficiency (NLe) between the two groups, the channels that 

TABLE 1 Demographic and clinical information of subjects.

PSD Non-PSD p-value

Subject no. 19 18 –

Age (years) 65.8 ± 8.7 59.1 ± 13.6 0.077a

Gender (M/F) 13/6 15/3 0.447b

Education (≤6 years)d 2 0 0.486b

Time after onset (days) 81 (32.25–97.5) 67.5 (32–142) 0.682c

Manipulating hand (R/L) 12/7 8/10 0.330b

Stroke type (I/H) 15/4 11/7 0.295b

Lesion location (SC/C) 18/1 14/4 0.180b

MMSE score 23.1 ± 4.1 23.6 ± 4.8 0.707a

MoCA score 16.4 ± 5.5 18.6 ± 5.7 0.243a

HAMD score 15.0 (12.0–17.5) 2.5 (1.0–4.8) 0.001c

Values are presented as number of patients, mean ± SD, or median (Q1–Q3). 
I, ischemic; H, hemorrhagic; SC, subcortex; C, cortex. 
aT-test. bFisher’s exact test. cKruskal-Wallis rank sum test. dThe number of subjects with less 
than 6 years of education.

FIGURE 2

The connectivity showing significant differences between the PSD 
and the non-PSD groups in the resting (A) and the task (B) state, 
respectively.
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showed significant differences were different from the task state. 
Specifically, the nodal clustering coefficient (Figure 5F) and the nodal 

local efficiency (Figure 5H) of channel 1, 5, and 6 for the PSD group 
were significantly higher compared with the non-PSD group 

FIGURE 3

The average of the global metric hierarchy (A), assortativity (C), local efficiency (E) and global efficiency (G) for individual thresholds under the task 
condition across subjects. The shadow area represents the standard error. The comparison of the AUC of the metric hierarchy (B), assortativity (D), 
local efficiency (F), and global efficiency (H) between the PSD and the non-PSD group. The error bars represent the standard error. *p  <  0.05, **p  <  0.01.

FIGURE 4

The average of the small-world parameters including the clustering coefficients (Cp), (A), characteristic path length (C), Gamma (E), Lambda (G), and 
Sigma (I) for individual thresholds in the task state across subjects. The shadow area represents the standard error. The comparison of the AUC of the 
small-world parameters Cp (B), Lp (D), Gamma (F), Lambda (H), and Sigma (J) between the PSD and the non-PSD group. The error bars represent the 
standard error. *p  <  0.05.
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(p < 0.05), and the nodal efficiency (Figure 5G) of channel 3 and 10 for 
the PSD group was significantly reduced compared with the non-PSD 
group (p < 0.05).

3.3.3. Correlation with HAMD scores
In order to investigate whether the brain network characteristics 

can reflect the severity of depression that was quantified using the 
HAMD scale score, their correlation was analyzed in the task and the 
resting state, respectively. Specifically, the metric values and the 
HAMD score values from both the PSD and the non-PSD groups were 
combined into a single set. Then, the Spearman correlation was 
analyzed between the HAMD scores and the metric values. Figures 6, 
7 illustrate the metrics that had a significant (p < 0.05) correlation with 
the HAMD scores in the task and the resting state, respectively. In 
both states, the nodal local efficiency (NLe), nodal clustering 
coefficient (NCp) and local efficiency (Eloc) had a positive correlation 
with the HAMD score. On the contrary, the metric degree centrality 
(Dc) and nodal efficiency (Ne) had a negative correlation with the 
HAMD score.

3.4. Classification

In order to verify whether the brain network characteristics can 
serve as the biomarkers to help the diagnosis of PSD, all the 79 (9 
global metrics and 5 nodal metrics for each of 14 channels) metrics 
were used as the features to classify between the PSD and the non-PSD 
patients. Then, a feature dimension reduction procedure was 

performed based on the principal component analysis. The eightfold 
cross-validation was performed and the average classification accuracy 
was obtained across all folds. The cross-validation procedure was 
repeated 10 times and the resultant accuracy using the features in the 
resting and the task states are compared in Figure 8. On average, the 
features in the task state obtained an accuracy of 69.02% ± 3.35% while 
the features in the resting state only obtained an accuracy of 
43.94% ± 4.47%.

4. Discussion

In this study, in order to investigate the influence of PSD on the 
topology of the brain functional connectivity in stroke survivors, the 
fNIRS signals from the left and right DLPF cortex were collected for 
both the PSD and non-PSD subjects during the classic oddball 
cognitive task and analyzed using the graph theory. To the best of our 
knowledge, this is the first near-infrared brain function imaging study 
that targeted the brain network properties under the cognitive task 
instead of the resting state as previous studies for the PSD patients. 
Our results showed that compared with the resting state, the brain 
network properties were more distinct between the PSD and non-PSD 
patients in the task state, manifested as a larger number of connectivity 
and network metrics showing significant differences and a resultant 
better classification performance between the PSD and non-PSD 
patients. Specifically, in the cognitive task state, the major differences 
of the network topography for the PSD subjects compared with the 
non-PSD subjects included the decreased connectivity strength, the 

FIGURE 5

The channels (red balls) showing significant differences between the PSD and the non-PSD groups for the metric betweenness centrality (A), nodal 
clustering coefficient (B), nodal efficiency (C) and nodal local efficiency (D), respectively in the task state. The channels showing significant differences 
between the PSD and the non-PSD groups for the metric degree centrality (E), nodal clustering coefficient (F), nodal efficiency (G) and nodal local 
efficiency (H), respectively in the resting state.
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FIGURE 6

The results of the correlation analysis between the brain network characteristics and the HADM scores in the task state.

FIGURE 7

The results of the correlation analysis between the brain network characteristics and the HADM scores in the resting state.
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reduced hierarchy (b), efficiency (Eg, Ne) and betweenness centrality 
(Bc), and the increased assortativity (r), local efficiency (Eloc, NLe), 
clustering coefficient (Cp, NCp), characteristic path length (Lp) and 
Lambda in the small-world property, which indicated the reduced 
ability of the brain network to resist attacks and transmit information, 
and the enhanced network flexibility. Further correlation analysis 
showed that some of the brain network characteristics extracted from 
the task state were significantly correlated with the HAMD scores. 
More importantly, a better classification performance can be obtained 
using the network characteristics in the task state (69.02 ± 3.35%) as 
features compared with the resting state (43.94 ± 4.47%), indicating 
the superiority of the brain network topography in the task state to 
distinguish between PSD and non-PSD patients. These findings 
demonstrated that the brain network properties based on the graph 
theory under the cognitive task might provide new insights into our 
understanding of PSD and new methods for the diagnosis of PSD.

Ho et  al. (2015) investigated the DMN of patients with severe 
depression in the resting state and found that the functional connectivity 
between the medial prefrontal cortex and both the precuneus and the 
cingulate gyrus were enhanced. Moreover, for the patients with PSD in 
the chronic phase, researchers found that the functional connectivity in 
the prefrontal cortex (PFC) including the left ventromedial PFC (Zhu 
et al., 2012; Li et al., 2013), bilateral dorsomedial PFC (Zhu et al., 2012; 
Li et al., 2013) and dorsolateral PFC (Li et al., 2017) increased in the 
resting state. Our results showed that the brain functional connectivity 
in the left DLPF cortex was enhanced in the PSD patients compared 
with the non-PSD patients in the resting state, which is consistent with 
previous studies. Moreover, we found that the differences in connectivity 
were more pronounced in the task state than in the resting state, which 
is consistent with the findings of Gonzalez-Castillo and Bandettini 
(2018) that the differences of the functional connectivity between the 
resting and task states are broadly distributed in the whole brain. 
However, unlike the increased connectivity strength in the resting state, 
the connectivity strength decreased in the DLPF cortex for the PSD 
patients in the task state. These results indicated that the PSD patients 
possibly had weakened capabilities for information transmission 
between brain regions when performing cognitive tasks, which may 
be related to the decline of their cognitive function.

At present, there is no unified conclusions on the brain network 
characteristics of depression. Zhang et al. (2018) investigated the brain 
network properties using the resting-state electroencephalogram 
(EEG) and found that compared with the healthy controls, patients 
with depression had a lower clustering coefficient and characteristic 
path length, and a higher global efficiency. In contrast, Meng et al. 
(2014) using the resting-state fMRI, found that compared with the 
healthy individuals, the global efficiency at the whole brain level of the 
depression patients was reduced, while the characteristic path length 
was increased. The inconsistence might be caused by the fact that the 
EEG and fMRI signals reflect the different aspects of the brain 
activities due to their distinct time resolutions. In this study, we found 
that the clustering coefficient (Cp, NCp), the characteristic path length 
(Lp), and the Lambda of the PSD patients were significantly higher 
compared with the non-PSD patients. Meng et al. (2014) found the 
same changing pattern of these characteristics as ours. However, the 
difference in Meng’s study was not significant. The possible reason was 
that the brain network characteristics were obtained in the task state 
instead of the resting state, which made the differences more obvious. 
It may also be cause by the fact that our research subjects were patients 
with PSD rather than pure depression patients. In addition, we found 
that the PSD patients had a higher assortative coefficient (r) and local 
efficiency (Eloc, NLe). Since the Sigma values were all larger than one 
for both the PSD and non-PSD patients in the task state (Figure 4I), it 
can be concluded that the brain network of both groups had small-
world properties. This is consistent with the previous study that the 
brain network of both the depression and the healthy controls have 
the small-world properties (Meng et al., 2014). However, based on the 
variation trend of the network characteristics in the PSD patients 
compared with the non-PSD patients, the ability of the brain network 
in the PSD patients to resist attacks and integrate and transmit 
information was reduced. The assortativity coefficient ranging from 
−1 to 1 can be used to measure the network resilience (Newman, 
2002). The networks with a positive assortativity coefficient are 
therefore likely to have a comparatively resilient core of mutually 
interconnected high-degree hubs (Rubinov and Sporns, 2010). If 
network nodes are removed from such a network or “attacked,” the 
entire network is more likely to be destroyed. That is, the nodes in the 
network with a high assortativity are more closely connected, and are 
more vulnerable to attacks. In this study, the PSD group has a larger 
assortativity coefficient, which might be  one of the bases for the 
neuropathological damage in PSD patients. The resultant inefficient 
transmission of information might be another neural pathogeneses of 
depression. The higher clustering coefficient and local efficiency 
reflected the enhanced local interconnectivity of the network in the 
PSD patients, which provided flexibility for network disruption. This 
topological feature may be related to the compensation mechanism of 
the brain in the PSD patients. Besides, the betweenness centrality and 
degree centrality of the PSD patients were lower than those of the 
non-PSD group, indicating that the centralization degree of the PSD 
patients was low. For the other three nodal network characteristics 
(NCp, NLe and Ne), the variation trend of the PSD patients compared 
with the non-PSD patients was the same between the resting and the 
task state. However, the channels with significant differences 
were different.

The correlation between the brain network characteristics and the 
HAMD scale scores was consistent in the resting and task states. That 
is the local efficiency (Eloc, NLe) and the clustering coefficient (NCp) 

FIGURE 8

The comparison of the classification performance using the features 
extracted from the task state and the resting state.
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was positively correlated with the HAMD score, and the global 
efficiency (Ne) and the degree centrality (Dc) had a negative 
correlation with the HAMD scores. These significant correlations 
indicated that the brain network characteristics can reflect the severity 
of PSD to some degree.

Basically speaking, the diagnosis of a disease is to identify or 
classify between positive and negative individuals using some 
biomarkers. Although potential biomarkers of a disease are often 
statistically significant at the population level, the discriminatory 
power at the individual level is often not assessed (Arbabshirani et al., 
2017). In general, it is much easier to show group differences than the 
predictions of individual subjects, and highly significant group 
differences do not always equal to a satisfactory classification 
performance. Therefore, in the study, we used the machine learning 
methods to classify between the PSD and non-PSD patients, and 
compared the diagnostic accuracy using the extracted brain network 
characteristics in the resting and task states. Our results showed that 
the classification accuracy reached 69.02% ± 3.35% when using the 
network characteristics in the task state. This performance was 
comparable to the average accuracy of the resting-state functional 
connectivity research to predict other neuropsychiatric diseases 
(Arbabshirani et  al., 2017). As a contrast, even though the same 
number of brain network characteristics in the resting state was used, 
the classification accuracy was only 43.94% ± 4.47%. The results further 
demonstrated that the brain network properties in the task state can 
be used as the potential biomarker for the diagnosis of PSD. Even 
though the functional brain network analysis is not currently used for 
diagnosis of disease, it enables us to understand the functional 
connectivity of human brain from the perspective of network, and the 
complex network theory reveals many important topological properties 
of human brain structures. Brain diseases can lead to the changes in the 
topology of brain functional networks. With the development of 
research methods and theories, some scholars believe that functional 
brain network analysis can help assist the early diagnosis of mental 
diseases (Wang et al., 2021). For example, Drysdale et al. analyzed the 
changes of brain functional network connectivity patterns in patients 
with depression and divided depression into four subtypes (Drysdale 
et  al., 2017). More recently, a review stated that functional brain 
network imaging has been able to facilitate early diagnosis and assist in 
monitoring disease progression and treatment outcomes for individual 
patients (Matej Perovnik et al., 2023). Therefore, it is reasonable to 
predict that the brain functional network analysis can potentially help 
with the early diagnosis of brain diseases in the near future.

In this study, there were no significant differences in the age, 
gender, time after onset, education level, stroke type, lesion location, 
MMSE, and MoCA scores between the two groups, which 
demonstrated the homogeneity between the two groups and therefore 
improved the reliability of our conclusions. Although the two groups 
of stroke patients showed the similar degrees of brain injury, the 
non-PSD patients did not show the depression symptoms. This 
suggests that the brain injury degree may not be the determinant in 
the pathogenesis of PSD. Instead, other factors might be  of more 
significance, which is consistent with recent studies (Gong and He, 
2015). A recent systematic review and meta-analysis (Lu Liu et al., 
2023) showed that the pooled prevalence of PSD is 27% (95% CI 
25–30) at any time point after stroke, and stroke survivors with early-
onset depression (within 3 months after stroke) are at high risks for 
remaining depressed and make up two-thirds of the incident cases 

during 1 year after stroke. Therefore, the inclusion criteria in this study 
were set to 1–12 months after stroke onset. However, the poststroke 
time of the recruited subjects in the end was 32.25–97.5 (Q1–Q3) days 
(Table 1) for the PSD subjects. This was consistent with the study 
showing that the pooled cumulative incidence within 1 year was 38% 
(95% CI 33–43), and the majority [71% (95% CI 65–76)] of cases of 
depression had onset during the first 3 months after stroke (Lu Liu 
et  al., 2023). Although different clinical studies have shown the 
complexity of PSD prevalence and distinct trajectories of PSD for 
individuals, there are no studies ever tracking the brain network 
properties longitudinally for individual PSD patients. This might help 
improve our understanding of the underlying pathogenesis of PSD 
and would be conducted in our further study.

There were several limitations in this study. Firstly, the fNIRS signals 
were only collected from the dorsolateral prefrontal cortex. Although the 
dorsolateral prefrontal cortex is the most investigated brain area for PSD, 
the ventromedial prefrontal cortex, anterior cingulate gyrus, posterior 
cingulate gyrus/precuneus, amygdala, caudate nucleus, hippocampus, 
and other regions are also associated with depression. Secondly, the 
classification of patients in terms of lesion location is relatively rough 
with only two groups, i.e., lesion in cortex or subcortex. Futures studies 
will recruit more stroke survivors with different lesion locations and 
investigate the brain network properties at the whole brain level in the 
task state, in order to further explore the possible neural mechanism of 
PSD in terms of altered brain network properties.

5. Conclusion

In this study, the brain network characteristics of PSD patients in 
both the cognitive task and the resting state were extracted using the 
fNIRS signals and compared with the network characteristics of 
non-PSD patients. The results showed that the differences of the 
network characteristics between the PSD and non-PSD patients were 
more distinct in the task state rather than the resting state. The altered 
brain network properties of the PSD patients demonstrated the 
reduced ability of the brain network to resist attacks and transmit 
information, and the enhanced network flexibility. The results of the 
classification between PSD and non-PSD patients further 
demonstrated the superiority of the network characteristics extracted 
in the task state on revealing the altered topography of the brain 
functional connectivity due to PSD. These findings demonstrated the 
feasibility and superiority of the brain network topography in the task 
state to explore the neural mechanism of PSD, which provides new 
insights into our understanding of PSD and new methods for the 
diagnosis of PSD.
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