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The synchronization of multiple oscillators serves as the central mechanism

for maintaining stable circadian rhythms in physiology and behavior. Aging

and disease can disrupt synchronization, leading to changes in the periodicity

of circadian activities. While our understanding of the circadian clock under

synchronization has advanced significantly, less is known about its behavior

outside synchronization, which can also fall within a predictable domain. These

states not only impact the stability of the rhythms but also modulate the period

length. In C57BL/6 mice, aging, diseases, and removal of peripheral circadian

oscillators often result in lengthened behavioral circadian periods. Here, we

show that these changes can be explained by a surprisingly simple mathematical

relationship: the frequency is the reciprocal of the period, and its distribution

becomes skewed when the period distribution is symmetric. The synchronized

frequency of a population in the skewed distribution and the macroscopic

frequency of combined oscillators di�er, accounting for some of the atypical

circadian period outputs observed in networks without synchronization. Building

on this finding, we investigate the dynamics of circadian outputs in the context of

aging and disease, where synchronization is weakened.

KEYWORDS

unsynchronized states, period-frequency relation, circadian rhythms, frequency
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Introduction

Animals innately follow a near-24-h cycle of rest and activity, known as the circadian

rhythm, which prepares them for daily environmental changes. The endogenous rhythm

in behavioral activities is maintained with remarkable precision under constant darkness,

exhibiting robust periodicity over months and minimal cycle-to-cycle variation in activity

phase (Pittendrigh and Daan, 1976a; Schwartz and Zimmerman, 1990). In mammals, the

suprachiasmatic nucleus (SCN) serves as the central clock, orchestrating both behavioral

circadian rhythms and physiological rhythms throughout the body. The SCN is a network

of circadian oscillators, with single neurons and glial cells as the cellular identities, that
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maintain rhythmic expressions of circadian clock molecules

through the transcription-translation feedback loop (TTFL).

The oscillation within a single cell is both autonomous

and persistent, yet displays a variation in period across the

population (Leise et al., 2012). These oscillators couple within the

network to generate a synchronized oscillation, reducing period

heterogeneity and facilitating high temporal precision for the

circadian clock output at the organismal level (Herzog et al.,

2004). The synchronization is the essential mechanism of the SCN

network that transforms diverse period, phase, and amplitude

of individual oscillators into predictable and coherent outputs.

However, biological systems often operate in the metastable state

between complete synchronization and desynchronization (Kelso,

1995). This is sometimes due to the functional needs, such as

the internal representation of seasonal time within the SCN

(Pittendrigh and Daan, 1976b; Myung et al., 2015; Schmal, 2023),

but it can also be due to degradation of the network through aging

and disruptive timing cues such as constant light (Ohta et al., 2005;

Farajnia et al., 2012).

Aging is known to cause changes in the period of circadian

locomotor activity (Pittendrigh and Daan, 1974). In the widely

studied laboratory mouse strain C57BL, circadian activities persist

through aging, with periods typically lengthening with increasing

age (Davis and Menaker, 1981; Welsh et al., 1986; Possidente

et al., 1995; Valentinuzzi et al., 1997). Depending on the strain

and entrainment history, periods can also shorten (Pittendrigh

and Daan, 1976a). Chronic illnesses often lead to changes in

circadian periodicity, which can result in sleep disturbances, as

seen in diseases like Alzheimer’s or Huntington’s (Witting et al.,

1990; Aziz et al., 2010). Disruptions in circadian gene expression

have been observed in animal models of chronic kidney disease

(CKD) (Hsu et al., 2012). This disruption causes instability in

circadian activity when in constant darkness (Myung et al.,

2019). Furthermore, disturbances in circadian rhythm have been

identified in conditions such as acute respiratory failure (ARF)

(Yang et al., 2020) and chronic pulmonary disease (COPD) (Giri

et al., 2022). In critically ill patients, there have been reports

of misalignment in internal circadian rhythms (Felten et al.,

2023).

Yet, within the widely recognized Kuramoto model for

synchronization, explaining these changes in period remains a

challenge (Acebrón et al., 2005). Emerging evidence suggests a

correlation between the period and amplitude (Myung et al.,

2018; del Olmo et al., 2023). As synchronization increases, so

does the circadian amplitude of a clock ensemble (Schmal et al.,

2018). Oscillators achieving synchronization is fundamentally

about aligning their frequencies. In systems with a finite number

of oscillators, it has been numerically shown that skewness in the

frequency distribution can eventually alter the mean frequency

of macroscopic ensemble oscillations (Peter and Pikovsky, 2018).

Given the reciprocal relationship between period and frequency,

we note that a symmetric period distribution, such as Gaussian,

results in a skewed frequency distribution. This skewness can

influence the mean period of an oscillator ensemble, particularly

when the standard deviation of the period distribution is large.

This may provide additional insight into the changes of circadian

period under weak synchronization observed in aging and

disease conditions.

Results

Skewed frequency distribution: mean,
median, and the mode

A circadian oscillator within a single cell emerges from

nonlinear molecular feedback networks that contain ultrasensitive

response motifs (Zhang et al., 2013). The oscillatory trajectory is

believed to follow a stable limit cycle, allowing the oscillation in the

phase space to be mapped onto a unit circle. This property enables

the reduction of the nonlinear oscillator to a phase oscillator

which, in turn, facilitates the investigation of collective behavior of

multiple oscillators (Winfree, 1980). The temporal evolution of a

circadian oscillator at phase θ with constant frequency f (where

f is the reciprocal of the intrinsic period, τ ) can be described

by a differential equation dθ /dt = 2π f = 2π /τ . The Kuramoto

model extends this framework by introducing a coupling term

with a sine of the phase difference (Acebrón et al., 2005). At

least for a certain class of oscillators with a particular type of

phase response curve (PRC), this provides a concise formalism for

describing the synchronization behavior amongmultiple oscillators

under various coupling scenarios (Myung and Pauls, 2018). Under

the assumption of a symmetric distribution of the individual

oscillator frequencies, the model predicts that the frequency of the

synchronized ensemble is determined by the average frequency of

the population, which appears true for the SCN (Liu et al., 1997).

The periods of circadian firing rates in dissociated single SCN

neurons show Gaussian distribution in both rats and C57BL/6J

mice (Honma et al., 2004, 2012). For the mean period τ 0 and

standard deviation σ , the Gaussian probability density function p is

p(τ ) =
1

√
2πσ 2

e−(τ−τ0)
2/2σ 2

(1)

which satisfies
∫

dτp(τ )=1 .

By change of variables, the probability density function for the

frequency f can be written as

q(f ) =
1

√
2πσ 2f 2

e−(1/f−τ0)
2/2σ 2

(2)

which has a singularity at f = 0.

The reciprocal transformation maps shorter periods to a

wider range on the higher frequency side, resulting in a skewed

distribution with a peak (mode) shifted to the lower frequency side

(Figures 1A, B). The 1/f 2 term in the equation (2) implies this shift,

which gives higher weight to the lower frequency side. Due to the

singularity, there is no simple closed-form solution for the mean

<f> but via the Dawson function F,

〈f 〉 =
√
2

σ
F

(

τ0√
2σ

)

≈
1

τ0
+

σ 2

τ 30
+

3σ 4

τ 50
+· · · . (3)

Since we are interested in the regime σ ≪ τ 0, the reciprocal of the

mean frequency approximates to

1/〈f 〉 ≈ τ0 −
σ 2

τ0
. (4)

This provides a good approximation compared to the mean

values of the randomly generated populations (Figure 1C) when
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FIGURE 1

A symmetric period distribution corresponds to a right-skewed frequency distribution. (A) The reciprocal function connects period (τ ) and frequency

(1/τ ). In a symmetric period distribution with a 24-h mean, shorter periods correspond to a broader frequency range (a), while longer periods

correspond to a narrower range (b). This results in a right-skewed frequency distribution. (B) The skewness of the frequency distribution increases as

the standard deviation σ of the symmetric period distribution increases. (C) The inverse of the mean frequency <1/τ> shows a quadratic decrease as

the standard deviation σ increases. (D) In the skewed frequency distribution, the mode (ωm; red) leans toward lower frequencies (longer periods),

while the mean (ω0; blue) leans toward higher frequencies (shorter periods), compared to 1/24h, the inverse of the mean period. Upon oscillator

coupling, synchronization occurs at the mean frequency, distinct from the inverse of the mean period.

standard deviations are small. It ensures that, for nonzero σ , the

reciprocal of the mean frequency is shorter than the mean period

τ 0. This effect becomes more pronounced as σ increases. The

reciprocal of the median frequency is approximately τ 0 and can

be found at the half-maximal point of the cumulative probability

distribution. The reciprocal of the mode frequency, found where

q’(τ )=0, is longer than τ 0. In the regime where σ ≪ τ 0 it

approximates to

1/fmode ≈ τ0 +
2σ 2

τ0
. (5)

Therefore, the reciprocal of the mean frequency is the shortest,

followed by the reciprocal of the median frequency, and then by the

reciprocal of the mode frequency when the frequency distribution

is skewed (Figure 1D). As we show later, the macroscopic period

resulting from the summation of uncoupled oscillators is longer

than the average of the intrinsic periods. In contrast, the

reciprocal of the synchronization frequency of coupled oscillators

corresponds to that of the mean frequency, as predicted by the

Kuramoto model (Saha and Amritkar, 2014; Peter and Pikovsky,

2018).

Macroscopic period of uncoupled
oscillators

We begin with an extreme case of a collection of oscillators

with a given frequency distribution that are uncoupled but start

oscillation at the synchronized state. Then, their macroscopic

oscillation is the result of integrating each oscillator multiplied by

its probability density as

I =
∫

dτe−(τ−τ0)
2/2σ 2

· e2π it/τ . (6)

However, this integration is not straightforward for the period

distribution because the period τ appears in the denominator,

leading to a singularity. We can find an approximate expression

for small σ ≪ τ 0 using the steepest descent method (see Materials

and Methods).

I ≈
1

√
2πσ 2

exp

[

2π i

τ0
t −

2π2σ 2

τ 40
t2 −

8π3σ 4i

τ 70
t3

]

(7)

Therefore, with higher σ , the macroscopic oscillation I damps

while its period increases. If their frequencies, not periods, were

from a Gaussian distribution, we would still see dampening, but
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FIGURE 2

The macroscopic oscillation period is longer than the mean of individual oscillator periods. (A) The macroscopic oscillation represents the

whole-field average of all individual oscillators (inset). The numerical integration of all oscillators over a continuous distribution results in a damped

macroscopic oscillation with an increasing period, as indicated by each arrowhead marking peak positions (middle). The integral has an

approximation in closed form that also shows an increasing period (bottom). (B) As the standard deviation of the period distribution increases, there

is a corresponding increase in the macroscopic period. For smaller standard deviations, the analytic approximation (line) aligns closely with the

numerical averages (small dots). (C) The root mean square (RMS) amplitude decreases with an increasing standard deviation, in an inverse

relationship. The approximation (line) closely predicts the numerical averages (small dots).

the period would remain the same. This result is confirmed by

numerical integration compared to the approximation (Eq. 7)

(Figure 2A). Both the period of I (the macroscopic period) and the

root mean square (RMS; square root of mean of squared values)

as collective amplitude of I align well with the approximation

(Figures 2B, C).

Synchronization period through increased
coupling

In the other case, increasing coupling drives oscillators toward

synchronized oscillation with the mean frequency. On its course,

the discrepancy between the macroscopic period and the mean

period in the distribution of individual oscillators narrows. With

the coupling strength K, the evolution of phase θi in each oscillator

is described by the following equation:

dθi

dt
=

2π

τi
+

K

N

N
∑

j

sin(θj − θi) (8)

We generated 30 simulated networks, each consisting of 300

oscillators with a Gaussian period distribution (σ = 4 h). When the

coupling strength (K) is below the critical level, the macroscopic

period tends to be longer than the mean period on average, and

this can be accurately predicted by the reciprocal of the mode

frequency (Figure 3A, red). However, as K exceeds the critical

level (approximately 0.1 in this case), synchronization occurs at a

period shorter than the median (24 h). The reciprocal of the mean

frequency provides a good estimate of the synchronized frequency

for the given period distribution (Figure 3A, blue).

We present the simulation results for all 30 networks in

Figure 3B. The Kuramoto order parameter R indicates the degree

of synchronization of the oscillators at each level of K. Notably,

R evolves into a stable orbit, even when R is below 1 (Figure 3B,

inset). We note that the RMS amplitude serves as a good indicator

of R, reflecting the switch-like characteristic of R with respect

to K. In the absence of coupling, the macroscopic period of I

can vary, but both the macroscopic period and the mean period

converge toward a shorter period, as we have described. This

results in an inverse correlation between the average period and

the RMS amplitude (Figure 3C), a relationship reminiscent of

the twist relationship observed in the choroid plexus (Myung

et al., 2018). This relationship effectively captures the broader

impacts of synchronization, given that R is proportional to the

RMS amplitude.

Discussion

It is plausible that, within the mammalian circadian

system, coupling and the resulting synchronization are integral

components of its design. Most discussions on synchronization
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FIGURE 3

Changes in macroscopic circadian parameters under network coupling. (A) The mean of individual oscillator periods (inset), estimated by FFT (blue

datapoints), di�ers from the macroscopic oscillation period (red datapoints). At a low coupling constant K, the mean of individual oscillator periods

(24h, dashed line) follows the inverse of the mean frequency, in contrast with the macroscopic period of the mean oscillation. As network coupling

strengthens, these two estimates of periods converge (left panel). The error bars represent the standard deviation across 30 simulated networks.

When coupling falls below a critical level for synchronization, the mode of the frequency distribution predicts the macroscopic period, while the

mean of the frequency distribution predicts the mean of individual periods (right panel). The periods of 300 individual oscillators are randomly

selected from 30 normal distributions with a standard deviation of 4 h. (B) Synchronization emerges in a switch-like fashion with increasing coupling

strength. The collective phase evolves over time under each coupling condition but settles into a collective amplitude R, known as the Kuramoto

order parameter (top), and the RMS amplitude of the macroscopic oscillation closely follows R (second from top). The macroscopic period is variable

when the coupling is below a critical level (third from top), while the mean of individual oscillator periods is less variable (bottom). Both estimates of

periods converge to a period shorter than the mean period in the original period distribution. (C) The order parameter R shows a strong correlation

with the RMS amplitude (correlation coe�cient = 0.996 ± 0.002 for 30 network simulations) (left panel). A generally negative relationship is observed

between the macroscopic period and the RMS amplitude (correlation coe�cient = −0.770 ± 0.313 for 30 network simulations) (mid panel), while the

mean of oscillator periods exhibits a perfect negative correlation (-0.997 ± 0.002 for 30 network simulations) (right panel).

assume a Gaussian distribution of periods, where synchronization

occurs at the mean period. However, the formalism of the

Kuramoto model predicts that synchronization is achieved at the

mean frequency. This distinction might seem subtle but could

carry significant implications.

The effects of the skewed frequency distribution due to

period variance that we explored are for σ = 4 h. Data on

the electrical firing rate and the bioluminescent clock gene

reporter activity from dissociated single SCN neurons show

a standard deviation of <2 h (Herzog et al., 2004; Honma

et al., 2004, 2012). This amounts to <10% difference between

the mean and median frequencies. This difference diminishes

as the synchronization tightens the distribution (Figure 1D).

When the system is coupled below the critical level, the

effects of a skewed frequency distribution become apparent in

externally observable states of period and amplitude. Specifically,

the period systematically deviates from the mean period.

Our analytical and numerical approach provides insights into

these deviations.

The effect described above is closely related to another issue in

chronobiology, namely the skewed Arnold tongue when presented

in terms of period instead of frequency (Schmal et al., 2015,

2020). The simplest form of synchronization, commonly referred

to as entrainment, is the unidirectional synchronization of an

internal clock to an external Zeitgeber signal, such as rhythmic

light or temperature cues. Entrainment typically occurs within

a wedge-shaped entrainment region within the Zeitgeber period

(T) and Zeitgeber strength (K) parameter plane that broadens for

large Zeitgeber strength and tapers toward the intrinsic period

(τ ) for decreasing strength K. Since the information of the

Zeitgeber signal typically enters the underlying system’s equations

via the frequency, the reciprocal relationship between frequency

and period leads to an asymmetric entrainment region in the

period domain. This has implications for circadian physiology
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FIGURE 4

Simulated test of synchronization-induced amplitude and period alterations at the whole-animal level in aging and disease conditions. (A)

Throughout development and aging, the coupling of the circadian clock network is hypothesized to increase and mature at the end of the perinatal

stage, then gradually decrease until senescence (top panel). The synchronization of circadian clocks, quantified by the order parameter R, shows a

discrete transition of states (second from top). These two are internal states that cannot be directly observed. The externally observable circadian

rhythms alter according to the state of synchronization. The amplitude of circadian activity correlates positively with the synchronization state (third

from top). The datapoints in di�erent colors represent simulated data from 30 di�erent networks, each composed of 300 oscillators randomly

selected from period distributions with a standard deviation of 4 h. The period generally correlates negatively with the synchronization state, with less

variation in the mean period (blue, fourth from top) than in the macroscopic period (red, bottom panel). The error bars indicate the standard

deviation across 30 networks. (B) Under abrupt changes in coupling strength, which can occur during acute disease conditions (top panel), the

degree of synchronization gradually decreases during the transition (second from top). This transitional change is reflected in the RMS amplitude of

circadian activity (third from top). The mean of all oscillator periods slightly increases during the abrupt drop in coupling (fourth from top), while the

macroscopic period changes drastically during the same drop in coupling (bottom). The periods indicated are evaluated from a 5-day sliding window

FFT. The datapoints in pale blue and light orange colors represent results from simulations of three networks each, derived from two distributions

with standard deviations of 2 and 4h, respectively.

as it could directly translate into asymmetric distributions

of chronotypes.

In a broader biological context, our findings have potential

implications for both development and disease. It is believed

that the coupling within the circadian clock network changes

throughout development (Olejniczak et al., 2023). Around the

time of birth, the circadian period displays wide variations across

species (Rivkees, 2003; Yamazaki et al., 2005; Bellavia et al., 2006),

a phenomenon potentially explained by the lack of coupling

(Weinert and Weiß, 1997). As aging progresses, the clock network

is thought to deteriorate (Farajnia et al., 2014). Thus, the network

coupling, established during embryonic and perinatal stages,

might peak and then gradually decline throughout mature and

senescent stages (Figure 4A, upper, “Internal states”). Although

this deterioration is gradual, the switch-like relationship between

coupling strength (K) and synchronization (R) implies that R

will remain stable as long as K stays above a critical level. As

senescence begins and coupling weakens, there may be stage-

specific alterations in circadian amplitude and periods (Figure 4A,

lower, “External states”). In humans, these senescence-related

changes are evident among Alzheimer’s disease (AD) patients, with

low circadian activity amplitude and delayed acrophase (Satlin

et al., 1995).

Similarly, a sudden illness will not have immediate effects on

the circadian rhythm since the underlying oscillators have already

been well synchronized, and they require time to gradually fall

into desynchronization (Myung et al., 2012). Even if an illness

were to completely disrupt the coupling, the RMS amplitude
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would decay gradually and the mean period would remain initially

unaffected (Figure 4B). However, over time the macroscopic period

will experience significant fluctuations, a phenomenon consistent

with the unstable circadian period observed in chronic illnesses,

such as CKD (Myung et al., 2019). A significant alteration in

circadian period is also observed in AD (Volicer et al., 2012).

There is a question concerning the interpretation of the

macroscopic period (τmacro) compared to the mean internal period

(τ 0). This question ties into a longstanding debate within SCN

physiology regarding the preferred extracellular signal pathway:

diffusive signaling (also known as volume transmission) vs.

synaptic signaling (also known as wiring transmission) (Moore,

2013). The macroscopic period is estimated from the average

oscillation of the entire ensemble. In the bioluminescent reporter

system, this value corresponds to the whole-field luminometry

data from a culture dish. The signal through volume transmission

would carry information of the macroscopic period as it is the

average of the entire ensemble output. In contrast, the mean

internal period is calculated as the average period of each individual

cellular oscillator, as determined from imaging data. From a distant

tissue receiving the circadian signal through volume transmission,

the detailed individual activities are unknown. Synaptic signaling

originates from individual neurons, and therefore, individual

periods can be accessed. In this context, the macroscopic period

corresponds to the period observed in volume transmission, while

the mean internal period can be evaluated through synaptic

signaling. The circadian amplitude of volume transmission reflects

the RMS amplitude of the clock assembly I, whereas the

amplitude of wiring transmission reflects the order parameter

R. These two are comparable, as seen in Figure 3. However,

the variation of period at low coupling strength is much larger

in the volume transmission (as reflected by the macroscopic

period) than in the synaptic transmission (reflected by the

mean internal period). At least for the circadian locomotor

outputs, the macroscopic period from our simulation seems to

better represent realistic observations, where the diffusible clock

signals originate in the SCN (LeSauter and Silver, 1998) and

propagate through cerebrospinal fluid irrigation (Leak and Moore,

2012).

In this study, we demonstrated that synchronization can

influence the observed period of an ensemble. One potential

application is assessing the synchronization state of the cell

population by examining the macroscopic period of total

reporter activities from cultured cells or tissues. The degree of

synchronization can vary due to factors such as development, the

level of integration within a tissue, or pathological conditions.

Therefore, synchronization can serve as a qualitative indicator

of these states, which can be gauged by the macroscopic

period and/or period distribution. In principle, it is possible to

evaluate the phenotype of an in vitro culture reflecting these

states (Kumpošt et al., 2021). Although obtaining an exact

measure of synchronization might be challenging, as indicated

in Figure 4A, the macroscopic period can provide insights into

developmental maturation, cellular interactions, or even the

pathological phenotype of cellular ensembles modeling a disease.

This becomes particularly relevant when individual periods are

not directly accessible. Since synchronization can influence the

macroscopic period, such determinations can be made solely by

observing this period. This approach can be especially valuable in

studies, for example, of spheroids.

Although the coupling strength may not be directly measurable

in a given individual, our study suggests that other observable

features could indicate decreased coupling. For instance, a decrease

in amplitude of activities and core temperature can signal a loss

of synchrony and/or coupling. It is also conceivable that the

changes in the circadian period caused by decreased coupling could

lead to a desynchronization of behavioral organization within the

same individual, such as timings of eating and motor behaviors.

These potential indicators could be used to evaluate the loss of

internal synchrony or coupling, which could in turn inform the

development of personalized chronotherapies, an approach that has

yet to demonstrate significant benefits (Lee et al., 2021).

It is interesting to note that in our schematic simulation over

the course of life, the critical coupling level to enter or exit the

stable period would be crossed twice. However, the components

of the network can change through aging (Farajnia et al., 2014),

and it is unclear whether the critical coupling strength at these two

points corresponds to the same value. It would also be important

to note that the environmental factors can affect differently toward

synchronization at these two points of development. These factors

can be systemic, given that other peripheral clocks can influence the

pacing of the master clock (Myung et al., 2018, 2019; Chrobok et al.,

2022). Therefore, it would be valuable to investigate what other

factors, in conjunction with the local network coupling, determine

the fate of synchrony.

Materials and methods

Approximate mean period of the skewed
frequency distribution

If the period follows a Gaussian distribution with mean τ 0, and

variance σ 2, a generating function can be defined as follows.

Z[ω] =
∫

dτ
√
2πσ 2

e−(τ−τ0)
2/2σ 2+ωτ .

Then Z[ω] satisfies

∫

dτ p(τ ) = Z[ω = 0] = 1

〈τ 〉 = ∂ωZ[ω = 0] = τ0

〈τ 2〉 = ∂2ωZ[ω = 0] = τ 20 + σ 2.

Here we define another function

Y[ω] =
∫

dτ
√
2πσ 2

·
1

τ
· e−(τ−τ0)

2/2σ 2+ωτ ,

such that ∂ωY[ω]=Z[ω] .

By direct integration, we get

Z[ω] = exp

[

−
τ0

2σ 2
+

σ 2

2
(ω + τ0/σ

2)2
]

.

Using this,

Y[ω] =
∫

dω Z[ω] =
√
2

σ
eτ0ω+

σ2ω2

2 F

(

τ0 + σ 2ω
√
2σ

)

+ C ,
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where F is the Dawson function. C = 0 will become evident

later. Then,

〈

1

τ

〉

= Y[0] =
√
2

σ
F

(

τ0√
2σ

)

.

which gives equation (3).

Approximate expression for the
macroscopic oscillator I

We use the steepest descent method for approximation

(Strogatz, 2014). Equation (6) can be re-written for simplification

such that

I =
∫

dτ e−L(τ )/2σ 2

where

L(τ ) = (τ − τ0)
2 − 2iασ 2τ−1, α = 2π t

We find the stationary point by L’(τ )= 0 and therefore,

L′(τ )/2 = (τ − τ0)
2 + iασ 2τ−2 = 0

If we assume that the solution is τ = τ 0 + δτ where δτ /τ 0 ≪ 1,

L′(τ0 + δτ )/2 = δτ + iασ 2τ−2
0

(

1+
δτ

τ0

)−2

.

This leads to the approximation

(1− 2iβ)

(

δτ

τ0

)

≈ −iβ ,

where β = ασ 2τ−3
0 = 2πσ 2τ−3

0 t is dimensionless. Since we can

regard 0 ≤ t ≤ τ 0, we have 0 ≤ β ≤ 2πσ 2τ−2
0 . Therefore, β ≪ 1 if

σ 2 ≪ τ 20/2π . Then,

δτ

τ0
≈ −

iβ

1− 2iβ
.

With a little algebra, we obtain

L(τ0 + δτ )/τ 20 ≈ (δτ/τ0)
2 − 2iβ(1+ δτ/τ0)

−1

≈ −2iβ + β2 + 2iβ3 − · · · .

Therefore,

I =
∫

dτ e−L(τ )/2σ 2
=

∫

du e−L(τ0+δτ+u)/2σ 2

which approximates to

I ≈
∫

du e−u2/2σ 2−(−2iβ+β2+2iβ3)τ 20 /2σ 2

and gives the expression in equation (7).

Numerical simulations

All numerical simulations were performed using Mathematica

13 (Wolfram Research, Champaign, IL). 30 sets of periods of 300

oscillators were generated from a Gaussian distribution at mean

24 h and various standard deviations (mostly 4 h for Figures 3, 4)

at different random seeds. Simulation was performed for the 30

circadian cycles (corresponding to 30 days). Estimation of period

from these simulated oscillators were performed using fast Fourier

transform after discretization into 15-min sampling interval as

introduced earlier (Myung et al., 2012). The order parameter was

estimated at the end of the simulation duration.
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