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Efficient and reliable transportation of goods through trucks is crucial for road 
logistics. However, the overloading of trucks poses serious challenges to road 
infrastructure and traffic safety. Detecting and preventing truck overloading 
is of utmost importance for maintaining road conditions and ensuring the 
safety of both road users and goods transported. This paper introduces a novel 
method for detecting truck overloading. The method utilizes the improved 
MMAL-Net for truck model recognition. Vehicle identification involves using 
frontal and side truck images, while APPM is applied for local segmentation of 
the side image to recognize individual parts. The proposed method analyzes 
the captured images to precisely identify the models of trucks passing 
through automatic weighing stations on the highway. The improved MMAL-
Net achieved an accuracy of 95.03% on the competitive benchmark dataset, 
Stanford Cars, demonstrating its superiority over other established methods. 
Furthermore, our method also demonstrated outstanding performance on 
a small-scale dataset. In our experimental evaluation, our method achieved 
a recognition accuracy of 85% when the training set consisted of 20 sets of 
photos, and it reached 100% as the training set gradually increased to 50 sets of 
samples. Through the integration of this recognition system with weight data 
obtained from weighing stations and license plates information, the method 
enables real-time assessment of truck overloading. The implementation of the 
proposed method is of vital importance for multiple aspects related to road 
traffic safety.
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1. Introduction

With the rapid development of the global economy and the acceleration of urbanization 
processes, highways play a crucial role in connecting different regions and cities. In the realm 
of road transportation, trucks serve as vital transportation tools, undertaking the task of 
transporting a substantial amount of goods. However, the issue of truck overloading has become 
one of the primary challenges in road traffic safety and road damage. Overloaded trucks exert 
significant pressure on road infrastructure, increasing the risk of traffic accidents and potentially 
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leading to severe road collapse incidents. Therefore, the development 
of an accurate and efficient truckload monitoring method holds 
significant practical significance.

Traditional methods for truckload monitoring mainly rely on 
static weight measurement equipment such as weighbridges (Zhou 
et al., 2005) and fixed scales. However, these devices have several 
limitations, including the need for trucks to stop for measurement and 
high time and labor costs. Additionally, static measurement methods 
cannot provide real-time monitoring and detection capabilities for 
violations, limiting their effectiveness in practical applications.

To address these challenges, a promising solution has emerged: 
utilizing camera images from highway weigh stations for truck model 
recognition and combining them with weighing information obtained 
from a dynamic weighing system. By leveraging truck photos captured 
near these stations and employing advanced image processing and 
pattern recognition techniques, truck models can be  identified 
accurately. Regrettably, the current network architectures utilized for 
recognition in this context often exhibit a simplistic nature, leading to 
suboptimal accuracy in the identification process. As a consequence, 
determining whether a truck is overloaded becomes inaccurate. 
Moreover, the ability to perform real-time recognition using captured 
photographs poses an unresolved challenge that demands 
urgent attention.

This paper aims to propose a truck model recognition method 
based on highway automatic weighing station camera images, with 
the objective of accurately identifying truck models. Consequently, 
the maximum load capacity of the trucks is determined. Through 
the integration of license plates and weighing information, the 
system can accurately determine if a truck is carrying excessive 
load. By doing so, it can prevent the occurrence of misjudgments 
caused by incidents of license plates damage, which are likely to 
happen in schemes that rely solely on license plates recognition to 
obtain vehicle models. Through this method, precise truck 
information can be  provided for freight management, 
transportation safety, and highway planning, promoting the 
development of the logistics industry and enhancing traffic safety.

2. Literature review

2.1. FGVC

Fine-Grained Visual Categorization (FGVC) refers to the task of 
classifying objects into different subcategories or fine-grained classes 
within a broader category. In FGVC, the goal is to achieve detailed 
discrimination and classification among visually similar objects, such 
as different species of birds, breeds of dogs, or models of cars. This 
field of research focuses on developing computer vision algorithms 
and techniques to accurately recognize and classify objects at a fine-
grained level, where subtle differences between subclasses need to 
be distinguished.

Fine-grained image classification, in contrast to conventional 
image classification tasks, encompasses a low signal-to-noise ratio, 
restricting the presence of highly discriminating information to 
minuscule local regions. Thus, the crux of achieving success in fine-
grained image classification algorithms lies in the identification and 
efficient utilization of these valuable local region insights. Presently, 
most classification algorithms adhere to a common workflow: initial 

localization of the foreground object and its distinct local regions, 
followed by individual feature extraction from these regions. The 
processed features are subsequently utilized for classifier training and 
prediction purposes. To attain satisfactory classification results, 
numerous existing algorithms heavily depend on manual annotation 
information (Wei et  al., 2018), such as bounding boxes and part 
locations. The annotation frame aids in foreground object detection, 
effectively mitigating background noise interference. Local region 
positions serve to identify valuable regions or align perspectives, 
facilitating the extraction of local features. Nevertheless, the costly 
acquisition of manual annotation information severely limits the 
practicality of these classification algorithms. In recent years, an 
increasing number of studies have opted to exclude such labeling 
information, relying solely on labels to accomplish image classification 
tasks (Lin et  al., 2005; Zhang et  al., 2016), resulting in 
commendable outcomes.

In the research and development of FGVC, traditional 
classification algorithms based on handcrafted features were initially 
employed. These algorithms typically begin by extracting local 
features, such as Histogram of Oriented Gradients (HOG) (Dalal and 
Triggs, 2005), from the images. Subsequently, an encoding model like 
Vector of Locally Aggregated Descriptors (VLAD) (Jégou et al., 2010) 
is employed for feature encoding, resulting in the desired feature 
representation. However, the limited descriptive power of handcrafted 
features often leads to suboptimal classification performance. In the 
early stages of fine-grained visual categorization research, the 
representation capacity of features became a primary bottleneck 
hindering performance improvement.

In recent years, Convolutional Neural Network (CNN)-based 
methods for fine-grained image recognition (Wang et al., 2017; 
Xie et al., 2017) have significantly matured. Donahue et al. (2014) 
conducted an analysis of a CNN model trained on the ImageNet 
dataset, revealing that the features extracted from the CNN 
possess more robust semantic characteristics and exhibit superior 
differentiation compared to artificial features. Building upon these 
findings, the researchers applied the convolution features to 
various domain-specific tasks, including fine-grained 
classification, resulting in improved classification performance. 
Nevertheless, the crucial components of the task tend to be subtle 
and were not adequately captured by conventional CNN 
approaches. Consequently, researchers have directed their 
attention toward internal enhancements within the framework. 
Zhang et al. (2014) introduced the Part R-CNN algorithm, which 
leverages R-CNN (Girshick et al., 2014) for image detection. This 
methodology aims to achieve precise localization of crucial 
components and enhance feature representation. Branson et al. 
(2014) proposed the Pose Normalized Convolutional Neural 
Network (Pose Normalized CNN) algorithm. Their approach 
comprises several steps: localization detection is performed on 
local regions for each input image, followed by cropping the image 
based on the detected annotation boxes, extracting hierarchical 
local information, and conducting pose alignment. Subsequently, 
distinct layers of convolutional features are extracted for different 
body parts. Finally, these convolutional features are concatenated 
into a feature vector and utilized for SVM model training. These 
approaches have demonstrated robust feature representation 
capabilities and yielded promising results in fine-grained image 
recognition tasks.
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Compared to regular classification tasks, acquiring fine-grained 
image databases poses greater challenges and requires stronger 
domain expertise for data collection and annotation. However, in 
recent years, there has been a significant increase in the availability 
of fine-grained image databases, which reflects the flourishing 
development trend and strong real-world demand in this field. 
Currently, commonly used fine-grained image databases include (1) 
CUB200-2011: It comprises a total of 11,788 bird images belonging 
to 200 different categories. This database provides rich manual 
annotations, including 15 local part locations, 312 binary attributes, 
1 bounding box, and semantic segmentation images, (2) Stanford 
Dogs: This database offers a collection of 20,580 images featuring 
120 different breeds of dogs. It provides only bounding box 
annotations, (3) Oxford Flowers: This database is divided into two 
scales, containing 17 and 102 categories of flowers, respectively. The 
102-category database is more commonly used, with each category 
containing 40 to 258 images. In total, there are 8,189 images in this 
database, which provides only semantic segmentation images 
without any additional annotations, (4) Cars: This database provides 
a collection of 16,185 vehicle images belonging to 196 different 
categories, encompassing various brands, years, and models. Only 
bounding box annotations are provided, and (5) FGVC-Aircraft: 
This database consists of 10,200 images of 102 different aircraft 
categories, with each category containing 100 distinct photos. Only 
bounding box annotations are provided. In recent years, extensive 
research has been conducted on fine-grained image databases. DCL 
(Chen et al., 2019) employed a deconstruction and reconstruction 
approach to learn semantic correlations among local regions in 
input images. API-Net (Zhuang et  al., 2020) progressively 
recognized pairs of fine-grained images through iterative 
interaction. GCP (Song et al., 2022) introduced a dedicated network 
branch to magnify the importance of small eigenvalues. MSHQP 
(Tan et al., 2022) effectively modeled intra and inter-layer feature 
interactions, integrating multi-layer features to enhance part 
responses. These methods primarily focus on locating and utilizing 
key regions for final recognition, yielding promising performance. 
However, they tend to overlook the potential contribution of 
complementary regions that can also play a positive role in the 
recognition process.

2.2. Vehicle recognition and classification

Vehicle recognition and classification are essential components of 
FGVC field. In the context of vehicles, this entails distinguishing 
between closely related classes such as different car models, brands, 
and types, where subtle visual differences in features become crucial 
for accurate classification. Currently, research on vehicle recognition 
and classification primarily centers around three main approaches: 
pattern recognition based on matching method, pattern recognition 
based on machine learning and pattern recognition based on 
deep learning.

The first approach involves the identification of vehicles through 
license plates and vehicle tag detection using a matching method. 
While the license plate number and label characteristics can directly 
identify the vehicle’s brand and model (Psyllos et al., 2010; Huang 
et al., 2015), this method has a limitation: it does not encompass all 
the fine-grained features associated with the vehicle brand and model. 

Apart from the license plates and labels, vehicle lights and other 
textural information also bear the characteristics of the vehicle model. 
Relying solely on license plates and tags is insufficient. Additionally, 
the license plates of trucks are prone to being contaminated by dirt 
and dust, which leads to reduced visibility and clarity. In such 
scenarios, this method becomes ineffective.

The second approach involves using machine learning to classify 
vehicle brands and models. The traditional machine learning method 
comprises two steps: feature extraction and classifier classification. 
Fraz et al. proposed a method for recognizing vehicle brands and 
models based on a SIFT feature dictionary (Fraz et al., 2014). In this 
method, SIFT features of pictures from the training set’s vehicles were 
treated as “words” to create a dictionary of vehicle brands and models. 
However, this method necessitates extensive computation and takes a 
considerable amount of time to identify each image, making it 
unsuitable for real-time vehicle brand and model classification in 
practical scenarios. Abdul et  al. proposed a method employing a 
cascade classifier (Siddiqui et  al., 2016). Initially, representative 
features were extracted from the samples instead of using all features. 
Subsequently, a cascade-based SVM classifier was employed, resulting 
in significant improvements in real-time recognition. Biglari et al. 
(2019) introduced an algorithm based on the histogram of gradient 
directions feature and cascade classifier. Multiple vehicle brand models 
were trained first, followed by classification using a cascade SVM 
classifier, achieving an impressive classification accuracy of up to 
96.78%. However, this method still requires hardware acceleration for 
real-time classification.

The third approach involves vehicle pattern recognition based on 
deep learning. Yang et al. proposed a method for recognizing vehicle 
brands and models based on the joint attributes of vehicles (Yang et al., 
2015). This method extracts vehicle features from multiple 
perspectives and angles, fuses the extracted features, and performs 
recognition. While this method is well-suited for recognizing vehicle 
brands and models in complex scenes, its real-time performance is 
compromised due to the abundance of features. Huang et al. suggested 
randomly discarding certain layers during the training of ResNet to 
obtain a convolutional neural network with random depth (Huang 
et al., 2016), thereby addressing the issue of gradient vanishing caused 
by excessively deep networks. Fang et al. introduced a fine-grained 
method for recognizing vehicle brands and models (Fang et al., 2016), 
utilizing a CNN model to extract local and overall features of vehicles, 
and combining them for classification. Wang et al. (2020) proposed a 
method based on structural graph to learn discriminative 
representations for vehicle recognition. This approach first constructs 
a global structural graph from the features generated by a 
convolutional network. Then, it utilizes this structural graph as 
guidance to generate effective vehicle representations. Mo et al. (2020) 
analyzed the relationship between the number and distribution of 
vehicle axles and the weight limit of trucks. They proposed a circular 
detection method based on an improved Hough and clustering 
algorithm to identify the axles of trucks. Presently, most studies on 
deep learning for vehicle brand recognition rely on a single 
convolutional neural network model. However, for the intricate task 
of truck brand classification, a single model falls short in achieving 
satisfactory classification accuracy. Consequently, integrating multiple 
convolutional neural network models to develop a fusion model 
suitable for truck brand classification becomes a problem that requires 
resolution in this study.
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3. Method

In typical scenarios, automatic weighing stations on highways are 
equipped with multiple cameras to capture frontal and side images of 
trucks. When utilizing these images for model recognition, the initial 
step involves utilizing the frontal image (front view) for identification. 
Analyzing the frontal image allows for the determination of the truck’s 
model. Additionally, the side image is utilized to enhance accuracy in 
identifying the frontal view. The side image provides supplementary 
perspectives and details, thereby improving the accuracy of frontal 
view recognition. Moreover, the side image enables the segmentation 
of the truck into multiple parts, further refining model recognition 
precision. Through comprehensive analysis of both frontal and side 
images, we can achieve more accurate truck identification and conduct 
additional analysis based on its body features. Knowing the truck’s 
model provides information regarding its rated load capacity. The 
weight measurement data obtained in the automatic weighing area 
enables straightforward determination of whether the truck is 
overloaded. Moreover, the inclusion of license plates information 
enables efficient monitoring and regulation by traffic authorities. 
Figure 1 illustrates the process described above.

3.1. The improved MMAL-Net

We improved MMAL-Net (Zhang et al., 2021) and employed it for 
truck recognition and classification. In Figure  2, we  illustrate the 
network architecture that was constructed during the training phase, 
consisting of three branches: frontal, side, and part branches. The 
frontal branch is responsible for recognizing and classifying frontal 
truck images, while the side branch receives side images and segments 

them into multiple parts using the Attention Part Proposal Module 
(APPM). The part branch, on the other hand, specializes in 
recognizing and classifying part images. All three branches utilize a 
ResNet-50 (He et al., 2016) for feature extraction and employ a Fully 
Connected (FC) layer for classification, employing cross-entropy loss 
as the classification loss function.

ResNet-50 is a CNN architecture that belongs to the ResNet family. 
The ResNet family of architectures was specifically developed to address 
the problem of vanishing gradients in deep neural networks. In ResNet-
50, the numerical suffix “50” indicates that the network consists of a total 
of 50 layers, including convolutional layers, pooling layers, fully 
connected layers, and shortcut connections. The key innovation of 
ResNet lies in the introduction of residual or skip connections, which 
allow information to bypass certain layers. This enables the network to 
learn more effectively by facilitating the propagation of gradients during 
training and enabling the acquisition of deeper and more complex 
representations. These skip connections also mitigate the problem of 
degradation, wherein the accuracy of a deep network decreases as its 
depth increases, by facilitating the training of deeper networks. ResNet-50 
has been widely utilized and has achieved significant success in various 
machine vision tasks, such as image classification, object detection, and 
image segmentation. It has proven to be a powerful architecture that has 
advanced the field of computer vision and deep learning.

Formulas 1, 2, and 3 represent the loss function of the three 
branches, respectively.

 L P cfrontal f= − ( )( )log  (1)

 L P cside s= − ( )( )log  (2)

FIGURE 1

The process of the overload detection.
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Where c represents the ground truth label of the input image, while 
Pf  and Ps denote the category probabilities obtained from the last softmax 
layer outputs of the frontal and side branches, respectively. Pp n( ) refers to 
the output of the softmax layer in the part branch that corresponds to the 
nth part image. N represents the total count of part images.

The total loss is defined as Formula 4:

 total frontal side partL L L L= + +  (4)

The total loss is calculated as the cumulative sum of losses from 
the three branches, collaborating to enhance the model’s performance 
during backpropagation. This enables the final converged model to 
generate classification predictions by considering both the global 
structural attributes of the object and its detailed features. During the 
testing phase, the part branch was excluded to minimize computational 
complexity, ensuring efficient prediction times for practical 
applications of our method.

3.2. APPM

By analyzing the activation map A, we observed that areas 
with high activation values corresponded to key parts, such as the 
front area of the truck. To identify these informative regions, 
we  adopted a sliding window approach inspired by object 

detection techniques. This approach allowed us to extract part 
images from windows containing relevant information. 
Additionally, we employed a modified version of the traditional 
sliding window method using a fully convolutional network, 
similar to the approach used in Overfeat (Sermanet et al., 2013). 
This method involved obtaining feature maps for different 
windows from the output feature map of the previous network 
branch. Subsequently, we aggregated the activation maps Aw of 
each window along the channel dimension and computed their 
mean activation value aw, as described in Formula 5. Here, Hw and 
Ww denote the height and width of a window’s feature map, 
respectively. We  then ranked the windows based on their aw 
values, with higher values indicating more informative regions, as 
illustrated in Figure 3.

 
a

A x,y

H W
w

x

W

y

H
w

w w

w w

=
( )

×
=
−

=
−∑ ∑0

1

0

1

 
(5)

However, we cannot directly select the initial windows because 
they are often adjacent to the windows with the highest average 
activation values aw and contain nearly identical parts. Nonetheless, 
our objective is to choose a diverse range of parts. To minimize 
redundancy in the regions, we employ Non-Maximum Suppression 
(NMS) to select a fixed number of windows as part images at different 
scales. The visualization of the module’s output in Figure  4 
demonstrates that the proposed method effectively identifies distinct 
part regions with varying levels of importance. We utilize red, orange, 
yellow, and green rectangles to highlight the regions proposed by 
APPM that have the highest average activation values at various 

FIGURE 2

The improved MMAL-Net in the training phase.
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scales, with the red rectangle indicating the highest value. Figure 4 
illustrates that the proposed approach captures detailed information 
and exhibits a more logical ordering at the same scale, thus 
significantly enhancing the model’s robustness to scale variations. 
Notably, the head region stands out as the most discriminative region 
for truck recognition.

4. Results and discussion

To validate the advantages of the enhanced MMAL-Net, 
we conducted an evaluation of our method on the well-established 

and competitive benchmark dataset, Stanford Cars (Krause 
et al., 2013).

In our experiments, we  adopted a consistent preprocessing 
approach. Initially, we resized the images to dimensions of 512 × 512, 
serving as inputs for both the frontal and side branches. Additionally, 
all part images were uniformly resized to 256 × 256 for the part branch. 
To ensure efficient initialization, we pre-trained ResNet-50 on the 
widely used ImageNet dataset, allowing us to effectively obtain the 
network’s initial weights. Throughout both the training and testing 
phases, we exclusively relied on image-level labels, refraining from 
employing any additional annotations. Our optimization process 
involved utilizing SGD with specific hyperparameters: a momentum 

FIGURE 3

The simple pipeline of the APPM. We use red, orange, yellow and green colors to indicate the order of windows’ aw.

FIGURE 4

Visualization of part regions.

https://doi.org/10.3389/fnins.2023.1243847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2023.1243847

Frontiers in Neuroscience 07 frontiersin.org

value of 0.9 and a weight decay of 0.0001. To enhance training 
efficiency, we employed a mini-batch size of 6, utilizing a Tesla P100 
GPU for computation. For fine-tuning the learning process, we set the 
initial learning rate to 0.001, which we later scaled down by a factor of 
0.1 after 60 epochs. This step was instrumental in facilitating smoother 
convergence during training. We  utilized PyTorch as the 
foundational framework.

In the experiments, we compared the proposed method to several 
baseline approaches and achieved competitive results, as shown in 
Table 1. By comparison, we can observe that our method attains the 
highest accuracy 95.03%.

In practice, there is a continuous emergence of new truck models. 
Given their recent introduction, it becomes challenging to obtain an 
adequate number of instances for constructing a comprehensive 

dataset. Hence, we utilized a customized dataset on a smaller scale to 
validate the applicability and effectiveness of our method. The 
personalized truck dataset includes four truck models: FAW J7, 
Shaanxi Delong X3000, Dongfeng Dorica D6, and JAC Junling V6. 
FAW J7 and Shaanxi Delong X3000 are heavy-duty trucks, whereas 
Dongfeng Dorica D6 and JAC Junling V6 are light-duty trucks. Each 
truck category is composed of 50 sets of training images and 20 sets 
of test images and each set comprises one frontal image and one side 
image. An example is depicted in Figure 5.

Thereafter, the overall network structure with specific features 
was fine-tuned to achieve fine-grained recognition of multiple 
target models. Moreover, we evaluated the effect of varied training 
samples on the recognition performance of the intelligent 
identification model by testing the same dataset using different 

TABLE 1 Comparison of different methods on the Stanford Cars dataset.

Methods Backbone Source Accuracy (%)

RA-CNN Fu et al. (2017) VGGNet-19 CVPR’2017 92.5

MA-CNN Zheng et al. (2017) VGGNet-19 ICCV’2017 92.8

NTS-Net Yang et al. (2018) ResNet-50 ECCV’2018 93.9

MAMC Sun et al. (2018) ResNet-101 ECCV’2018 93.0

TASN Zheng et al. (2019) ResNet-50 CVPR’2019 93.8

DCL Chen et al. (2019) ResNet-50 CVPR’2019 94.5

API-Net Zhuang et al. (2020) ResNet-50 AAAI’2020 94.8

DP-Net Wang et al. (2021) ResNet-50 AAAI’2021 94.8

SAM Shu et al. (2022) ResNet-50 ECCV’2022 94.18

MSHQP Tan et al. (2022) ResNet-152 TOMM’2022 94.9

The Improved MMAL-Net ResNet-50 This paper 95.03

FIGURE 5

The personalized truck dataset. (A–D) represent FAW J7, Shaanxi Delong X3000, Dongfeng Dorica D6, and JAC Junling V6.

https://doi.org/10.3389/fnins.2023.1243847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2023.1243847

Frontiers in Neuroscience 08 frontiersin.org

incremental levels of training data. This simulation emulated the 
impact of increasing the number of target truck images collected 
in actual scenarios on the enhancement of the recognition 
model’s performance.

In our experiment, we selected sets of 20, 30, 40, and 50 images 
for each classifier as training datasets and used the same number of 
test set to compare the performance of API-Net, DP-Net, MSHQP and 
the improved MMAL-Net. It is worth mentioning that API-Net, 
DP-Net, and MSHQP were the top three performing methods in our 
experiments on the Stanford Cars dataset, excluding our proposed 
method. The results indicate that as the training data increases, the 
network’s ability to identify and extract features from target trucks 
gradually improves, suggesting that larger datasets can effectively 
enhance the model’s capability to extract potential features. The 
improved MMAL-Net exhibits comparable or superior performance 
to other methods across all numbers of training sets, demonstrating 
its superior ability to extract fine-grained features of target trucks (see 
Figure 6).

In our small-scale custom dataset, it is evident that the 
recognition accuracy reaches 85% when the training set consists 
of 20 sets of photos. This greatly addresses the practical issue of 
scarce images of a particular type of truck. The improved 
MMAL-Net demonstrated remarkable resilience to image quality 
and scene noise, as evidenced by its recognition accuracy of 100% 
when trained on a dataset comprising 50 sets of samples. This 
noteworthy achievement further supports the superior 
performance of the enhanced network.

Confusion matrices in Figure 7 illustrate the test results of the 
improved MMAL-Net. At a training set size of 40 sets of images, 
the improved MMAL-Net had a single misclassification on the test 
set, misclassifying a Dongfeng Dorica D6 as a JAC Junling V6. 
However, at a training set size of 50 sets, all classifications were 

accurate. The improved MMAL-Net accurately classified heavy-
duty trucks, avoiding misclassification as light-duty trucks. 
Similarly, it correctly identified light-duty trucks without 
misclassification as heavy-duty trucks. This is crucial because 
misidentifying an overloaded light-duty truck as a heavy-duty 
truck can result in undetected overweight issues, thus posing 
safety concerns.

5. Conclusion

This paper introduces a method for precise identification of 
truck models. In our experimental evaluation, this method 
achieved an accuracy of 95.03% on the competitive benchmark 
dataset, Stanford Cars. Furthermore, it achieved an accuracy of 
100% on our custom truck dataset. When integrated with weighing 
and license plates systems, it can be applied in highway automatic 
weighing stations to determine if a truck is overloaded. By 
providing accurate truck information, this method contributes to 
freight management, transportation safety, and highway planning, 
thereby fostering the development of the logistics industry and 
improving traffic safety. However, the accuracy of truck model 
recognition may decrease in real-world scenarios due to the 
reduced data quality. Consequently, future research will focus on 
addressing this issue, with specific emphasis on long-distance 
shooting conditions.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

FIGURE 6

The comparison result on different number of training sets.

https://doi.org/10.3389/fnins.2023.1243847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnins.2023.1243847

Frontiers in Neuroscience 09 frontiersin.org

Author contributions

JiaS contributed to conception and design of the study. JiaS and 
JinS organized the methodology. JiaS and ZY performed the statistical 
analysis. JiaS wrote the first draft of the manuscript. JiaS, ZG, and YS 
contributed to the visualization of the results. JiaS and LL contributed 
to the supervision of the manuscript. All authors contributed to the 
article and approved the submitted version.

Funding

This research was supported by National Key R&D Program of 
China (Grant no. 2021YFB3300503).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Biglari, M., Soleimani, A., and Hassanpour, H. (2019). A cascading scheme for 

speeding up multiple classifier systems. Pattern. Anal. Applic. 22, 375–387. doi: 10.1007/
s10044-017-0637-4

Branson, S., Van Horn, G., Belongie, S., and Perona, P. (2014). Bird species 
categorization using pose normalized deep convolutional nets. arXiv preprint arXiv 
2952:1406. doi: 10.48550/arXiv.1406.2952

FIGURE 7

Confusion matrices of the improved MMAL-Net. (A–D) represent 20, 30, 40 and 50 sets of images, respectively, which are used as the training 
dataset.

https://doi.org/10.3389/fnins.2023.1243847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s10044-017-0637-4
https://doi.org/10.1007/s10044-017-0637-4
https://doi.org/10.48550/arXiv.1406.2952


Sun et al. 10.3389/fnins.2023.1243847

Frontiers in Neuroscience 10 frontiersin.org

Chen, Y., Bai, Y., Zhang, W., and Mei, T. (2019). Destruction and construction learning 
for fine-grained image recognition. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition (pp. 5157–5166).

Dalal, N., and Triggs, B. (2005). Histograms of oriented gradients for human detection. 
In 2005 IEEE computer society conference on computer vision and pattern recognition 
(CVPR’05) (Vol. 1, pp. 886–893). Ieee.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., et al. (2014). “Decaf: 
a deep convolutional activation feature for generic visual recognition” in International 
conference on machine learning (Amsterdam: PMLR), 647–655.

Fang, J., Zhou, Y., Yu, Y., and Du, S. (2016). Fine-grained vehicle model recognition 
using a coarse-to-fine convolutional neural network architecture. IEEE Trans. Intell. 
Transp. Syst. 18, 1782–1792. doi: 10.1109/TITS.2016.2620495

Fraz, M., Edirisinghe, E. A., and Sarfraz, M. S. (2014). Mid-level-representation based 
lexicon for vehicle make and model recognition. In 2014 22nd International Conference 
on Pattern Recognition (pp. 393–398). IEEE.

Fu, J., Zheng, H., and Mei, T. (2017). Look closer to see better: recurrent attention 
convolutional neural network for fine-grained image recognition. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (pp. 4438–4446).

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for 
accurate object detection and semantic segmentation. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 580–587).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image 
recognition. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 770–778).

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016). Deep networks 
with stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, 
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14 (pp. 646–
661). Springer International Publishing. United States

Huang, Y., Wu, R., Sun, Y., Wang, W., and Ding, X. (2015). Vehicle logo recognition 
system based on convolutional neural networks with a pretraining strategy. IEEE Trans. 
Intell. Transp. Syst. 16, 1951–1960. doi: 10.1109/TITS.2014.2387069

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local descriptors 
into a compact image representation. In 2010 IEEE computer society conference on 
computer vision and pattern recognition (pp. 3304–3311). IEEE.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3d object representations for 
fine-grained categorization. In Proceedings of the IEEE international conference on 
computer vision workshops (pp. 554–561).

Lin, T. Y., Roy Chowdhury, A., and Maji, S. (2005) Bilinear CNN models for fine-
grained visual recognition. In Proceedings of the 15th IEEE International Conference 
on Computer Vision (ICCV). Santiago, Chile: IEEE, 1449–1457.

Mo, X., Sun, C., Li, D., Huang, S., and Hu, T. (2020). Research on the method of 
determining highway truck load limit based on image processing. IEEE Access 8, 
205477–205486. doi: 10.1109/ACCESS.2020.3037195

Psyllos, A. P., Anagnostopoulos, C. N. E., and Kayafas, E. (2010). Vehicle logo 
recognition using a sift-based enhanced matching scheme. IEEE Trans. Intell. Transp. 
Syst. 11, 322–328. doi: 10.1109/TITS.2010.2042714

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). 
Overfeat: integrated recognition, localization and detection using convolutional 
networks. arXiv preprint arXiv 1312:6229. doi: 10.48550/arXiv.1312.6229

Shu, Y., Yu, B., Xu, H., and Liu, L. (2022). Improving fine-grained visual recognition 
in low data regimes via self-boosting attention mechanism. In European Conference on 
Computer Vision (pp. 449–465). Cham: Springer Nature Switzerland.

Siddiqui, A. J., Mammeri, A., and Boukerche, A. (2016). Real-time vehicle make and 
model recognition based on a bag of SURF features. IEEE Trans. Intell. Transp. Syst. 17, 
3205–3219. doi: 10.1109/TITS.2016.2545640

Song, Y., Sebe, N., and Wang, W. (2022). On the eigenvalues of global covariance 
pooling for fine-grained visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 45, 
1–3566. doi: 10.1109/TPAMI.2022.3178802

Sun, M., Yuan, Y., Zhou, F., and Ding, E. (2018). Multi-attention multi-class constraint 
for fine-grained image recognition. In Proceedings of the European conference on 
computer vision (ECCV) (pp. 805–821).

Tan, M., Yuan, F., Yu, J., Wang, G., and Gu, X. (2022). Fine-grained image classification 
via multi-scale selective hierarchical biquadratic pooling. ACM Trans. Multimedia 
Comp, Commun, Appl (TOMM) 18, 1–23. doi: 10.1145/3492221

Wang, C., Fu, H., and Ma, H. (2020). Global structure graph guided fine-grained 
vehicle recognition. In ICASSP 2020–2020 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP) (pp. 1913–1917). IEEE.

Wang, S., Li, H., Wang, Z., and Ouyang, W. (2021). Dynamic position-aware network 
for fine-grained image recognition. In Proceedings of the AAAI Conference on Artificial 
Intelligence (Vol. 35. 2791–2799).

Wang, Q., Li, P., and Zhang, L. (2017). G2DeNet: global Gaussian distribution 
embedding network and its application to visual recognition. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 2730–2739).

Wei, X. S., Xie, C. W., Wu, J., and Shen, C. (2018). Mask-CNN: localizing parts and 
selecting descriptors for fine-grained bird species categorization. Pattern Recogn. 76, 
704–714. doi: 10.1016/j.patcog.2017.10.002

Xie, G. S., Zhang, X. Y., Yang, W., Xu, M., Yan, S., and Liu, C. L. (2017). LG-CNN: from 
local parts to global discrimination for fine-grained recognition. Pattern Recogn. 71, 
118–131. doi: 10.1016/j.patcog.2017.06.002

Yang, L., Luo, P., Change Loy, C., and Tang, X. (2015). A large-scale car dataset for 
fine-grained categorization and verification. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 3973–3981).

Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., and Wang, L. (2018). Learning to navigate 
for fine-grained classification. In Proceedings of the European conference on computer 
vision (ECCV) (pp. 420–435).

Zhang, N., Donahue, J., Girshick, R., and Darrell, T. (2014). Part-based R-CNNs for 
fine-grained category detection. In Computer Vision–ECCV 2014: 13th European 
Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I 13 (pp. 
834–849). Springer International Publishing.

Zhang, F., Li, M., Zhai, G., and Liu, Y. (2021). Multi-branch and multi-scale 
attention learning for fine-grained visual categorization. In Multi Media Modeling: 
27th International Conference, MMM 2021, Prague, Czech Republic, June 22–24, 
2021, Proceedings, Part I 27 (pp. 136–147). Springer International Publishing.

Zhang, Y., Wei, X. S., Wu, J. X., Cai, J. F., Lu, J. B., Nguyen, V. A., et al. (2016). 
Weakly supervised fine-grained categorization with part-based image 
representation. IEEE Trans. Image Process. 25, 1713–1725. doi: 10.1109/TIP.2016. 
2531289

Zheng, H., Fu, J., Mei, T., and Luo, J. (2017). Learning multi-attention convolutional 
neural network for fine-grained image recognition. In Proceedings of the IEEE 
international conference on computer vision (pp. 5209–5217).

Zheng, H., Fu, J., Zha, Z. J., and Luo, J. (2019). Looking for the devil in the details: 
learning trilinear attention sampling network for fine-grained image recognition. In 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(pp. 5012–5021).

Zhou, Z., Liu, J., Li, H., and Ou, J. (2005). A new kind of high durable traffic 
weighbridge based on fbg sensors. Proceedings of SPIE - The Int. Soc. Optical Eng. 5855, 
735–738. doi: 10.1117/12.623436

Zhuang, P., Wang, Y., and Qiao, Y. (2020). Learning attentive pairwise interaction for 
fine-grained classification. In Proceedings of the AAAI conference on artificial 
intelligence. 34, 13130–13137).

https://doi.org/10.3389/fnins.2023.1243847
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/TITS.2016.2620495
https://doi.org/10.1109/TITS.2014.2387069
https://doi.org/10.1109/ACCESS.2020.3037195
https://doi.org/10.1109/TITS.2010.2042714
https://doi.org/10.48550/arXiv.1312.6229
https://doi.org/10.1109/TITS.2016.2545640
https://doi.org/10.1109/TPAMI.2022.3178802
https://doi.org/10.1145/3492221
https://doi.org/10.1016/j.patcog.2017.10.002
https://doi.org/10.1016/j.patcog.2017.06.002
https://doi.org/10.1109/TIP.2016.2531289
https://doi.org/10.1109/TIP.2016.2531289
https://doi.org/10.1117/12.623436

	Truck model recognition for an automatic overload detection system based on the improved MMAL-Net
	1. Introduction
	2. Literature review
	2.1. FGVC
	2.2. Vehicle recognition and classification

	3. Method
	3.1. The improved MMAL-Net
	3.2. APPM

	4. Results and discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

