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Spiking neural networks coupled with neuromorphic hardware and event-based

sensors are getting increased interest for low-latency and low-power inference

at the edge. However, multiple spiking neuron models have been proposed in the

literature with di�erent levels of biological plausibility and di�erent computational

features and complexities. Consequently, there is a need to define the right level

of abstraction from biology in order to get the best performance in accurate,

e�cient and fast inference in neuromorphic hardware. In this context, we explore

the impact of synaptic and membrane leakages in spiking neurons. We confront

three neural models with di�erent computational complexities using feedforward

and recurrent topologies for event-based visual and auditory pattern recognition.

Our results showed that, in terms of accuracy, leakages are important when

there are both temporal information in the data and explicit recurrence in the

network. Additionally, leakages do not necessarily increase the sparsity of spikes

flowing in the network. We also investigated the impact of heterogeneity in the

time constant of leakages. The results showed a slight improvement in accuracy

when using data with a rich temporal structure, thereby validating similar findings

obtained in previous studies. These results advance our understanding of the

computational role of the neural leakages and network recurrences, and provide

valuable insights for the design of compact and energy-e�cient neuromorphic

hardware for embedded systems.

KEYWORDS

event-based sensors, digital neuromorphic architectures, spikingneural networks, spatio-

temporal patterns, neurons leakages, neural heterogeneity, network recurrences

1 Introduction

Over the last decade, Artificial Neural Networks (ANNs) have been increasingly

attracting interest in both academia and industry as a consequence of the explosion of open

data and the high computing power of today’s computers for training and inference. The

state-of-the-art performance of deep neural networks on various pattern recognition tasks

has given neural networks a leading role inMachine Learning (ML) algorithms and Artificial

Intelligence (AI) research. However, the technological drive that has supported Moore’s Law

for 50 years and the increasing computing power of conventional processors is reaching

a physical limit and is predicted to flatten by 2025 (Shalf, 2020). Hence, deep learning

progress with current models and implementations will become technically, economically,
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and environmentally unsustainable (Thompson et al., 2020,

2021). This limit is particularly prohibitive when targeting edge

applications in embedded systemswith severe constraints in latency

and energy consumption (Rabaey et al., 2019).

Neuromorphic computing is a promising solution that takes

inspiration from the biological brain which can reliably learn and

process complex cognitive tasks at a very low power consumption.

On the one hand, neuromorphic sensors are event-based sensors

and capture information with a high temporal resolution and

high spatio-temporal sparsity at low-latency and low-power

consumption (Liu et al., 2010; Gallego et al., 2022). On the other

hand, neuromorphic processors are asynchronous and use parallel

and distributed implementations of synapses and neurons where

memory and computation are co-localized (Mead and Conway,

1980; Chicca et al., 2014), hence adapting the hardware to the

computation model (Schuman et al., 2017; Bouvier et al., 2019).

Spiking Neural Networks (SNNs) are the third generation of

artificial neural models (Maass, 1997) that are investigated to

exploit the advantages of event-based sensing and asynchronous

processing at the algorithmic level.

Inspired from the neuroscience literature, Spiking Neural

Networks (SNNs) show promising performance in embedded

spatio-temporal pattern recognition (Davies et al., 2021). For

example, compared to a conventional approach using formal neural

networks on an embedded Nvidia Jetson GPU, SNNs on the Intel

Loihi neuromorphic chip (Davies et al., 2018) achieve a gain in

energy-efficiency of 30× in multimodal (vision and EMG) hand

gesture recognition (Ceolini et al., 2020) and 500× in tactile braille

letters recognition (Muller-Cleve et al., 2022), at the cost of a loss in

accuracy depending on the application. Multiple models of spiking

neurons have been proposed in the literature (Hodgkin andHuxley,

1952; Kistler et al., 1997; Izhikevich, 2003) and implemented in

hardware (Indiveri et al., 2011) with different levels of biological

plausibility and computational complexity. However, there is a

lack of understanding of how each of the factors determining the

biological neuronal response can be effectively used in learning

and inference. A key question for advancing the field is therefore

to identify the right level of abstraction inspired from biology to

achieve the best inference performance within strict constrains in

speed/latency and power efficiency on neuromorphic hardware.

This work attempts to partially answer this question by

studying the effect of spiking neurons leakages in feedforward

and recurrent neural networks for event-based visual and auditory

pattern recognition tasks, in terms of accuracy and spiking activity.

Today, digital neuromorphic chips from academia and industry

use both non-leaky [e.g., SPLEAT (Abderrahmane et al., 2022) and

DynapCNN (Liu et al., 2019)] and leaky [e.g., MorphIC (Frenkel

et al., 2019) and Loihi (Davies et al., 2018)] spiking neurons.

Understanding the computational role of the leakages provides

insights for the hardware architecture of neuromorphic processors

as they require extra circuitry overheads (Khacef et al., 2018). In

Section 2, we introduce the spiking neuron models and present

the training methodology. In Section 3, we present our grid search

experiments and a detailed analysis of the resulting performance

trends across different spiking neuron models, leakage parameters,

network topologies, as well as time constant heterogeneity. Finally,

in Sections 4 and 5 we discuss the results, highlighting the main

insights, limits and outlook of our work.

2 Methods

In this section, we introduce the used network typologies

along with their spiking neuron model that are characterized with

different levels of biological abstraction. We also introduce the

surrogate gradient decent approach used in this work to overcome

the all-or-nothing behavior of the binary spiking non-linearity.

2.1 Spiking neural network topologies

In this work, we adopted a necessary and sufficient minimal

architecture widely used as a universal approximator (Maass et al.,

2002; Neftci et al., 2019) consisting of three layers of spiking

neurons: an input layer, a hidden layer with or without recurrent

connections which contains N = 200 neuron, and a readout

layer with infinite threshold (non-spiking neurons) where the

membranes potentials are used to generate predictions. In the case

of a hidden layer with recurrent connections, the used recurrent

network is a Hopfield-like neural network where neurons are fully

interconnected. Throughout the paper, we refer to Feed-forward

SNNs as FSNNs and Recurrently connected SNNs as RSNNs.

Figure 1 demonstrate a simplified diagrammatic representation of

the networks.

2.2 Spiking neuron models

The standard spiking neuron model is formally described as a

time continuous dynamical system with the differential equation

(Gerstner et al., 2014):

τmem
dU(l)

i (t)

dt
= −(U(l)

i (t)− Urest)+ RI
(l)
i (t) (1)

whereUi(t) is themembrane potential that characterizes the hidden

state of the neuron, Urest is the resting potential, τmem is the

membrane time constant, R is the input resistance, and Ii(t) is

the input current. The hidden state of each neuron, however, is

FIGURE 1

Simplified diagram representation of: FSNN (without dashed lines)

vs. RSNN (including dashed lines) network topologies.
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not directly communicated to downstream neurons. When the

membrane potential Ui reaches the firing threshold ϑ , the neuron

fires an action potential (or a “spike”) and the membrane potential

Ui is reset to its resting potential Urest . If we consider spikes to be

point processes for which their spike width is zero in the limit, then

a spike train S
(l)
j (t) is denoted with the sum of Dirac delta functions

S
(l)
j (t) =

∑

s∈C
(l)
j

δ(t− s) such that s iterate over the firing times C(l)
j

of neuron j from layer l. Spikes are communicated to downstream

neurons and trigger postsynaptic currents. A common first-order

approximation to model the temporal dynamics of postsynaptic

currents are exponentially decaying currents that sum linearly:

dIi(t)(l)

dt
= −

I
(l)
i (t)

τsyn
+

∑

j

W
(l)
ij S

(l−1)
j (t)+

∑

j

V
(l)
ij S

(l)
j (t) (2)

where we have introduced the synaptic decay time constant

τsyn, and the synaptic weight matrices: W
(l)
ij for feed-forward

connections, and V
(l)
ij for explicit recurrent connections within

each layer.

It is customary to approximate the solutions to the above

equations in discrete time assuming a small simulation time step

1t > 0. With no loss of generality, we assume Urest = 0, R = 1,

and the firing threshold ϑ = 1. The output spike train S
(l)
i [t] of

neuron i in layer l is expressed as S(l)i [t] ≡ 2(U(l)
i [t] − ϑ) where

2 is the Heaviside step function such that S(l)i [t] ∈ {0, 1}. t is used

to denote the time step to indicate discrete time. The synaptic and

membrane dynamics expressed, respectively, by Equation (2) and

Equation (1) become (Neftci et al., 2019):

I
(l)
i [t] = αI

(l)
i [t−1]+

∑

j

W
(l)
ij S

(l−1)
j [t−1]+

∑

j

V
(l)
ij S

(l)
j [t−1] (3)

U
(l)
i [t] = (βU(l)

i [t − 1]+ I
(l)
i [t])× (1− S

(l)
i [t − 1]) (4)

where the decay strengths are given by α ≡ e
− 1t

τsyn and β ≡ e−
1t

τmem ,

such that 0 < α < 1 and 0 < β < 1 for finite and positive τsyn

and τmem.

There exists many extensions and variations of spiking neurons

models. In order to find the right level of abstraction from

biology and get the best performance in accurate, efficient and

fast inference, we will derive and confront three variations

with variable degrees of biological plausibility: the Current-Based

Leaky Integrate-and-Fire (CUBA-LIF), the Leaky Integrate-and-

Fire (LIF), and the Integrate-and-Fire (IF).

2.2.1 Current-based Leaky Integrate-and-Fire
(CUBA-LIF)

The CUBA-LIF neuron is the most biologically plausible model

among the three models considered in this work. It accounts for the

temporal dynamics of the postsynaptic current. This neuron model

is governed by Equations (5) and (6). It has two exponentially

decaying terms: αIi and βUi. The degree of the exponential decay

of Ii and Ui is determined by the synaptic time constant τsyn and

membrane time constant τmem, respectively. Figure 2C illustrate the

dynamics of a CUBA-LIF neuron for some random input stimuli.

I
(l)
i [t] = αI

(l)
i [t−1]+

∑

j

W
(l)
ij S

(l−1)
j [t−1]+

∑

j

V
(l)
ij S

(l)
j [t−1] (5)

U
(l)
i [t] = (βU(l)

i [t − 1]+ I
(l)
i [t])× (1− S

(l)
i [t − 1]) (6)

2.2.2 Leaky Integrate-and-Fire (LIF)
The LIF neuron model is a simplification of the CUBA-LIF

and it is widely used in computational neuroscience to emulate

the dynamics of biological neurons (Izhikevich, 2004). It integrates

the input over time with a leakage such that the internal state

represented by the membrane potential goes down exponentially.

As shown in Figure 2B, subsequent input spikes must be

maintained for the state not to go to zero. In discrete time, the

dynamics of the LIF neuron are governed by Equations (7) and (8):

I
(l)
i [t] =

∑

j

W
(l)
ij S

(l−1)
j [t − 1]+

∑

j

V
(l)
ij S

(l)
j [t − 1] (7)

U
(l)
i [t] = (βU(l)

i [t − 1]+ I
(l)
i [t])× (1− S

(l)
i [t − 1]) (8)

2.2.3 Integrate-and-Fire (IF)
The IF neuron is a further simplification and the least

biologically plausible model considered in this work. The IF model

can be concisely described as a LIF neuron with no leak. It behaves

as a standard integrator that keeps a running sum of its input.

Thus, the internal state of the neuron is the mathematical integral

of the input (Eliasmith, 2013). IF neurons do not have any inherent

temporal dynamics. In discrete time, IF dynamics are governed by

Equations (9) and (10):

I
(l)
i [t] =

∑

j

W
(l)
ij S

(l−1)
j [t − 1]+

∑

j

V
(l)
ij S

(l)
j [t − 1] (9)

U
(l)
i [t] = (U(l)

i [t − 1]+ I
(l)
i [t])× (1− S

(l)
i [t − 1]) (10)

Equations (9) and (10) do not have the decay (i.e., leak)

parameters α and β . The parameter α is set to zerowhich causes the

synapse to have an infinite leak. The current pulse width is short, it

effectively looks like a weighted spike. β on the other hand is set

to one, which causes the membrane potential to remain constant

between two consecutive spikes. Figure 2A illustrates the dynamics

of an IF neuron for some random input stimuli.

2.3 Supervised learning in SNNs

The choice of the three spiking neurons models considered is

motivated by the intention of mapping existing machine learning
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FIGURE 2

Synaptic current and membrane potential dynamics of each spiking neuron model in response to the same input spikes. (A) IF, (B) LIF, (C) CUBA-LIF.

Only when the membrane potential reaches the neuronal firing threshold (dashed line), output spikes are generated.

methods to train SNNs. The aim of learning is to minimize a loss

function L over the entire dataset. The gradient-based method,

namely Backpropagation Trought Time (BPTT) (Goodfellow et al.,

2016) was used. Before BPTT can be applied to SNNs, however, a

serious challenge regarding the non-differentiability of the spiking

non-linearity needs to be overcome.

BPTT requires the calculation of the derivative of the neural

activation function. For a spiking neuron, however, the derivative

of S[t] = 2(U[t] − ϑ) is zero everywhere except at U = ϑ ,

where it tends to infinity as shown in Equation (11). This means

the gradient will almost always be zero and no learning can take

place. This behavior of the binary spiking non-linearity makes

SNNs unsuitable for gradient based optimization and it is known

as the “dead neuron problem”.

∂L

∂W
=

∂L

∂S

∂S

∂U
︸︷︷︸

{0,∞}

∂U

∂I

∂I

∂W
(11)

In this work, we used a surrogate gradient approach (Neftci

et al., 2019) to provide a continuous relaxation to the real gradients.

In other words, we keep the Heaviside step function the way it is

during the forward pass and change the derivative term ∂S/∂U with

something that does not stop learning during the backward pass.

Specifically, we selected the fast sigmoid function S̃ to smooth out

the gradient of the Heaviside function:

S̃ = σ (U(l)
i ) =

U
(l)
i

1+ β̃

∣
∣
∣U

(l)
i

∣
∣
∣

(12)

where β̃ is the steepness parameter that modulates how smooth the

surrogate function is.

In this work, cross entropy max-over-time loss function

(Cramer et al., 2022) is chosen. When called, the maximum

membrane potential value for each output neuron in the readout

layer is sampled and passed through the loss function. This cross

entropy loss encourages the maximum membrane potential of the

correct class to increase, and suppresses the maximum membrane

potential of incorrect classes. On data with batch size of Nbatch and

Nclass output classes, {(xs, ys) | s = 1, ...,Nbatch; ys ∈ {1, ...,Nclass}}

the loss function takes the form:

L = −
1

Nbatch

Nbatch∑

s=1

1(i = ys) log

{

exp(U(L)
i [t̃i])

∑Nclass
i=0 exp(U(L)

i [t̃i])

}

(13)

where 1 is the indicator function, and t̃ is the time step with the

maximummembrane potential for each readout unit in the readout

layer L, such that t̃i = argmaxt U
(L)
i [t].

The cross entropy in Equation 13 is minimized using the

Adamax optimizer (Kingma and Ba, 2014).

3 Experiments and results

This section present all the experiments, we conducted in order

to understand the effect of spiking neurons leakages and network

recurrences for spike-based spatio-temporal pattern recognition

and gives a detailed analysis of the results we obtained.

3.1 Experimental setup

We investigated the role of neurons leakages, network

recurrences and neural heterogeneity by training SNNs to classify

visual and auditory stimuli with varying degrees of temporal

structure. Two training approaches were applied: standard training

only modifies the synaptic weights, while heterogeneous training

affects both the synaptic weights and the time constants.

We used two datasets. The Spiking Heidelberg Digits (SHD)

(Cramer et al., 2022) is auditory and has a rich temporal structure.

It is the spiking version of the Heidelberg Digits audio dataset

consisting of 20 classes of spoken digits recordings from zero

to nine in both English and German. It contains 8,156 training

and 2,264 testing samples as shown in Table 1. Spikes in 700

input channels were generated using an artificial cochlea, where

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1244675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bouanane et al. 10.3389/fnins.2023.1244675

TABLE 1 Hyperparameters used in our experiments.

N-MNIST SHD

Train/test split 60,000/10,000 8,156/2,264

Network architecture* 2312-200-10 700-200-20

Learning rate (η) 5×10−3 2×10−4

Time step (1t) 14 ms 14 ms

Steepness parameter (β̃) 100 100

Batch size 256 128

Epochs 50 200

∗Input-hidden-readout layers.

the spike timing of the input neurons is necessary to recognize

each pattern (Perez-Nieves et al., 2021). SHD spike trains have

a maximum duration of 1.4s and binned into 14ms bins. By

contrast, the Neuromorphic MNIST (N-MNIST) (Orchard et al.,

2015; Iyer et al., 2021) contains mostly spatial information. It

features visual stimuli and has minimal temporal structure, as

its samples are generated from static images of the frame-based

MNIST benchmark by moving a neuromorphic vision sensor over

each original MNIST sample resulting in 34 × 34 image with ON

and OFF polarities. Therefore, the spike rate of the input neurons

has sufficient information about the pattern, while the temporal

component is strictly related to the movements of the vision sensor.

The dataset contains 60,000 training and 10,000 testing samples

as shown in Table 1 and each sample is a spike train of 360ms. In

order to have the same temporal precision between the visual and

the auditory datasets to allow for fair comparison on the temporal

structure, N-MNIST events are also binned into 14ms bins.

These two datasets are chosen for this work based on

their temporal structures. Expanding the evaluation to include

additional datasets, such as the IBM DVS gesture dataset (Amir

et al., 2017), would necessitate the use of a convolutional topology,

which increases complexity beyond the scope of this work.

Additionally, the conversion of an image dataset with static patterns

to rate coding for SNNs is less efficient compared to ANNs due

to the need to introduce an artificial temporal dimension for

spike-based processing.

To allow for fair baselines comparison of performance in

accuracy with previous works, we used the same train/test split

suggested by the corresponding dataset authors in all of our

experiments. The network architectures and common hyper-

parameters in our experiments such as the batch size, number of

epochs, learning rate η, and steepness parameter β̃ were tuned

according to state-of-the-art results obtained from the literature

(Chowdhury et al., 2021; Perez-Nieves et al., 2021; Cramer et al.,

2022), as well as our own preliminary experiments. Table 1 gives

a summary of all parameters used for our experiments. The

performance of each configuration is quantified in terms of

testing accuracy and sparsity as an estimation for dynamic energy-

efficiency in neuromorphic hardware. We note that all reported

error measures in this work correspond to the standard deviation

of three experiments with different random initialization for the

trained parameters.

3.2 Impact of the neural leakages

To assess the effects of the membrane and synaptic leakages,

we started by confronting the three concerned neuron models:

CUBA-LIF, LIF, and IF in a Feed-forward SNN (FSNN) using both

datasets. Only synaptic weights are learned and leakage parameters

are treated as hyper-parameters and chosen to be homogeneous

(i.e., the same for all neurons). Leakage parameters α and β are

tuned using the synaptic time constant τsyn and the membrane time

constant τmem, respectively, as described by Equations (3) and (4)

in the previous chapter.

3.2.1 Accuracy analysis in FSNN
We started by the CUBA-LIF neuron where both leakages are

of concern. This model can have a wide range of τsyn and τmem.

We performed a grid search across a number of time constants by

fixing one and changing the other. Grid search is a simple hyper-

parameters tuning technique that helped us evaluate the model for

a wide range of combinations to get a good understanding of the

slope of change in accuracy.

Table 2A shows the SHD testing accuracy results for the chosen

different combinations of τmem and τsyn. We can see from the

time constants sweeps that τmem values below 420ms result is a

significant decrease in accuracy. It is also clear that the best results

seem to push τsyn, and hence α, close to zero with τmem ≥ 420ms.

In other words, CUBA-LIF performs better when its dynamics are

close to those of the LIF neuron. This trend is also observed for

the N-MNIST as shown in Table 2B. However, we can see a 31.55%

drop between the best accuracy that reached 76.94 ± 1.13% and

the 45.39 ± 1.64% worst accuracy for SHD, while only a 1.59%

difference between the 97.41 ± 0.07% best and the 95.82 ± 0.11%

worst accuracy for N-MNIST. This suggests that the leakages seem

to have greater impact on data with rich temporal structure, than

on data that is intrinsically spatial and low in temporal structure.

The LIF neuron has an infinite synaptic leak with τsyn = 0 and

a tunable membrane leak. So we varied τmem as a hyperparameter

across a range of values. The results of our experiments presented in

Table 2A show that the LIF neuron achieved higher accuracy than

its CUBA-LIF counterpart for both datasets. but it also resulted in

the lowest accuracies for very small values of τmem.

For the IF case, there is an infinite synaptic leak similar to that

of the LIF and no membrane leak. so the only possible values for

time constants are τmem = ∞ and τsyn = 0 which corresponds

to β = 1 and α = 0, respectively. In spite of its simplicity and

lack of temporal dynamics, IF neuron was able to match or even

outperform the othermodels by reaching a testing accuracy of 78.36

± 0.87% for SHD and 97.50 ± 0.06% for N-MNIST as shown in

Table 2. This result suggests that introducing inherent temporal

dynamics and increasing neuronal complexity does not necessarily

lead to an improved classification accuracy even for data with rich

temporal structure when using a feed-forward network.

3.2.2 Sparsity analysis in FSNN
While learning performance is pivotal, it is also crucial to take

into considerations the associated computational cost and energy

consumption of using each model which are directly linked to the
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TABLE 2 Three neuron models accuracy in FSNN.

LIF CUBA-LIF

(ms) τsyn = 0
(α ≈ 0) (%)

τsyn = 14
(α ≈ 0.368) (%)

τsyn = 28
(α ≈ 0.606) (%)

τsyn = 70
(α ≈ 0.818) (%)

τsyn = 140
(α ≈ 0.905) (%)

A. SHD

τmem = 14 (β ≈ 0.368) 38.24 45.39 49.39 56.14 60.19

τmem = 70 (β ≈ 0.818) 52.88 53.60 60.15 61.63 64.24

τmem = 140 (β ≈ 0.905) 65.75 66.77 67.68 67.43 65.65

τmem = 420 (β ≈ 0.967) 75.06 74.51 73.58 71.02 67.63

τmem = 700 (β ≈ 0.980) 77.20 75.79 73.79 71.19 66.76

τmem = 1120 (β ≈ 0.987) 76.88 75.56 74.26 72.35 67.00

τmem = 1680 (β ≈ 0.992) 76.50 76.94 75.99 72.61 67.54

τmem = ∞ (β ≈ 1) 78.36*

B. N-MNIST

τmem = 14 (β ≈ 0.368) 96.00 97.14 97.27 96.98 96.92

τmem = 70 (β ≈ 0.818) 97.10 97.21 97.19 96.76 96.48

τmem = 140 (β ≈ 0.905) 97.45 97.39 97.03 96.67 96.33

τmem = 420 (β ≈ 0.967) 97.63 97.37 96.90 96.25 95.89

τmem = 700 (β ≈ 0.980) 97.48 97.41 96.95 96.28 96.08

τmem = 1120 (β ≈ 0.987) 97.48 97.37 96.94 96.52 95.91

τmem = 1680 (β ≈ 0.992) 97.64 97.36 96.96 96.30 95.82

τmem = ∞ (β ≈ 1) 97.50*

∗IF Neuron.

spiking activity of neurons when using a neuromorphic hardware

like Intel Loihi (Davies et al., 2018) that computes asynchronously

and exploits the sparsity of event-based sensing. To infer an output

class, SNNs feed the input spikes over a number of time steps

and perform event-based synaptic operations only when spike-

inputs arrive. These synaptic operations are considered as a metric

for benchmarking neuromorphic hardware (Merolla et al., 2014;

Davies et al., 2018). We explored the impact of the leakages on the

sparsity of each model by inferring the test set.

SHD spiking activity recordings in the hidden layer plotted in

Figure 3 show that the time constants combinations that led to the

sparsest activity (τmem = 14ms for LIF and τmem = τsyn = 14ms

for CUBA-LIF) also resulted in the worst accuracies for both LIF

and CUBA-LIF neurons. This is due to the fast decays in both

membrane potential and synaptic current that result in not having

enough spikes to hold the information. The same trend however

cannot be observed for the N-MNIST. This could be due to the

fact that leakage parameters do not have a significant impact on

spatial information. Nevertheless, we can see an increase in spiking

activity with higher values of τsyn for the CUBA-LIF neuron on both

datasets. Although it is more apparent on the SHD. This increase in

spiking activity that resulted in a decrease in accuracy, is associated

with CUBA-LIF neurons’ ability to sustain input spikes over longer

durations. However, more spikes do not necessarily lead to better

performance, at least for our datasets.

Overall, we can observe from these results that spiking activity

and accuracy are directly linked. Time constant combinations that

led to the best accuracies (τmem > 420ms and τsyn < 70ms)

resulted in sparser activity, while combinations that led to the

worst accuracies resulted in higher spiking activity. This is counter-

intuitive, and there might be a sweet spot where a sufficient number

of spikes leads to a an optimal accuracy. However, we were not able

to see this sweet spot since we did not try to explicitly increase

the sparsity until we see a decrease in accuracy if there are not

enough spikes.

Intuitively, we can assume that if all three neurons were to

receive the same weighted sum of input, LIF neurons would

produce comparatively sparser outputs due to their infinite synaptic

leak and the layer-wise decay of spikes caused by its membrane leak

that acts as a forgetting mechanism. For both datasets, we can see

from Figure 3 that IF neurons produced slightly less spikes than

LIF neurons in some experiments, which is counter-intuitive. In

an attempt to understand the cause of this misleading intuition,

we plotted the distributions of the trained weights for the LIF

experiment that has the highest spiking activity (τmem = 420ms)

to compare it with the weights distribution of the IF as depicted

in Figure 4. Because it is hard to inspect the distributions visually,

we calculated the mean and standard deviation. We can see that

the standard deviation of the LIF’s weight matrices W(2) is higher

than that of the IF. This result suggests that BPTT tailors the LIF

model to increase the synaptic weights beyond what is needed for

the IF model.

The CUBA-LIF model, on the other hand, was able achieve the

sparsest activity among the three models for certain combinations
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FIGURE 3

Hidden layer spiking activity with the increase/decrease caused by adding explicit recurrences for each time constants combination of three models.

Each grouped set of bars corresponds to one τsyn value while each bar within the group corresponds to one τmem value. (A) SHD, (B) N-MNIST.

of time constants despite its ability to sustain input spikes for

longer duration. To that effect, we plotted the weights distributions

of CUBA-LIF’s experiment with τmem = 1, 680ms and τsyn =

28ms and compared it with that of the LIF experiment that

has the same τmem value. Again, we calculated the mean and

standard deviation. We can see that the standard deviation of

CUBA-LIF’S weight matrices W(2) is higher than that of the LIF.

Once more, this can be attributed to BPTT. Therefore, the results

clearly indicate that the leakages do not necessarily lead to sparser

activity.

3.3 Impact of explicit recurrences

To study the effect of recurrences on learning spatio-temporal

patterns, we added explicit recurrent connections to neurons in

the hidden layer and confronted the three neuron models in the

context of a Recurrently-connected SNN (RSNN). Similar to the

experiments in the FSNN, we performed a grid search across

the same combinations of time constants for CUBA-LIF, a sweep

for the same τmem values for LIF, and the same experiments

for IF.

3.3.1 Accuracy analysis in RSNN
As shown in Table 3, results of the SHD dataset show that

recurrent architectures reached a significantly higher performances

than their feed-forward counterparts across all combinations of

time constants for both CUBA-LIF and LIF. However, that is not the

case for the N-MNIST. This is not surprising knowing the inherent

ability of Recurrently Connected Neural Networks (RCNN) to

handle time series and sequential data. For both datasets however,

we can still observe the same trend as in FSNN such that τmem

values below 420ms result in a significant decrease in accuracy for

both CUBA-LIF and LIF, while CUBA-LIF performed better with

smaller values of τsyn. Nevertheless, the LIF neuron reached the

highest accuracy among the two. For the IF neuron, adding explicit

recurrences reduced the accuracy by 0.43% on SHD and lead to

comparable accuracy onN-MNIST. A comparison between the best

accuracies obtained by the models in both FSNN and RSNN is

presented if Figure 5.

Given IF’s good performance in FSNN with both datasets and

inferior performance in RSNN with SHD, it becomes clear that

leakages are important when there are both temporal information

in the data and a recurrent topology in the network. This result

is the most important finding of this work and our unique

contribution to the neuromorphic computing literature. To the
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FIGURE 4

Trained weights distributions for: (A) LIF vs. CUBA-LIF for the weight matrices (left) W(1) and (right) W(2). The standard deviation in LIF (1.99× 10−2 for

W(1) and 1.15× 10−1 for W(2)) is higher than CUBA-LIF (1.44× 10−2 for W(1) and 0.77× 10−1 for W(2)). (B) IF vs. LIF for the weight matrices (left) W(1)

and (right) W(2). The standard deviation of W(2) in LIF (12.58× 10−2) is higher than IF (9.48× 10−2).

TABLE 3 Three neuron models accuracy in RSNN.

LIF CUBA-LIF

(ms) τsyn = 0
(α ≈ 0) (%)

τsyn = 14
(α ≈ 0.368) (%)

τsyn = 28
(α ≈ 0.606) (%)

τsyn = 70
(α ≈ 0.818) (%)

τsyn = 140
(α ≈ 0.905) (%)

A. SHD

τmem = 14 (β ≈ 0.368) 44.67 58.56 73.54 75.26 73.19

τmem = 70 (β ≈ 0.818) 70.51 76.41 79.64 79.41 74.59

τmem = 140 (β ≈ 0.905) 78.34 80.48 81.25 78.64 75.96

τmem = 420 (β ≈ 0.967) 82.72 81.96 81.71 77.05 75.15

τmem = 700 (β ≈ 0.980) 83.06 82.44 80.65 78.81 75.91

τmem = 1120 (β ≈ 0.987) 83.24 82.74 80.73 78.89 75.52

τmem = 1680 (β ≈ 0.992) 83.41 82.25 80.68 79.83 76.06

τmem = ∞ (β ≈ 1) 77.93*

B. N-MNIST

τmem = 14 (β ≈ 0.368) 96.18 97.22 97.14 96.83 96.92

τmem = 70 (β ≈ 0.818) 97.10 97.27 97.09 96.78 96.29

τmem = 140 (β ≈ 0.905) 97.28 97.24 97.00 96.62 96.11

τmem = 420 (β ≈ 0.967) 97.39 97.26 97.18 96.27 95.57

τmem = 700 (β ≈ 0.980) 97.44 97.35 96.81 96.08 95.88

τmem = 1120 (β ≈ 0.987) 97.48 97.32 96.74 96.20 95.72

τmem = 1680 (β ≈ 0.992) 97.41 97.22 96.80 96.21 95.95

τmem = ∞ (β ≈ 1) 97.54*

∗IF Neuron.
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FIGURE 5

Best accuracies comparison between models in FSNN vs. RSNN. (A) SHD, (B) N-MNIST.

TABLE 4 Comparison of our results with related works.

Neuron
model

Standard
training (%)

Heterogeneous
training* (%)

Cramer et al.
(2022)

CUBA-LIF 79.9 -

Perez-Nieves
et al. (2021)

CUBA-LIF 71.7 82.7

Dampfhoffer
et al. (2022)

CUBA-LIF 83.7 -

LIF 80.6 -

Our work CUBA-LIF 82.74 82.84

LIF 83.41 83.47

∗Homogeneous initialization. The bold values indicate the best accuracies that have been

highlighted.

best of our knowledge, the highest accuracies we were able to

reach on the SHD dataset are very close to state-of-the-art results

(Dampfhoffer et al., 2022). Table 4 compares our best results with

other works in the literature. In the study done by Cramer et al.

(2022), the best accuracy that reached 79.9% corresponds to time

constants combination of τmem = 80ms and τsyn = 40ms. On the

other hand, this work yielded compelling results, demonstrating

that we could achieve accuracies on par with the results obtained

by Cramer et al. (2022) as shown in Table 3, while also surpassing

it when extending the time constants range beyond 420ms and

further explore new values.

3.3.2 Sparsity analysis in RSNN
Similar to what we did in FSNN, we recorded the spiking

activity of neurons in the hidden layer when the test set is inferred.

SHD spikes count recordings plotted in Figure 3A show that

explicit recurrent connections increase activity in all neurons for

every combination of time constants. On average, we have 53.55%

increase in spiking activity for CUBA-LIF, 53.35% for LIF, and

53.58% for IF. N-MNIST spikes count, on the other hand, did not

increase for every combination time constants. It even decreased

for some as shown in Figure 3B. On average, we have 3.89% increase

for CUBA-LIF, 16.78% for LIF, and 15.75% for IF.

It is hard to say whether or not the bigger increase in spiking

activity for SHD contributed to its improved classification accuracy

given that we saw similar increase for IF neurons but a worsened

performance. Given the CUBA-LIF experiments that resulted in

classification performance that is almost as good as that of the

LIF also resulted in the slightest increase in spiking activity.

The CUBA-LIF model could be more suitable for low power

applications especially if tuned better to reach even higher accuracy.

Once again, we can observe that the time constant

combinations leading to the highest accuracies (τmem > 420ms and

τsyn < 70ms) added the fewest number of spikes, whereas those

leading to the worst accuracies (τmem < 420ms and τsyn > 70ms)

added the greatest number of spikes. This result is particularly

noticeable in the case of the SHD dataset.

3.4 Impact of neural heterogeneity

Most existing learning methods learn the synaptic weights only

while requiring a manual tuning of leakages-related parameters

similar to our previously presented experiments. These parameters

are chosen to be the same for all neurons, which could limit the

diversity and expressiveness of SNNs. In biological brains, neuronal

cells have different time constants with distinct stereotyped

distributions depending on the cell type (Hawrylycz et al., 2012;

Manis P. et al., 2019; Manis P. B. et al., 2019). To assess whether

this heterogeneity plays an important functional role or is just

a byproduct of noisy developmental processes, several studies

(Fang, 2020; Perez-Nieves et al., 2021) incorporated learnable

time constants in the training process and found an enhanced

performance as result. In an attempt to reduce time constants

tuning efforts, we adopted a similar approach by enabling the
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training of time constants. This allows us to determine if this

training indeed improves performance and confirms their findings.

Hence, τmem and τsyn will not be treated as hyper-parameters, but

learned parameters along with the synaptic weights.We refer to this

training process as heterogeneous training. Since the IF neuron has

fixed values of time constants: τmem = ∞ and τsyn = 0, it is not

concerned with heterogeneous training. On the other hand, LIF

neuron has a fixed τsyn equal to zero but a variable τmem which we

were able to train. For CUBA-LIF, both time constants are trained.

To evaluate the performance of incorporating learnable time

constants in comparison with the standard training in our

previously presented experiments, we compare two different

conditions: values of time constants could be either all initialized

to a single value and then trained (homogeneous initialization),

or initialized randomly according to a uniform distribution and

then also trained (heterogeneous initialization). We also conducted

these experiments in both FSNN and RSNN.

3.4.1 Homogeneous initialization
First, we initialized τmem and τsyn to the same values we used

in our grid search for both CUBA-LIF and LIF and trained them

along with the synaptic weights. We found that incorporating

learnable time constants did not have a profound impact on both

datasets. As can be seen in Table 5, the best accuracies obtained

with heterogeneous training are slightly higher than that of the

standard training for the SHD. Conversely, N-MNIST reached the

best accuracies with standard training. the results also show that

performance is still sensitive to initial tuning of time constants

since we can observe the same trend in the impact of τmem and

τsyn on accuracy for both CUBA-LIF and LIF neurons. Please refer

to Supplementary material for results obtained with more time

constants initialization values.

3.4.2 Random initialization
Because time constant tuning is a daunting task and is

often one of the largest costs for developing these models,

time constants are initialized randomly according to a uniform

distribution. The results shown in Table 5 indicate that, within

an FSNN, performance significantly lags behind that achieved

through heterogeneous training with homogeneous initialization,

as well as standard training for both CUBA-LIF and LIF. This is

especially apparent with the SHD dataset. In an RSNN, however,

SHD accuracies drastically improved for both CUBA-LIF and LIF.

In fact, the LIF neuron achieved an 83.18% accuracy which is on-

par with the results obtained through other training approaches.

For the CUBA-LIF, although 75.60% is far from sufficient compared

to accuracies obtained earlier, it is promising given the amount of

tuning required to achieve the best results with standard training.

Intuitively, the CUBA-LIF should be able to perform better

than the LIF neuron or at least reach a similar accuracy, given

that LIF is a special case of CUBA-LIF. However, due to the large

search space of CUBA-LIF, it is possible that it converges to a

sub-optimal solution compared to LIF within the same number

of epochs. Further investigations are required to assess the impact

of the current compartment of the CUBA-LIF by using datasets

with amore complex temporal structure or longer sequences. These

results tell us that heterogeneity in time constants could further

TABLE 5 Comparison between best accuracies of standard vs.

heterogeneous training.

Neuron Standard Heterogeneous training

model training
(%)

Homog.
init. (%)

Random
init. (%)

A. FSNN

SHD
CUBA-LIF 76.94 78.69 64.84

LIF 77.20 79.84 68.89

N-MNIST
CUBA-LIF 97.41 97.24 96.45

LIF 97.64 97.41 97.58

B. RSNN

SHD

CUBA-LIF 82.74 82.84 75.60

LIF 83.41 83.47 83.18

N-MNIST

CUBA-LIF 97.35 97.14 96.11

LIF 97.48 97.38 97.69

The bold values indicate the best accuracies that have been highlighted.

improve performance and reduces time constants tuning efforts for

data with information content in their temporal dynamics.

4 Discussion

In the neuro-scientific literature, it has been reported that

leakages in biological neurons exist in many contexts such as

synaptic transmission in the visual cortex (Artun et al., 1998) and

sodium ion channels (Snutch and Monteil, 2007; Ren, 2011). Many

spiking neuron models imitate this leaky behavior through an

exponential decay in the synaptic current and membrane potential.

Other models prioritize computational efficiency by removing

the leakage. To tackle the lack in understanding of the effect of

these leakages from the modeling perspective, we confronted three

spiking neuron models with variable degrees of leaky behavior,

namely the CUBA-LIF, LIF, and IF, in classification tasks with a

number of degrees of freedom.

We first trained SNNs using the three neuron models with a

feed-forward network to classify visual patterns of written digits

from the N-MNIST dataset and auditory information of spoken

digits from the SHD datasets. Surprisingly, the IF model, despite

the absence of leaky behavior and the resulting lack of inherent

temporal dynamics, slightly outperformed the other models on

the SHD by reaching an accuracy of 78.36 ± 0.87%, and closely

matched the best of LIF model accuracy on the N-MNIST by

reaching 97.50 ± 0.06%. CUBA-LIF on the other hand, had the

inferior performance among the three models on both datasets

despite its intrinsic temporal dynamics caused by both synaptic and

membrane leaks. Both LIF and CUBA-LIF saw a drastic decrease in

accuracy when τmem is less than 420ms, which leads to a fast decay

in membrane potential and loss of information. We also found

that CUBA-LIF reached its highest accuracies when its dynamics

are close to those of the LIF. We conclude that leakages do not

necessarily lead to improved performances even on temporally

complex tasks when using feed-forward networks. In terms of

sparsity, it is IF to see sparser activity in IF neurons and CUBA-LIF

neurons with smaller values of τsyn than their LIF counterpart.
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TABLE 6 Number of multiplication, addition, and comparison operations

per spiking neuron at each time step, where N is the number of inputs

(feedforward and/or recurrent) to the neuron and P is the percentage of

those inputs that receive a spike.

Neuron model IF LIF CUBA-LIF

Multiplications 0 1 2

Additions N × P N × P N × P + 1

Comparisons 1 1 1

Upon inspection of the trained weights distributions, it seems that

BPTT is tailoring LIF neurons to have bigger weights, and hence

more spikes. Therefore, leakages do not always lead to sparser

activity. Furthermore, we noticed that very low spiking activity

resulted in the worst classification performance on the SHD. Very

high spiking activity associated with bigger τsyn values also resulted

in a worsened performance. These results suggest that there is a

sweet-spot where a sufficient amount of spikes produce an optimal

classification accuracy.

Overall, IF neurons are sufficient when using data without

temporal information or a network without recurrence in terms

of classification accuracy and sparsity. It suggests that the

fundamental ingredient of spiking neurons is their statefullness,

i.e., having an internal state with an implicit recurrence, even

without leakage. Furthermore, they offer a better alternative if we

consider digital neuromorphic hardware design that is based on

application-specific needs. IF neurons could be very cheap in terms

of hardware resources, as they only perform additions for the input

integration and a comparison for the output evaluation. In contrast,

the LIF and CUBA-LIF neurons require multipliers to implement

the leakage in their current and/or voltage compartments as shown

in Table 6, thus resulting in more expensive hardware.

Next, we added explicit recurrent connections to the neurons

in the hidden layer. Expectedly, we saw a big improvement in

accuracy for the SHD that has a rich temporal structure and

no improvement at all for the N-MNIST that has mostly spatial

structure. However, recurrences did not have any impact on the IF

neuron on both datasets. Therefore, we conclude that the inherent

temporal dynamics introduced by the leakages are only necessary

when we use both data with a rich temporal structure and a neural

network with a explicit recurrence. The best SHD accuracies we

were able to obtained in a RSNN were very close to state-of-the-

art results (Dampfhoffer et al., 2022) such that we reached 82.74 ±

0.17% with CUBA-LIF and 83.41± 0.37% with the LIF. In terms of

sparsity, we saw a bigger increase in spiking activity with the SHD

than the N-MNIST. In both datasets, the CUBA-LIF neurons with

the best time constants combinations added the smallest number

of spikes, which gives them an advantage in sparsity compared to

LIF neurons.

Finally, we introduced heterogeneity in the considered spiking

neurons by incorporating learnable time constants in the training

process following two approaches: homogeneous initialization and

random initialization. Heterogeneous training with homogeneous

initialization slightly improved performance on the SHD, which

has a complex temporal structure. The best SHD accuracies we

obtained with heterogeneous training in RSNNwere also very close

to state-of-the-art results (Dampfhoffer et al., 2022) with 82.84

± 1.17% for CUBA-LIF and 83.47 ± 2.12% for LIF. However,

results are very sensitive to initial values of time constants. On the

other hand, random initialization did not improve performance

but proved it can be promising given the 83.18 ± 0.19%

achieved by the LIF with the SHD. For the CUBA-LIF, however,

further investigations are required to assess the impact of its

current compartment.

5 Conclusion

In this work we explored the effect of spiking neurons synaptic

and membrane leakages, network explicit recurrences and time

constants heterogeneity on event-based spatio-temporal pattern

recognition. The main findings of our work can be summarized

as follows:

• Neural leakages are only necessary when there are both

temporal information in the data and explicit recurrent

connections in the network.

• Neural leakages do not necessarily lead to sparser spiking

activity in the network.

• Time constants heterogeneity slightly improves performance

and reduces time constants tuning efforts on data with a rich

temporal structure and does not affect performance on data

with a spatial structure.

This work supports the identification of the right level of

model abstraction of biological evidences needed to build efficient

application-specific neuromorphic hardware. This is a crucial

analysis for advancing the field beyond state-of-the-art, especially

when constrains on resources are critical (e.g., edge computing).

In fact, when using digital neuromorphic architectures, IF neurons

have been shown to be 2 × smaller and more power-efficient than

formal Perceptrons (Khacef et al., 2018). It is nevertheless not clear

how this gain evolves when adding a multiplier to implement a LIF

or CUBA-LIF neuron. Further works will focus on implementing

these two architectures in FPGAs for fast prototyping. In addition,

IF neurons give the possibility to implement a digital asynchronous

processing purely driven by the input, since there is no inherent

temporal dynamics in the spiking neurons. On the other hand,

LIF and CUBA-LIF neurons require algorithmic time-steps where

the leakage is updated regardless of the presence of input spikes.

Further works will explore the impact of both paradigms in energy-

efficiency on the Loihi neuromorphic chip (Davies et al., 2018).

Furthermore, it is important to mention that our results only

hold in benchmarking so far. In a real-world scenario such as

continuous keyword spotting, there can be more noise in the data

but also in void. Hence, when using the IF neurons that do not have

any leakage, this noise can accumulate and create false positives

and degrade the performance. Indeed, the low-pass filtering effect

of the spiking neurons leakages has been shown to eliminate

high frequency components from the input and enhance the

noise robustness of SNNs, especially in real-world environments

(Chowdhury et al., 2021). In addition, given that the LIF model

achieved a superior performance when compared to the CUBA-LIF,

it is important to investigate where the latter could perform better.

More complex tasks could show such a gain for the CUBA-LIF
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neuron, because of its current compartment which is an extra state

that gives more potential for spatio-temporal feature extraction.

Finally, spiking neural networks in neuromorphic hardware can

be used beyond fast and efficient inference, by adding adaptation

through local synaptic plasticity (Qiao et al., 2015; Khacef et al.,

2022; Quintana et al., 2022). In this context, the impact of the

leakage can be different, as the inherent temporal dynamics is

required in some plasticity mechanisms (Brader et al., 2007;

Clopath et al., 2010) for online learning.
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