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Introduction: In recent years, extensive research has been conducted on the

synchronous behavior of neural networks. It is found that the synchronization

ability of neurons is related to the performance of signal reception and

transmission between neurons, which in turn a�ects the function of the

organism. However, most of the existing synchronization methods are faced with

two di�culties, one is the structural parameter dependency, which limits the

promotion and application of synchronous methods in practical problems. The

other is the limited adaptability, that is, even when faced with the same control

tasks, for most of the existing control methods, the control parameters still need

to be retrained. To this end, the present study investigates the synchronization

problem of the fractional-order HindmarshRose (FOHR) neuronal models in

unknown dynamic environment.

Methods: Inspired by the human experience of knowledge acquiring,memorizing,

and application, a learning-based sliding mode control algorithm is proposed by

using the deterministic learning (DL) mechanism. Firstly, the unknown dynamics

of the FOHR system under unknown dynamic environment is locally accurately

identified and stored in the form of constant weight neural networks through

deterministic learning without dependency of the system parameters. Then,

based on the identified and stored system dynamics, the model-based and

relearning-based sliding mode controller are designed for similar as well as new

synchronization tasks, respectively.

Results: The synchronization process can be started quickly by recalling the

empirical dynamics of neurons. Therefore, fast synchronization e�ect is achieved

by reducing the online computing time. In addition, because of the convergence

of the identification and synchronization process, the control experience can

be constantly replenished and stored for reutilization, so as to improve the

synchronization speed and accuracy continuously.

Discussion: The thought of this article will also bring inspiration to the related

research in other fields.

KEYWORDS

fractional-order Hindmarsh-Rose system, synchronization control, sliding mode control,

deterministic learning, system identification

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1246778
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1246778&domain=pdf&date_stamp=2023-09-27
mailto:cdf2017@fosu.edu.cn
https://doi.org/10.3389/fnins.2023.1246778
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1246778/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1246778

1. Introduction

In recent years, the dynamic behavior of complex networks,

especially neural networks, has attracted extensive attention.

It is found that the performance of signal reception and

transmission between neurons affecting the functions of the

organism depends on the synchronization ability of neurons. The

most commonly mentioned neurological diseases such as Epileptic,

Parkinson’s, Alzheimer’s, autism, and schizophrenia, are closely

related to the synchronization ability of brain neurons (Yang

et al., 2021; Zeng et al., 2023). Precisely, it has been proved

that decreased synchronization can lead to neural disorders such

as schizophrenia, while increased synchronization abnormalities

may induce neurological diseases such Parkinson’s disease and

epilepsy (Uhlhaas et al., 2006). In addition, as presented in

Brown et al. (2004), the firing rate of neurons in the subthalamic

basement nucleus (STN) and the medial Globus Pallidus (GPI)

in Parkinson’s patients not only increased but also tended to

synchronize abnormally.

For these neuropathies mentioned above, electrical stimulation

method (Liu et al., 2019) was the most commonly used clinical

treatment method. The abnormal synchronization of neurons is

calibrated by adjusting the direction, frequency, and amplitude

of the stimulation current. However, for different neurological

diseases, how to choose or set optimal parameters of the stimulation

current is a difficult problem.

Considering that the process of information generation,

transmission, and decoding between neurons are closely related to

their complex discharge activities, it is of paramount significance

to simulate the electrical activity of neurons through mathematical

models. Thus, many research studies are conducted on differential

equation models to further analyze the influence of the parameter

variations on the neuronal electrophysiological processes and

firing activities. Among the various differential neuron models,

such as the Hodgin-Huxley (HH) (Hodgkin and Huxley, 1952),

FitzHugh-Nagumo (FHN) (Fitzhugh, 1961), Hindmarsh-Rose

(HR) (Hindmarsh et al., 1984) and Ermentrout (Ermentrout, 2014)

neuronal models, the HR neuronal model is the most commonly

used one for non-linear dynamic and synchronization analysis

(Parastesh et al., 2019; Liu et al., 2021; Remi et al., 2022).

The HR model possesses simple polynomial expression and

can accurately describe the process of signal transmission across

neurons. In Boaretto et al. (2018), the HR model was introduced to

study the dynamic mechanism of abnormal phase synchronization.

As discussed in Simo et al. (2021), the effect of the electromagnetic

on the HR model under weak electric environment was considered

to simulate the electrical activities and the synchronization process

of neurons. In Ding et al. (2022), the dynamics of fractional-order

memristor-coupled Hindmarsh-Rose neuron model considering

synaptic crosstalk was investigated. It revealed that there were

differences between the number and stability of equilibrium points

for different crosstalk strength parameters. As discussed in Li et al.

(2023), Fourier coefficients are introduced to investigate the effect

of electric field on vibrational resonance for signal detection in a

single neuron model and a bidirectionally coupled neuron model,

respectively. It was found that the periodic external electric field

of an appropriate frequency significantly enhances the vibrational

resonance, which indicate that the external electric field may

play a constructive role in the detection of weak signals in the

brain and neuronal systems. In addition, the Hopf bifurcation,

one of the typical non-linear dynamic behaviors was investigated

in a memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo

neurons with two time delays in Guo et al. (2023). It revealed that

the time delay in HR neurons has a greater effect on blocking the

synchronization than the time delay in FHN neuron.

Apart from the dynamic analysis using differential models,

a large number of electrophysiological experiments have been

conducted for the electrophysiological mechanism of abnormal

synchronization of neurons (Jia et al., 2012). Through biological

experiments given by Gu et al. (2014), it was found that the

discharge frequency of the neuronal system became faster with

the increase of potassium (K+) concentration. Furthermore, with

the variation of the concentration of potassium, the neuronal

system showed different firing models, which was consistent with

the dynamic performance of HR model under external stimulus

current. In Jia et al. (2017), the authors conducted corresponding

biological experiments on the calcium ion (Ca2+) of neuron cells.

Similar results have been achieved, that is, with the change of

calcium concentration in a certain range, the neurons exhibit

single-cycle, double-cycle, and chaotic electrical activity. In , it

indicates that by adjusting the concentration of calcium ions

(Ca2+) of neurons, the corresponding inter spike interval (ISI)

demonstrates similar features with the dynamic behaviors of the

HR model with the variation of system parameters. These results

further demonstrate that it is feasible and effective to analyze the

electrical activity of neurons according to the non-linear dynamics

of the HR model with different system parameters, such as the

external stimulating current and other related parameters.

Recently, increasing attention has been focused on fractional-

order (FO) calculus (Rihan et al., 2019; Wang et al., 2020;

Jin et al., 2021), which is also very popular in the field of

neuroscience (Dong et al., 2014). It was found that compared

with the integer order model, the fractional neuron models

reveal more advantages, such as the FO neuron models can

describe the physical memory and genetics more accurately and

can illustrate the biological characteristics more correctly in the

presence of noise (Dong et al., 2014). Moreover, the stimulating

dynamical features show that many neural computing features

can be implemented in FO systems, which enriches the functional

neuronal mechanisms. Therefore, the neural dynamic analysis

method based on fractional HR model makes the model-based

modeling of abnormal synchronization of neurons step up to a

new stage.

In addition to the mechanism analysis based on the model

and biological experiments, the synchronization control between

neurons is also one of the core problems attracting people’s

attention. Over the past few decades, various control techniques,

including neural network control (Motallebzadeh et al., 2012),

feedback control (Semenov and Fradkov, 2021), adaptive control

(Deng et al., 2006), fuzzy control (Nirvin et al., 2021), and sliding

mode control (Chen et al., 2012; Vafaei et al., 2019), have been

proposed and applied to the control and synchronization of the

HR model as well as the FOHR models. As presented in Rajagopal

et al. (2019), a feedback synchronization controller was designed
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for the fractional-order HR neuronal model, whose gain was

limited to some parameter conditions. The authors in Giresse et

al. (2019) designed controllers for the synchronized behaviors of

coupled FOEHR neurons. Among these methods, sliding mode

control and adaptive control techniques have attracted much

attention due to their positive features such as guaranteed stability,

strong robustness against parameter variations, and simplicity

in implementation (Meng et al., 2020). As presented in Che et

al. (2010), for unidirectional complete synchronization of HR

neurons, a sliding mode control scheme with additional conditions

was considered. However, the chattering phenomena is the main

problem faced by the sliding mode control methods. Thus, many

research studies are conducted to reduce the chattering problem by

using different sliding mode surfaces. However, most of the results

show that there is a tradeoff between control error and the control

smoothness. In addition to the problem mentioned above, most

of these control methods depend heavily on the system models.

For most of the actual dynamic systems, the system models have

some uncertainty because of the influence of dynamic environment

(Rabah et al., 2017; Xu et al., 2020). How to avoid the influence

of system uncertainty and disturbance on the control system

performance is of great significance for the synchronization control

of chaotic system. As discussed in Liu et al. (2021), the adaptive

radial basis function (RBF) neural network was introduced for the

identification of the unknown system dynamics of the HR model.

However, the training time and computation cost of neural network

observer inevitably increase greatly.

In Wang and Hill (2018), Wang proposed a deterministic

learning (DL) theory mainly discussing the problem of knowledge

learning and reutilization of non-linear dynamic systems under

unknown dynamic environment by using the RBF neural networks.

It has proved that for any period or period-like system input, the

persistence of excitation (PE) condition can be satisfied and the

precise convergence of the neural network weights can be achieved.

With the development of deterministic learning theory, it was

further applied for the problem of dynamic pattern recognition

(Lin et al., 2019), period-doubling bifurcation detection (Chen and

Wang, 2016), and intelligent control (Zhang et al., 2023). The

DL algorithm emphasizes the preservation and reutilization of

system dynamic knowledge. When faced with similar recognition

or control tasks, it can quickly recall the identified and stored

system knowledge so as to reduce the online computation time.

Inspired by the above discussion, the dynamic characteristics

of the HR model, especially the FOHR neuron model under

unknown dynamic environment is considered in this study and the

model-based and learning-based sliding mode control algorithm

are proposed by using the deterministic learning (DL) mechanism.

Since the system dynamics of the slave system is unknown as

considered in this study, in order to achieve ideal robustness effect

of the control system, the traditional sliding mode control method

usually sets too large gain parameters to overcome the system

uncertainties, which in turn leads to serious chattering problem. In

our study, the sliding mode gain parameter is effectively reduced

by compensating the system dynamics with locally accurate

system identification. First, the unknown dynamics of the FOHR

system under unknown dynamic environment is locally accurately

identified and stored in the form of constant weight neural

networks through deterministic learning without dependency of

the system parameters. Then, the model-based and learning-based

sliding mode controllers based on the identified and stored system

dynamics are designed for the similar and new synchronization

tasks, respectively. Therefore, the fast synchronization effect is

achieved through recalling the empirical dynamics of neurons.

Moreover, the control experience can be constantly replenished

and stored for reutilization due to the convergence of the

identification and synchronization process, which help improves

the synchronization speed and accuracy continuously.

2. Methods and innovations

In this section, the method proposed in this study and the

main innovations are briefly introduced. Aiming at the problem

of abnormal synchronization of neurons under unknown dynamic

environment, the sliding-mode control method is introduced.

Different from traditional sliding-mode control policy, the human

experience of knowledge acquisition, storage, and re-application

is introduced to the control process of our study. Precisely, the

unknown dynamic information of the neuron system is identified

and stored according to the deterministic learning mechanism by

using the RBF neural network. The dynamic information is further

applied to the controller to achieve more accurate synchronization

effect, which is called the model-based sliding-mode control.

Considering the case that the stored dynamic information is limited

and the unknown slave system can not be well matched, the

relearning-based sliding-mode control is proposed. During this

propose, the identified and control experience can be updated

and supplemented to the dynamic patter database, which can

provide experience for new and unfamiliar synchronization tasks.

Thus, the online computing time is shortened, and a better

synchronization effect can be achieved. In addition, the problem

of excessive chattering faced by traditional sliding mode control

method can be solved skillfully by selection small sliding-mode gain

by using experiential information. The flowchart of the method

is available in Figure 1. The emphasis of our study is not only

on the effect of synchronization but also on the efficient storage

and reutilization of the experience knowledge in the process of

neural system synchronization, which is the essence of intelligent

learning and intelligent control and not covered by most existing

research studies.

3. Preliminary knowledge

3.1. Fractional-order definition and basic
properties

The fractional order (FO) calculus has a very longmathematical

history and has gained extensive attention in the areas of science

and engineering with the advent of high computational devices

recent years. The FO calculus can be seen as the comprehensive

and generalized version of the conventional integer-order calculus,

which encompassed both fractional and integer-order differential

and integral equations (Dar et al., 2022). Correspondingly, the

FO derivative possesses complex or real arbitrary order, for which

various mathematical operators have been proposed. Among those
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FIGURE 1

Flowchart of the method.

operators, the Grunwald-Letnikov (GL) (Huang, 2016), Liouvill (L)

(Huang, 2016), Riemamn-Liouville (RL) (Efe, 2009), and Caputo

(C) (Gorenflo and Mainardi, 1997) are most commonly used.

Compared with the L, RL, and C operators, the GL operator

pays more attention to the numerical calculation of fractional-

order differentiation. Since the fractional derivative describes

memory and hereditary properties in such an appropriate manner

that it demonstrates much advantages in system representation

compared to the integer-order models, the GL-based fractional

order definition (Huang, 2016) is introduced in this study:

G
aD

q
t f (t) =

dqf (t)

d(t − a)q
= lim

h→0
h−q

n
∑

r=0

(−1)r

(

q

r

)

f (t − rh), (1)

where, G means the GL based fractional calculus, nh = t − a,

if q < 0, the Equation (1) is the G-L based fractional integral

definition; on the contrary, if q > 0, the Equation (1) is the G-L

based differential definition.

3.2. Properties of fractional calculus

The main and commonly used properties of fractional

derivatives are given as follows:

1. For q = n, where n is an integer, the operation 0D
q
t f (t)

gives the same result as classical differentiation of integer

order n. Meanwhile, the fractional derivative degenerate to

integer derivative.

2. For q = 0, the operation becomes the identity operator given as

0D
q
t f (t) = f (t). (2)

3. The additive index law (semigroup property)

0D
α
t 0D

β
t f (t) = 0D

β
t 0D

α
t f (t) = 0D

α+β
t f (t) (3)

holds under some reasonable constraints on the function f (t).

In particular, there is

D
q
t (D

1−q
t f (t)) = D1

t f (t) =
d

dt
f (t), 0 < q < 1. (4)

3.3. The deterministic learning theory

In 2009, the deterministic learning (DL) theory was proposed

for the problem of learning in uncertain dynamic environments

(Wang et al., 2009). It mainly focuses on the dynamic process of

knowledge learning, representation, and utilization in unknown

dynamic environment. With deterministic learning, fundamental

knowledge on system dynamics can be accumulated, stored, and

represented by constant RBF networks in a deterministic manner.

Moreover, in a scenario whereby an adaptive neural network (NN)

controller achieves tracking of a periodic or periodic-like reference

orbit, the deterministic learning mechanism is shown capable of

achieving closed-loop identification of partial system dynamics

during tracking control.

In detail, for any unknown continuous non-linear function

f (X) :�X → R with recurrent system trajectories ψ(x0), in which
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�X ⊂ Rq is a compact set, an ideal constant weight vector W∗ of

the RBF networks exists, that is, f (X) = W∗Tφ(X)+ ε∗, ∀X ∈ �X ,

where ε∗ > 0 is the approximation error andX ∈ �X ⊂ Rq denotes

the input vector of the radial basic function networks (RBFNs),

W∗ = [w∗
1 , · · · ,w

∗
n]

T ∈ RN is the ideal RBFNs weight withN being

the number of neurons. φ(X) = [ϕ1(‖X−c1‖), · · · ,ϕn(‖X−cn‖)]
T

is the regression vector of RBFs with ϕi(·) being one of the radial

basic function, and ci is the center of neurons distributed in the

input space. For the radial basic function, the Gaussian function is

one of themost commonly used kernel RBFs given as ϕi(‖X−ci‖) =

exp[−(X−ci)
T (X−ci)

η2i
], in which ηi is the adjacent width of the radial

base kernel. It satisfies the Schoenberg theorem (Schoenberg, 1938)

and is localized basis function in the sense that ϕi(‖X− ci‖) → 0 as

‖X‖ → ∞. All these properties of the Gaussian function provide

a rich source of RBFs that are suitable for interpolation of data

in Euclidean spaces. The conditional non-singularity property is

essential in proving the partial persistent excitation (PE) condition

of RBF networks, which is the key to the accurate identification

ability for the deterministic learning theory.

4. Dynamic identification of the
fractional-order HR model via
deterministic learning

4.1. The fractional-order HR model

With the development of neuroscience, various differential

models have been proposed for describing the neuron system,

including the Hodgin-Huxley (HH) model, the FitzHugh-Nagumo

(FHN) model, the Hindmarsh-Rose (HR) model, and the

Ermentrout neuronal model. Among those models, the HR model,

possessing the simplest system form, can accurately describe the

signal transmission process across the nerve fiber membrane. Thus,

the HR model is commonly used for neuron dynamic describing

and analysis. The classical three-variable HR neuronal model can

be described by the following equations:

ẋ = y− ax3 + bx2 − z + I

ẏ = c− dx2 − y,

ż = r
(

s0(x− q0)− z
)

(5)

where x is the membrane potential, y is the recovery variable

standing for the gating dynamics of the potassium (K+) channel,

and z represents the adaptation current corresponding to the

dynamics of calcium (Ca2+) channel. Moreover, the model

parameters a, b, c, r, and s0 are positive constants, while the

parameter q0 stands for the resting potential, and I represents the

external stimulation input.

The FO differential model has more advantages in neuronal

dynamic description compared to that of the integer-order model.

In addition, the FO system has a wider stability region. Thus, in this

study, the following fractional order HR (FOHR) neuronal model

is introduced, that is,

D
q
t x = y− ax3 + bx2 − z + I

D
q
t y = c− dx2 − y,

D
q
t z = r(s0(x− q0)− z)

(6)

in which, the operator D
q
t represents the GL fractional derivative as

shown in Equation (1).

The state variables and model parameters of the FOHR

model possess the same physical meaning with the integer-order

HR model. Through bifurcation analysis under different values

of the external stimulation input I and fractional order q, the

FOHR model demonstrates a wealth of dynamic behaviors, such

as the subthreshold oscillations, spiking, bursting as well as

chaotic behaviors.

In detail, when taking the fractional order q = 1, the FOHR

model degenerates to an integer-order HR model. By setting q = 1

and the corresponding system parameters a = 1.0, b = 3.0, c =

1.0, d = 6.0, r = 0.013, s = 4.0, and q0 = −1.56, diverse non-

linear dynamics under different external stimulus I of theHRmodel

are generated. By changing the control parameter I, the membrane

potential x presents different state characteristics, which can be

seen from Figure 2, in which the initial system state (x0, y0, z0) is

set as (0.1, 1.0, 0.2).

Precisely, when setting I = 1.5, the neuron produces

slow-peak regular spiking (single-cycle spiking) state as given in

Figure 2A. Gradually increasing I to 1.8, 2.3, 2.8, the HR system

exhibits regular bursting state, shown as the period-2, period-

3, and period-4 bursting behaviors, respectively, which can be

seen from Figures 2B–D. When I increased to 3.2, the state x of

the HR system becomes chaotic as shown in Figure 2E. Further

increasing I to 3.58, the system regresses to a fast single-cycle

spiking state as demonstrated in Figure 2F, in which the period

interval is significantly shorter and the rate of the dynamic

activity is much faster than that of the interval demonstrate

in Figure 2A.

4.2. The dynamic behavior of the FOHR
model under fractional order q

Except for the non-linear behavior of the time response of the

membrane potential x, the inter-spike interval (ISI) (Rabinovich

and Abarbanel, 1998) is one of most commonly used physiological

indicators, which carries important information of neuronal firing.

In the following discussion, the bifurcation diagram of the peak

membrane potential xmax and the ISI sequence of the FOHR neural

system with different bifurcation parameters are considered.

First, the dynamic non-linearity of the FOHR model under

different fractional orders q with the external excitation I = 3

is considered. As shown in Figure 3A, the bifurcation diagram of

the ISI sequence exhibits a comb-shaped region with the increase

of fractional order q. Correspondingly, the bifurcation diagram

of the peak of the membrane potential x (denoted as xmax)

demonstrates that the discharge characteristics of the system varies

more obviously according to the fractional order. That is, with the

increase of the fractional order q within a certain range, the system

as a whole shows the tendency of periodic decline, and the periodic

bursting phenomenon occurs as demonstrated in Figure 3B. In

other words, the firing behavior of neurons becomes more complex

and unstable with the increase of the fractional order of the

neuronal system, exhibiting richer dynamic activity characteristics.
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FIGURE 2

Time response of membrane potential x with di�erent parameters I. (A) I = 1.5. (B) I = 1.8. (C) I = 2.3. (D) I = 2.8. (E) I = 3.2. (F) I = 3.58.

4.3. The dynamic behavior of the FOHR
model under external excitation I

Second, take the external excitation I as the control parameter

for analyzing the dynamic behaviors of the FOHR model with a

certain fractional order. The parameter I is taken within the interval

[1.2, 4.3] and r = 0.013.

The simulation results of the bifurcation diagram of the

ISI sequence (shown in Figure 4) exhibit that the dynamic

characteristics of the FOHR system become more complex with
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FIGURE 3

Bifurcation diagram of the ISI and the xmax sequence with parameter q. (A) bifurcation diagram of ISI. (B) bifurcation diagram of xmax.

the increase of I. Taking the integer order as an example (given

in Figure 4A), the ISI sequence experiences the process of period-2

bifurcation to chaos and then back to single period by the period-

doubling bifurcation process. Correspondingly, the ISI sequence of

the 0.98-order FOHR model indicates similar discharge behaviors

with that of the integer-order model, but the chaos duration is

reduced. In addition, from the amplitude of the ISI sequence, it can

be seen that the effect of external stimulus current on the system

dynamics was much obvious.

According to the bifurcation diagram of the xmax sequence

shown in Figure 5, the dynamical behaviors correspond to the same

fractional order has similar and abundant dynamic characteristics

with that of the ISI sequence. In addition, some hidden information

contained in the integer order can be clearly demonstrated in

the 0.98-order HR model as shown in Figure 5B, such as the

period-4 cluster bursting under I = 3.0, the period-5 cluster

discharge when I = 3.3, the comb-shaped region and the chaotic

region. If a further decrease in the fractional order q to 0.96 and

0.95 as can be seen from Figures 5C, D, the dynamic structure

of the FOHR system changes qualitatively. Precisely, with the

increase of parameter I, the dynamic behavior of the FOHR model

becomes more complex. The structure and stability of the system is

influenced correspondingly.

4.4. The dynamic behavior of the FOHR
model under parameter r

To further analyze the dynamic characteristics of the FOHR

model, another important parameter r which relates to the

calcium (Ca2+) concentration and significant to many neurological

disorders, is considered as the control parameter in this part. All the

other parameters are kept as the same as mentioned above, while

parameter I is fixed to 3.5. When ranging the parameter r from

0.0015 to 0.06, a variety of dynamic behaviors of the FOHR neuron

system are presented. As shown in Figures 6, 7, the bifurcation

diagram of the ISI sequence and the xmax sequence demonstrate

similar non-linear characteristics. Moreover, compared to the

integer-order HR model, the 0.98-order HR model presents a more

detailed and clear dynamic process.

In conclusion, the dynamic simulations given above suggest

that compared to the integer-order HR model, the fractional-order

HR model can describe the numerous computational features and

the non-linear dynamics of the neuron model more accurately,

which help enrich the functional neuron mechanisms and further

ensures more accurate dynamic analysis. Thus, it is necessary and

important to introduce the FOHR model, and the FOHR model

with fractional order q = 0.98 is taken into consideration in the

following study.

5. Identification of the FOHR model via
deterministic learning

The above numerical simulations are obtained based on the

assumption that the parameters of neurons are known, which is

also commonly used in most related research studies. However,

it is too ideal for most practical neuron systems. More precisely,

the neuron parameters are actually unknown and vary dynamically

with the dynamic environment. Therefore, how to identify the non-

linear dynamics of the neuronal model under unknown dynamic

environment is essential for comprehensive understanding of the

non-linear characteristics of the actual HR model. This will be the

focus of the discussion below.

To identify the unknown system dynamics of the fractional

order HR model, the RBF neural network is considered:

fi(x;µ) = ŴT
ξi
φξi (x), (7)

where x ∈ �f ⊂ Rn is the neural networks (NNs) input, Ŵξ =

[Ŵξ1 , · · · , Ŵξn ]
T is the estimate of the ideal weight matrix, and

φξ (x) = [ϕξ1 (x), · · · ,ϕξn (x)]
T is chosen as a vector of Gaussian

functions, that is given as

ϕξi (x) = exp(
−‖X − ci‖

η2i
), i = 1, · · · ,Ni, (8)
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FIGURE 4

Bifurcation diagram of the ISI sequence with parameter I. (A) q = 1. (B) q = 0.98. (C) q = 0.96. (D) q = 0.95.

where ci denotes the center vector of the ith basis function and

ηi is the adjacent width of the basis function, (·)ξ represents

the neurons that was distributed close to the system trajectory,

which plays the main role during the process of the neuronal

dynamic identification.

Since the input of the RBFNN possesses regression property,

the RBF NNs can locally accurately approximate the non-linear

function along the system trajectory, that is,

fi(x;µ) = W∗T
ξi
ϕξi (x)+ εi1 , (9)

where W∗
ξi
is the optimal weights vector and εi1 is the bounded

identification error close to zero.

The dynamic investigations and simulations of the HR model

discussed above have revealed the regression characteristics of the

neuron system. It is the regression property of the HR model that

reminds us of the deterministic learning theory, which emphasizes

that almost any period or period-like (recurrent) NN input can

lead to the satisfaction of the partial persistent excitation condition

(PE) along the system trajectory by using the localized RBFNs.

Furthermore, the identified system dynamics can be stored due to

the convergence of the NN weights; that is,

W̄i = meant∈[ta ,tb]Ŵi(t), (10)

where ta > tb > 0 is the time segment referring to a piece of

time segment within the convergence process of the NN weights

and "mean" is the arithmetic mean. Then, the unknown system

dynamics can be accurately identified and stored by the constant

vector of neural networks, giving as

fi(x;µ) = W̄T
ξi
ϕξi (x)+ εi2 , (11)

where εi2 = εi1 − W̃T
ξi
ϕξi (x) is the practical approximation error of

the system dynamics by using the constant NN vector W̄T
ξi
ϕξi with

W̃i = Ŵi −W∗
i being a small positive number approaching zero.

For different dynamic external excitation I of the FOHR

system under the given fractional order, different state trajectories

are generated. Based on the approximate process by using

the DL method, accurate identification of unknown system

dynamics fi(x;µ) are obtained and stored as constant RBF

neural networks W̄T
ξ iϕ

T
ξ i. Then, a certain number of constant

RBF neural networks compose a pattern base which denoted as

χ = {χk = W̄kT
i | k = 1, · · · ,K}.
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FIGURE 5

Bifurcation diagram of the xmax sequence with parameter I. (A) q = 1. (B) q = 0.98. (C) q = 0.96. (D) q = 0.95.

FIGURE 6

Bifurcation diagram of the ISI sequence with parameter r. (A) q = 1. (B) q = 0.98. (C) q = 0.96.

Remark 1: The process of system dynamics identification and

storage of the FOHR system in unknown dynamic environment

will simulate the way of human learning and memorizing

new knowledge. The created pattern base, that is, the memory

in the mind of knowledge, can be directly invoked in the

control process.
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FIGURE 7

Bifurcation diagram of the xmax sequence with parameter r. (A) q = 1. (B) q = 0.98. (C) q = 0.96.

6. Sliding mode control of the FOHR
system by using deterministic learning

6.1. Problem description

In this sub-section, the model-based sliding mode control

problem of two FOHR neuronal models is considered. The two

neurons interconnect in a master-slave configuration. The master

FOHR neuronal model is given as follows:

D
q
t xm,1 = xm,2 − ax3m,1 + bx2m,1 − xm,3 + I,

D
q
t xm,2 = cm − dx2m,1 − xm,2,

D
q
t xm,3 = r(s0(xm,1 − q0)− xm,3),

(12)

and the slave FOHR neuronal model under control is denoted by

D
q
t xs,1 = xs,2 − ax3s,1 + bx2s,1 − xs,3 + I + d1 + u1,

D
q
t xs,2 = cs − dx2s,1 − xs,2 + d2 + u2,

D
q
t xs,3 = r(s0(xs,1 − q0)− xs,3)+ d3 + u3,

(13)

where di, i = 1, 2, 3 represents the bounded unknown external

disturbance; that is, |di| ≤ d̄i, i = 1, 2, 3 and the terms ui and

i = 1, 2, 3 denote the control inputs of the state variables.

For the convenience of discussion, the simplified master-slave

neuron system models are presented as follows:

D
q
t xm = fm(xm),

D
q
t xs = fs(xs)+ di + ui,

(14)

where xm = [xm,1, xm,2, xm,3]
T and xs = [xs,1, xs,2, xs,3]

T are the

state vectors of the master and slave neuronal system, respectively.

fm represents the known system dynamics vectors of the master

FOHR model. Correspondingly, fs represents the unknown system

dynamics vectors of the slave FOHR model. Precisely, fs is smooth,

but unknown non-linear dynamics of the slave system. di and ui
have the same meaning as the formula given in Equation (13). The

main task in this part is to realize the synchronization of themaster-

slave system with proper amount of calculation and correct the

synchronization error by adjusting the parameters.

6.2. Model-based sliding mode control of
the FOHR system

The synchronization of the master-slave neuronal system is

to drive the slave neuron system to track the state as well as the

trajectory of the master system under certain external disturbance

in unknown dynamic environment by properly designed controller.

In order to achieve ideal stability effect of the control system, the

gain parameters of the traditional sliding mode control algorithm

are usually set too large, which leads to serious chattering problem.

In this part, the obtained system dynamics W̄i stored in the

pattern base χ is applied for the sliding mode control to achieve

fast synchronization performance for the master-slave neuron

system. In addition, the accurate modeling of the system dynamics

help reduce the synchronization error of the master-slave system

without large gain, thus reducing the chattering caused by sliding

mode gain.

The synchronization error of the master-slave FOHR system is

defined as follows;

ei = xs,i − xm,i,

D
q
t ei = fs,i(x)+ di + µi − fm,i(x),

(15)

where i = 1, 2, 3. To achieve fast synchronization of the master-

slave FOHR system, the identified and stored model-based sliding

mode control method is proposed. First, the fractional order

proportional integral sliding surface is designed as follows:

si = ciD
1−q
t ei + ei,

D
q
t si = ciei + D

q
t ei.

(16)

where si, (i = 1, 2, 3) is the fractional order proportional integral

sliding surface. The derivative of the sliding mode surface can be

achieved according to the properties of fractional order models

discussed in Section 3.2, that is,

ṡi = ciei + fs,i(x)+ di + ui − fm,i(x), (17)

where the corresponding constant rate of convergence is

designed as

ṡi = −ηisgn(si). (18)
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The following sliding mode control rate is designed according

to the Equations (17) and (18)

µi = −ηisgn(si)− ciei + fm,i(x)− fs,i(x). (19)

For the unknown system dynamics fm,i(x) of the slave system, the

rapid recognition process is introduced, that is,

˙̄xki = −bi(x̄
k
i − xi)+ W̄kT

i ϕi(x), k = 1, · · · ,K, (20)

in which x̄ki represents the state of the dynamic model and

the corresponding dynamic information of the system has been

identified and stored in the pattern base χ as mentioned above,

xi is the ith state of the unknown slave system, and bi > 0 is a

design parameter.

For the unknown slave FOHR system, the recognition error

system is given as

˙̃xki = −bix̃
k
i + (W̄kT

i ϕi(x)− fs,i(x)), i = 1, · · · , n, (21)

where x̃ki = x̄ki − xi is the state tracking error between the empirical

pattern stored in the base and the unknown slave system.

Commonly, without identifying the unknown dynamics of the

unknown slave FOHR system, the differences between the dynamic

systems stored in the pattern base and the slave pattern denoted as

|W̄kT
i ϕi(x)− fs,i(x)| shown in Equation (21) is unavailable for direct

computation. However, as presented inWang et al. (2009), the state

tracking error |x̃ki | can be explicitly measured.

For any unknown slave FOHR system with regression system

trajectory ϕ(xd0), the tracking error |x̃ki | can be achieved within

finite time by properly selecting the design parameters; that is,

by introducing the average L1-norm based dynamic similarity

measure, that is given as

‖x̃ki (t)‖1 =
1

T

∫ t+T

t
|x̃ki (τ )|dτ , (22)

where T > 0 is a design parameter, and the difference

between system dynamics can be explicitly measured. Based on

the similarity measure, the smallest tracking error between certain

unknown slave system and the system identified as well as stored in

the pattern base χ can be obtained, that is

x0i = min(‖x̃ki ‖, k = 1, · · · ,m), (23)

FIGURE 8

Non-linear dynamic identification of the 0.98-order HR system with I = 1.5 (χ1). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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in which m denotes the number of models stored in the pattern

base χ .

Remark 2: According to the recognition process discussed

above, the dynamic differences between the slave system and those

systems stored in the pattern base can be accurately measured

without identifying of the dynamic information of the slave system.

This process is therefore referred to as rapid recognition. In

particular, the most similar dynamic pattern χk0 can be selected

from the pattern base according to the minimum recognition error,

and the dynamic information of the selected model denoted as

W̄
k0T
i can be used to replace the unknown dynamics fs,i(x) of the

slave FOHR model in the following control process.

Based on the recognition process, the unknown system

dynamics fs,i(x) of the slave system can be locally accurately

identified as well as stored by the constant weight NNs along the

system trajectory, that is,

fs,i(x) = W̄
k0T
i ϕi(x)+ εi2 . (24)

Substituting Equation (24) into Equation (19), the following

control rate is obtained:

ui = −ηisgn(si)− ciei + fm,i(x)− W̄
k0T
i ϕi(x), (25)

where W̄
k0T
i ϕi(x) denotes the most similar dynamic model

recognized from the pattern base to the unknown slave system by

using the localized RBFNNs located close to the system trajectory.

Remark 3: The mode-based sliding mode control is designed

to fit the unknown dynamics of the slave system quickly by

calling the acquired dynamic information of the neurons, and the

experience is applied to the control process. During this process,

the generalization ability of the rapid recognition mechanism based

on deterministic learning provides the right decisions for invoking

right dynamic patterns for better control performance. Put it

another way, the empirical dynamic information learned and stored

in the pattern base is so sufficiently utilized that the on-line control

time is reduced and the fast synchronization is achieved. Compared

with the traditional sliding mode control method, the model based

sliding mode control algorithm can effectively reduce the sliding

mode gain so as to reduce the chattering problem of the system.

FIGURE 9

Non-linear dynamic identification of the 0.98-order HR system with I = 2.5 (χ3). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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6.3. Stability analysis

To verify the stability of the master-slave synchronization

control system, consider the following Lyapunov

function candidate:

Vi =
1

2
s2i . (26)

The derivative of V is

V̇i = si ṡi. (27)

By taking the differential equation of the sliding surface given

in Equation (17) and the sliding mode rate given in Equation (25)

to Equation (27), we have

V̇i = si(ciei + fs,i(x)+ di + ui − fm,i(x)),

= si(fs,i(x)+ di − ηisgn(si)− W̄
k0T
i ϕi(x)).

= si(εi2 + di − ηisgn(si)),

(28)

as shown in Equation (28), the external disturbance di and the

identification error εi2 have an upper bound. Therefore, to ensure

that the function Vi is negative definite, just need to set appropriate

slidingmode gain ηi to make the equation ηi > εi2+di work, which

will further ensure the convergence of synchronization error.

6.4. Relearning-based sliding mode control
of the master-slave FOHR system

As discussed above, the robustness and generalization ability

of the recognition system are greatly related to the richness of

the patterns in the dynamic pattern database. When considering

the condition that there is no ideal similar dynamic pattern in

the pattern base for the unknown slave system, that is,even if the

smallest tracking error exists, the corresponding constant system

dynamics W̄
k0T
i ϕi(x) utilized in the control rate may result in large

synchronization error and affects the stability and convergence of

the control process. This analysis suggests that it is necessary to

further explore how to improve the synchronization effect under

limited off-line pattern base.

In order to solve the above problems to ensure a stable and

rapid control effect, further identification of the unknown slave

system is considered. Based on the selected dynamics W̄
k0T
i ϕi(x)

according to the smallest recognition error, the improved control

FIGURE 10

Non-linear dynamic identification of the 0.98-order HR system with I = 3.6 (χ3). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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rate is proposed below:

ui = −ηisgn(si)− ciei + fm,i(x)− ŴT
i ϕi(x),

ui(0) = −ηisgn(si)− ciei + fm,i(x)− W̄
k0T
i ϕi(x).

(29)

Based on the Equation (29) and Equation (17), the time

derivative of the sliding mode variable is given as

ṡi = −W̃T
i ϕi(x)+ εi − ηisgn(si)+ di, (30)

where −W̃T
i ϕi(x) = fs,i(x) − ŴT

i ϕi(x), |di(t)| ≤ Di, and |εi| ≤ ε̄

are external excitation and identification error with upper bound,

respectively. For convenience of presentation, define Di + ε̄i = κi,

the derivation of the sliding mode surface is given as follows:

ṡi = −W̃i
T
ϕi(x)− ηisgn(si)+ κi. (31)

In addition, the NN adaptive update law of the sliding mode

control is designed as

˙̂Wi =
˙̃Wi = Ŵiϕi(x)si − σiŴi|si|Ŵi, (32)

where Ŵi and σi are positive adjustable parameters. Since κi = Di+

ε̄, the synchronization error is precisely related to the identification

accuracy; that is, the higher the identification accuracy of the

unknown slave system, the better the synchronization effect of the

master-slave neuronal system.

Theorem 1 Consider the master-slaver neuron FOHR system

as shown in Equation (14), the learning-based controller Equation

(29), and the NN weight updating law Equation (32). For initial

condition xd(0) which generates the recurrent orbit ϕd(x0), and

with corresponding initial condition x(0) selected in a close vicinity

of the recurrent orbit, the control error of the master-slave system

described by Equation (15) converges exponentially to a small

neighborhood around zero.

Proof : For the sliding mode-based control system, consider the

following Lyapunov function:

V =
1

2
s2i +

1

2
W̃T

i Ŵ
−1W̃i. (33)

The derivative of V is

V̇i = si ṡi + W̃T
i Ŵ

−1
i

˙̃Wi. (34)

FIGURE 11

Non-linear dynamic identification of the 0.98-order HR system with I = 4 (χ4). (A) State trajectory on the x− z plane. (B) Approximation of the state

trajectory. (C) Approximation of f3(x;µ). (D) Weight convergence.
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By introducing the designed sliding mode surface and the

adaptive update rate equation, there is,

V̇i = si(−W̃T
i ϕi(x)− ηisgn(si)+ κi)+ W̃T

i Ŵ
−1
i (Ŵiϕi(x)si

− σiŴi|si|Ŵi),

= siκi − siηisgn(si)− σiW̃
T
i |si|Ŵi,

≤ |si|(κi − ηi − σiW̃
T
i Ŵi),

(35)

in which,

−σiW̃
T
i Ŵi ≤ −σi‖W̃i‖

2 + σi‖W̃i‖‖W
∗
i ‖,

≤ −
σi

2
‖W̃i‖

2 +
σi

2
‖ ¯̄Wi‖

2,
(36)

with ¯̄Wi being the upper bound of the ideal identification NN

weightW∗
i . Thus, it follows that

V̇i ≤ |si|(κi − ηi −
σi

2
‖W̃i‖

2 +
σi

2
‖ ¯̄Wi‖

2). (37)

It is clear that V̇ is negative definite when the following

conditions are met:

|ηi| >
σi

2
‖ ¯̄Wi‖

2 + κi or ‖W̃i‖ >
σi

2
‖ ¯̄Wi‖ +

√

2κi

σi
. (38)

Since the ideal identification NN weight W∗
i , the external

excitation di and the estimate error εi are all upper bounded;

therefore, all signals in a closed-loop control system remain

bounded, including the estimate NN weight Ŵi and the sliding

mode variable si.

In addition, to the convergence of the slidingmode variable, the

following Lyapunov function is given as

V =
1

2
s2i . (39)

The corresponding derivative is given as

V̇i = si ṡi,

= si(−W̃T
i ϕi(x)− ηisgn(si)+ di + εi),

≤ −|si|(ηi + W̃T
i ϕi(x)− κi).

(40)

Considering that the Gauss function ϕi(x) and −W̃T
i ϕi(x) + κi

are both bounded, when the gain ηi satisfies the condition that

ηi > −W̃T
i ϕi(x)+ κi, there is

V̇i ≤ −γi|si| = −γi
√

Vi, (41)

where γi = ηi + W̃T
i ϕi(x) − κi. As long as the parameter

ηi is reasonably designed, the convergence of the tracking error

FIGURE 12

Synchronization of the master-slave neuron system. (A) Synchronization of x. (B) Synchronization of z. (C) Synchronization error of x.

(D) Synchronization error of z. (E) Synchronization error of x, y, z.
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is ensured, and the sliding mode variable do converge to some

neighborhood of zero. In addition, the size of the convergence

neighborhood depends on the control parameter; that is, by

properly design the control parameters, ideal synchronization

control performance can be achieved.

Remark 4: According to the relearning-based sliding mode

control algorithm given above, if there is no dynamic pattern that

is sufficiently similar to the unknown slave system in the pattern

base χ , the on-line identification process for the unknown slave

system is started. Different from the initial identification process,

the initial weights of the neural network during the identification

process for unfamiliar synchronization objects are taken from

the constant weight of the dynamic system corresponding to

the minimum recognition error rather than iterating from zero.

Thus, the learned and stored dynamic information help reduce

the on-line identification time. Additionally, the identified dynamic

information of the slave system will be restored in the form of

constant weights and can further utilized to new synchronization

problems. This process will help enrich the empirical dynamics

information of the pattern base to improve the accuracy and

efficiency of the new synchronization tasks.

7. Simulation research

To verify the effectiveness of the control strategy proposed in

this study, simulations of the master-slave FOHR system under

unknown dynamic environment are conducted.

7.1. Identification of the unknown
dynamics of the FOHR system

In this part, the identification of the FOHR system shown in

Equation (6) under unknown dynamic environment is considered.

For the convenience of presentation, the system state x, y, and z

are denoted as x1, x2, and x3, respectively. The corresponding state

vector x = [x1, x2, x3]
T ∈ R3 of the FOHR model is available

from measurement and the parameter µ = [a, b, c, d, r, s0, q0]
T

is taken as a constant vector and chosen as a = 1, b = 3, c =

1, d = 6, r = 0.013, s0 = 4, q0 = −1.56. As demonstrated in

Section 3, by varying the fractional order parameter q and fixing

all the other parameters unchanged, the FOHR system presents

FIGURE 13

Switching control based on recognition error.
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diverse non-linear behaviors. Moreover, the 0.98-order HR model

can best describe the abundant non-linear dynamic characteristic of

neurons. Thus, the 0.98-order HR system is considered for dynamic

identification with the external excitation I being taken as the

control parameter.

To verify the identification effects, four kinds of representative

discharge models of the 0.98-order HR system with the parameters

given above are chosen, that is, the slow-spiking model χ1 with

I = 1.5, the period-3 bursting model χ2 with I = 2.5, the

chaotic bursting model χ3 with I = 3.6 and the fast-spiking model

χ4 with I = 4. The dynamic analysis about FOHR system have

demonstrated that the corresponding state trajectories of the four

dynamic models mentioned above possess regression properties.

Thus, the DL algorithm is introduced for the unknown dynamic

identification process.

According to the DL algorithm, the dynamical RBF network
˙̂x = −A(x̂ − x) + Ŵφ(x) is employed to identify the unknown

system dynamics fi(x;µ)(i = 1, 2, 3) as shown in Equation (6). For

the space limitation, the unknown dynamic f3(x;µ) = r(s0(x −

q0) − z) is taken as an example to show the identification effects.

The center of the neural network is evenly placed on [−2.1, 2.1] ×

[0.9, 5.1] and the widths are set as ηi = 0.3. The weights of the

RBF networks are updated online according the equation ˙̂Wi =
˙̃Wi = −Ŵiϕi(x)x̃i − σiŴiŴi, within which the parameters are

chosen as Ŵi = diag{2, 2, 2}, σi = 0.0001, i = 1, 2, 3 and a3
from A = [a1, a2, a3]

T is set as a3 = 10. The initial condition of

the dynamical system is set as [x1(0), x2(0), x3(0)]
T = [0.3, 1, 3]T ,

[x̂1(0), x̂2(0), x̂3(0)]
T = [0.2, 0.3, 0.0]T , and the initial weights

are Ŵi(0) = 0.0.

First, the 0.98-order HR system with external excitation I =

1.5 denoted in a slow-spiking model as χ1 is to be identified.

Figure 8A is the projection of the state trajectory of the slow-

spiking model on the x − z plane. In Figures 8B, C, it is seen

that the state trajectory can be accurately identified by using the

DL algorithm. More importantly, in addition to the state tracking,

the NN approximation of the system dynamics f3(x;µ) along

the system trajectory is shown in Figure 8C. The convergence of

the weights of the RBF neural network is further obtained from

the Figure 8D. That is, by introducing the DL algorithm, the

unknown dynamic information f3(x;µ) of the FOHR model is

locally accurately approximated by Ŵiϕi(x), and the identified non-

linear dynamic information can be further stored in the constant

weights of networks given as W̄iϕi(x).

Second, similar results are obtained for the identification of

the non-linear dynamics of the 0.98-order HR system with I =

2.5 that exhibiting a period-3 bursting model denoted as χ2. It

can be seen from the Figure 9A that the non-linear dynamics of

the period-3 bursting model are richer than that of the dynamics

presented in Figure 8A. Even though, ideal approximation effects

of both the system state and the unknown system function are

obtained as demonstrated in Figures 9B, C. The parameters of the

corresponding RBF networks also converge to an ideal value, which

can be seen from Figure 9D.

Third, consider the identification of the dynamics of model

χ3 with I = 3.6, as shown in Figure 10. The system state

given in Figure 10A presents a complex state of chaos, which

contains more dynamic information of the FOHR system. By

properly designing the identification parameters, locally accurate

NN approximations of the system state as well as the unknown

system dynamics are achieved along the system trajectory, which

can be seen from Figures 10B, C. In addition, it is noticed from

the Figure 10D that more neurons are involved and activated in

the identification of the chaotic bursting model χ3. Moreover,

the oscillation of the NN weights during the convergence process

is so obvious that more time is needed for it converge to the

ideal values.

FIGURE 14

Synchronization error of master-slave neuron system with di�erent modes.
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Finally, a further increase in the external excitation I to 4

(denoted as model χ4), the system returns back to a simple

discharge state. As can be seen from Figure 11A, the state trajectory

of model χ4 is a typical period-1 behavior, but the discharge rhythm

is faster compared to that of the model χ1 shown in Figure 8A. As

for its identification simulations demonstrated in Figures 11B–D, it

is shown that it achieves better state and dynamic tracking effects,

and the parameter convergence process is much smooth and faster.

7.2. Model-based sliding-mode control of
the FOHR system

Based on the acquisition and storage of the unknown dynamic

information of the FOHR system, the rapid recognition of the

FOHR model is demonstrated in this part. The dynamic models

χ1,2,3,4 mentioned above are taken as the training patterns. The

testing patterns are generated from the FOHR system presented

in Equation (7), with I = 1.43 denoted as χ5, I = 2.3 denoted

as χ6, I = 3.4 denoted as χ7, and I = 4.2 denoted as χ8. The

other parameters are set as the same to the training patterns, that

is, q = 0.98, a = 1, b = 3, c = 1, d = 6, r = 0.013, s = 4, and

q0 = −1.56. For the recognition process, the dynamic NN network

system is introduced, that is,

˙̃xi = −b̄ix̃i + (W̄kT
i ϕi(x)− f ′i (x;µ

′)), i = 1, · · · , n (42)

for which, the initial states is given as [x0, y0, z0]
T = [0.3, 1, 3]T and

[x̃0, ỹ0, z̃0]
T = [0, 0, 0]T .

Based on the obtained dynamic pattern database χ , which

contains the learned system dynamics as experience of the slaw

peak regular spiking model, period-doubling, period-3, period-

4 bursting model, and chaotic bursting model, the simulation of

the learning-based sliding-mode control of the master-slave neural

system is discussed in this part. The corresponding parameters are

given as ηi = 1, ci = 1,Ŵi = 2, and σi = 0.01, (i = 1, · · · , n). The

external disturbances are set as d1(t) = 0.6 + 0.2cos(t), d2(t) =

0.0, d3(t) = 0.01 + 0.05sin(t), and the other parameters of the

master-slave system are given as the same as shown in the previous

section. The external stimulus current of the master system is set as

I = 1.5, while for the slave system, the external stimulus current is

set as I = 3.8. The other parameters are designed as q = 0.98, a =

1, b = 3, c = 1, d = 6, r = 0.013, s = 4, and q0 = −1.56, the initial

state of the master-slave system is given as [x0, y0, z0]
T = [0.313]T ,

and the control will be added at t = 300ms.

As can be seen from the Figures 12A, B, when the control

quantity is added to the slave system at t = 300ms, the state of

the master-slave neurons can quickly reach consistency, and the

selected NN controller achieves good synchronization to themaster

neuron system. Moreover, the synchronization error demonstrated

in Figures 12B–D shows that the FOHR master-slave neuronal

system achieves fast synchronization performance.

Since the external excitation of the master and slave system

are set as I = 1.5 and I = 3.8, respectively, it means that the

master system is in slow-spiking state and the slave system is in a

state of rapid-peak spiking, as described in the identification phase.

For accurate synchronization effect, the rapid-peak spiking model

shown be recalled from the pattern base χ4, which can be validated

from the Figure 13.

In addition, through the simulation comparison by recalling

the rapid-peak spiking model, the ideal known dynamic model

corresponding to the slave system and the slow-spiking model,

respectively, the synchronization errors are shown in Figure 14.

It demonstrate that in terms of convergence speed, accuracy, and

buffeting size, the more accurate the dynamic model is selected,

the better the synchronization effect will be. It further indicates

that the performance of the sliding-mode control algorithm is

highly related to the dynamic information accuracy of the invoked

dynamic models.

7.3. Relearning-based sliding-mode control
of the FOHR system

To verify the effectiveness of the relearning-based sliding-mode

control performance to the master-slave neuronal system, the third

dimension dynamics of the neuron system is taken as an example,

FIGURE 15

Synchronization e�ect of the master-slave neuron system based on relearning control. (A) Synchronization error. (B) Convergence of the NN weight.
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and the sliding-mode controller is set as

µ3 = −η3sgn(s3)− c3e3 + fm,3(x)− ŴT
3 ϕ3(x),

µ3(0) = −ηisgn(s3)− cie3 + fm,3(x)− W̄
K0T
3 ϕ3(x),

(43)

in which the initial NN weight is set as Ŵ3(0) = W̄3, with W̄3

being the constant NN weight. During the control process, the

model-based sliding mode controller is added to the system at 300

ms and at 500 ms switch to the relearning-based sliding mode

controller. The synchronous response of the system can be seen

from Figure 15A. Furthermore, it can be seen from Figure 15A,

when the system switch to the relearning-based sliding mode

control policy, the synchronization error is getting smaller because

of more accurate identification of the dynamics of slave system, and

the cusp error is obviously improved. In addition, the NNweight of

the relearning process can convergence to ideal values as shown in

Figure 15B.

8. Conclusion

Aiming at the problem of abnormal synchronization of

fractional-order Hindmarsh-Rose (FOHR) neuronal system

in unknown dynamic environment, the identification, rapid

recognition, and synchronization control of the unknown

dynamic FOHR system is discussed in this study. For accurate

synchronization of the FOHR neuronal system, the unknown

dynamic information has been identified by using the deterministic

leaning theory. Based on the achieved system dynamics, the

unknown different dynamic patterns generated from the FOHR

system can be rapidly recognized without relearning process. In

addition, the achieved dynamic information has been applied to

the sliding mode controller, resulting in more accurate and efficient

synchronization performance of the master-slaver neuronal

system. From system identification to pattern construction,

then to model-based and relearning-based sliding mode control,

this study emphasizes the whole linkage process, which kindly

displays the human experience of learning and application of

unknown knowledge, which is the essence of intelligent learning

and intelligent control.
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