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Objective: Compared with the light-flashing paradigm, the ring-shaped motion 
checkerboard patterns avoid uncomfortable flicker or brightness modulation, 
improving the practical interactivity of brain-computer interface (BCI) applications. 
However, due to fewer harmonic responses and more concentrated frequency 
energy elicited by the ring-shaped checkerboard patterns, the mainstream 
untrained algorithms such as canonical correlation analysis (CCA) and filter 
bank canonical correlation analysis (FBCCA) methods have poor recognition 
performance and low information transmission rate (ITR).

Methods: To address this issue, a novel untrained SSVEP-EEG feature enhancement 
method using CCA and underdamped second-order stochastic resonance (USSR) 
is proposed to extract electroencephalogram (EEG) features.

Results: In contrast to typical unsupervised dimensionality reduction methods 
such as common average reference (CAR), principal component analysis (PCA), 
multidimensional scaling (MDS), and locally linear embedding (LLE), CCA exhibits 
higher adaptability for SSVEP rhythm components.

Conclusion: This study recruits 42 subjects to evaluate the proposed method 
and experimental results show that the untrained method can achieve higher 
detection accuracy and robustness.

Significance: This untrained method provides the possibility of applying a 
nonlinear model from one-dimensional signals to multi-dimensional signals.
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1. Introduction

Brain-computer interface (BCI) is a normal output pathway 
system that does not rely on the composition of peripheral nerves and 
muscles, and can directly convert central nervous activities into 
artificial output (Vidal, 1973; Li et al., 2017; Jin et al., 2021).

Steady-state visual evoked potentials (SSVEPs) based on BCI 
systems have the advantages of short training time, high signal-to-
noise ratio, and short response time, and are widely used in clinical 
detection technology (Li et  al., 2022). When an external visual 
stimulus of constant frequencies is applied, the neural network 
consistent with the stimulation frequency or harmonic components 
will generate resonance, causing the brain’s potential activity to change 
significantly at the stimulation frequency or harmonic components, 
resulting in SSVEP signals. SSVEP signals can exhibit spectral peaks 
at stimulation frequency or harmonic components in the power 
spectrum of EEG signals (Kramer et  al., 2021). By analyzing and 
detecting the frequency corresponding to the spectral peak, it is 
possible to detect the stimulus source of the subject’s visual gaze, 
thereby identifying the subject’s intention. However, although SSVEP 
induced by the motion checkerboard paradigm can reduce visual 
fatigue in subjects, due to its generation mechanism, there are almost 
no harmonic components and frequency energy is more concentrative, 
thus leading to low recognition accuracy (Han et al., 2018).

The first application in SSVEP feature classification is the Power 
Spectral Density Analysis (PSDA) algorithm (Ming Cheng et  al., 
2002), which uses the Fast Fourier Transform (FFT) to convert SSVEP 
signals from the time domain to the frequency domain, thereby 
obtaining the amplitude and phase characteristics of each stimulus 
frequency. Because this method only analyzes one electrode signal in 
multi-channel signals, the obtained signal has a low signal-to-noise 
ratio (SNR). Wavelet Transform (WT) can be regarded as a Fourier 
Transform with an adjustable window, which provides both relevant 
frequency components and occurrence time information, but it still 
cannot identify nonlinear signals well (Hu et al., 2014). Volosyak et al. 
proposed the Minimum Energy Combination (MEC) algorithm 
(Friman et al., 2007), which mainly seeks a spatial filter to project 
multi-channel signals into low dimensional space. MEC can effectively 
reduce background noise, but useful information in EEG signals may 
be lost in the linear transformation. The canonical correlation analysis 
(CCA) algorithm was first applied to SSVEP classification by Lin et al. 
(2006). CCA mainly projects multi-channel SSVEP signals and 
corresponding reference signals into a low dimensional space through 
a spatial filter and then calculates the correlation between the two. The 
maximum value of the correlation coefficient corresponds to the 
stimulation frequency, which is superior to the MEC algorithm. 
Currently, many variants of the CCA method have achieved excellent 
BCI performance, such as multi-way canonical correlation analysis 
(MwayCCA; Zhang et  al., 2011), multi-set canonical correlation 
analysis (MestCCA; Zhang et  al., 2014a), Filter bank canonical 
correlation analysis (FBCCA; Chen and Gao, 2015), Task-related 
component analysis (TRCA; Nakanishi et al., 2017), Task-discriminant 
component analysis (TDCA; Liu et al., 2021) and so on. Among them, 
the FBCCA method is the most effective and widely used untrained 
method in SSVEP-EEG detection technology. Nevertheless, due to the 
low harmonic components of SSVEP induced by motion checkerboard 
patterns, the FBCCA method cannot play its role. In addition, some 
novel methods, such as multivariate synchronization index (Zhang 

et al., 2014b), likelihood ratio test (Zhang et al., 2014c), and stochastic 
resonance analysis (Chen et  al., 2021a), have also proven to have 
unique advantages in SSVEP recognition.

Benzi et  al. (1981) first proposed the concept of stochastic 
resonance (SR) when studying the problem of global glacial periods, 
and successfully applied it to explain the phenomenon of periodic 
changes in paleoclimate. Shortly after, Fauve and Heslot (1983) 
observed the phenomenon of SR while studying the synchronization 
of noise-induced transitions in a bistable system experiment with a 
trigger circuit. Mcnamara et  al. (1988) once again verified the 
existence of bistable stochastic resonance (BSR) in the ring laser 
experiment. Collins et al. (1995) first extended SR theory to the field 
of aperiodic signal processing when studying FitzHugh Nagumo 
(FHN) neuron models. Recently, Chen et al. (2021a,b) and Chen et al. 
(2022) demonstrated in experiments that the FHN neuron model can 
effectively enhance the feature responses of EEG signals, thereby 
improving recognition accuracy, regardless of the time domain, 
frequency domain, or time-frequency domain. Lu et  al. (2015) 
proposed underdamped second-order stochastic resonance (USSR) 
to improve weak signal detection technology. This novel model 
considers the system inertia and underdamped damping factor based 
on bistable stochastic resonance (BSR), which is more conducive to 
high SNR output. Traditional denoising methods improve the SNR 
by suppressing noise, which may result in the loss of useful features. 
However, SR utilizes the synergistic effects of input signals, noise, and 
resonance systems to enhance feature responses of signals, and has 
excellent nonlinear signal detection capabilities with noise immunity.

The main contribution of this study is to propose a novel 
untrained SSVEP feature enhancement method using CCA 
dimensionality reduction technology and the USSR model. Compared 
with mainstream unsupervised dimensionality reduction methods, 
such as common average reference (CAR; Orekhova et al., 2002), 
principal component analysis (PCA; Wold et  al., 1987), 
multidimensional scaling (MDS; Saeed et al., 2018), and locally linear 
embedding (LLE; De Ridder et al., 2003), the CCA method reflects a 
high degree of matching with SSVEP signals. Experimental results 
show that the CCA-USSR method has higher recognition accuracy, 
ITR, and better robustness in all subjects.

The rest of this article is arranged as follows: section 2 introduces 
in detail typical dimensionality reduction methods and the novel 
CCA-USSR framework proposed in this study. In section 3, the 
specific experiments and results obtained by different methods are 
explained. Compared with the CAR, PCA, MDS, and LLE methods, 
the CCA-USSR method showed a better BCI performance in all 
subjects. The processing results of each method are discussed in 
section 4. Finally, section 5 provides the conclusions.

2. Methodology

2.1. The USSR model and standard FBCCA 
method

2.1.1. USSR
The Langevin equation for the BSR model is an overdamped 

first-order differential equation due to neglecting the inertia term 
and normalizing the damping factor. Nevertheless, it has been 
proven (Lu et al., 2015) that the system inertia and damping factor 
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can facilitate high-SNR output. Considering these two factors, the 
BSR model is improved into a second-order differential equation 
which is called the USSR model. Hence, the USSR model can 
be expressed as

  

d
dt

dU
d

d
dt

a b d
dt

t t
2

2

3x x
x

x x x x s n= −
( )

− = − − + ( ) + ( )β β
 

(1)

where a and b are the system parameters satisfying a b R, ∈ +, x  is 
the output signal, s t( ) is the input signal. n t( ) is the Gaussian white 
noise with a mean value of zero and an autocorrelation function 
satisfying n t n t D t t1 2 1 22( ) ( ) = −( )δ  (Wu and Zhu, 2008); . represents 
the overall mean value; 0 1< <β  is the damping factor. The fourth-
order Runge-Kuta algorithm with fixed steps is used to solve the 
differential equations with higher solution accuracy. To meet the 
needs of differential equation calculation, the input signal needs to 
be transformed into a one-dimensional vector.

2.1.2. FBCCA
As a standard untrained SSVEP recognition algorithm, the 

FBCCA method uses CCA to calculate the canonical correlation 
coefficient ρi  of each sub-band signal Xi i N, , , ,= …( )1 2  which is 
divided via multiple filter banks. The feature discrimination coefficient 
at the i-th target frequency is obtained by
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n
ii
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where w i( ) is the weight of the i-th sub-band signal which can 
be obtained by

  w i i b i Na( ) = + ∈[ ]−
, 1  (3)

As previously reported (Chen et al., 2015), a and b constants are 
set to 1.25 and 0.25.

2.2. Typical unsupervised dimensionality 
reduction methods

Data dimensionality reduction can be used as a means of feature 
extraction: to identify the main features from the original features of 
the dataset, that is, the features that best describe the distribution of 
data in the dataset. In other words, while preserving the main features 
of the dataset, high-dimensional data is projected into a 
low-dimensional feature space. Since the input requirement of the 
USSR model is a one-dimensional vector, a data dimensionality 
reduction method that matches the EEG rhythm features is required. 
The following describes five typical unsupervised dimensionality 
reduction methods.

2.2.1. CAR
The principle is to calculate the average signal of all recording 

electrodes, and then subtract this average value from the selected 
reference electrode. However, the method is influenced strongly by 

high-amplitude artifacts at the selected reference electrode. Therefore, 
the selection of reference electrodes is crucial for the CAR method. 
The single-electrode output potential VCAR between the electrode i and 
the reference electrode can be expressed as

 
V V VCAR reference

i

n
in

= −
=
∑1

1   
(4)

Where Vreference is the selected reference signal, n is the number 
of electrodes.

2.2.2. PCA
It is one of the most popular unsupervised linear dimensionality 

reduction methods nowadays. Its main idea is to obtain a new matrix 
with the largest variance in the projected dimension after data is 
multiplied by a matrix, thereby using fewer data dimensions while 
retaining the characteristics of more original data. The measure of 
information quantity is the variance of data, which is described 
as follows

 
Var y a ai i

T

i

m
i( ) =

=
∑
1   

(5)

where ai  is the i-th transformation vector, Σ is the covariance 
matrix of the original data, yi is the i-th principal component, Var yi( ) 
is the variance of the i-th principal component.

The PCA method uses orthogonal transformations to convert the 
observed data into principal components represented by linear 
independent variables, the number of which is usually smaller than 
the number of original variables. Thus, PCA is a common 
dimensionality reduction method using the linear projection rule.

2.2.3. MDS
It uses the paired similarity of samples to construct a 

low-dimensional space so that the distance of each pair of samples in 
the high-dimensional space is as consistent as possible with the sample 
similarity in the constructed low-dimensional space. A greater 
similarity between two objects can be reflected by a smaller distance 
in MDS space. The basic principle is described by

 
δδ jk

i

p

ij ik= −( )
=
∑
1

2y y
  

(6)

where δδ jk  is the dissimilarity between samples j and k, p is the 
number of properties used to perform MDS, and y is the elemental 
concentration or index in this study.

Hence, classic MDS performs dimensionality reduction on high-
dimensional data while ensuring a consistent distance between the 
original space and low-dimensional spatial samples.

2.2.4. LLE
It is one of the commonly used manifold learning methods and a 

nonlinear dimensionality reduction method suitable for processing 
nonlinear data. It is based on the manifold assumption that data in 
high-dimensional space is distributed on low-dimensional manifolds. 
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The LLE dimensionality reduction method can be described as the 
following three steps:

 1. For each data point xi, find its K  nearest neighbors.
 2. Compute the reconstruction weights of the neighbors that 

minimize the error of reconstructing xi.
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 3. Compute the low-dimensional embedding Y for yi that best 
preserves the local geometry represented by the 
reconstruction weights.
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0, where 0 is a column 

vector of zeros and I  is an identity matrix. By the Rayleigh-Ritz 
theorem (Luce and Perry, 1949), minimizing (10) with respect to the 
yi’s can be  done via finding the eigenvectors with the smallest 
(nonzero) eigenvalues.

2.2.5. CCA
The projection principle selected by the CCA method is that after 

dimensionality reduction, the correlation coefficient of the two sets of 
data is the largest. For input EEG data X  and the reference signal Y , 
the goal of CCA is to find weight vectors wx  and wy , so that the 
one-dimensional vectors obtained after X  and Y  projection are ′X  
and ′Y , respectively. Therefore, one-dimensional vectors are 
obtained by

 ′ =X w Xx
T

 ′ =Y w YyT   (9)

The optimization goal of the CCA dimensionality reduction 
method is to maximize ρ ′ ′( )X Y,  to obtain the corresponding 
projection vectors wx  and wy . Then the correlation coefficient ρ  
between weight vectors wx  and wy was calculated by
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The frequency corresponding to the maximum correlation 
coefficient is regarded as the gaze target of the subjects.

The template signals of the CCA method are given by
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where k is the number of harmonics of SSVEP signals; fd  is the 
stimulation frequency of the template signals; N is the number of 
sample points; fs is the sampling frequency.

2.3. Feature enhancement for SSVEP using 
canonical correlation analysis and 
underdamped second-order stochastic 
resonance

When the human eye receives a fixed frequency of visual 
stimulation, the potential activity of the cerebral cortex will 
be  modulated to produce a continuous response related to the 
stimulation frequency. This response has a periodic rhythm similar to 
the visual stimulation, that is, the steady-state visual evoked potential. 
The SSVEP signal can exhibit spectral peaks at the stimulus frequency 
or harmonic components in the power spectrum. By analyzing the 
frequency corresponding to the spectral peak, the stimulus source of 
the subject’s visual gaze can be detected, thereby identifying the subject’s 
intention. The novel untrained framework based on the CCA 
dimensionality reduction method and USSR model proposed in this 
study is shown in Figure 1. Detailed procedures are described as follows:

 a. Signal acquisition and preprocessing. Since the raw SSVEP 
signals are usually weak and mixed with multi-scale noise, it is 
difficult to extract gaze frequencies in a single trial. Some 
preprocessing steps such as filtering techniques need to be used 
to remove noise interference. As previously described (Han 
et al., 2018), since the motion checkerboard pattern has few 
harmonic components, in our study, we  only consider the 
fundamental frequency and the primary harmonic to achieve 
the highest ITR. Hence, a Butterworth filter with a passband 
range of 3–40 Hz is selected to remove noise and some high-
frequency components.

 b. Dimensionality reduction. Although the SR model can 
effectively enhance the feature frequency of SSVEP signals, due 
to the characteristic of its differential equation, the input signal 
needs to be  transformed into a one-dimensional vector. 
Common unsupervised dimensionality reduction methods 
include CAR, PCA, MDS, LLE, and CCA. In our study, these 
methods are compared to get the optimal dimensionality 
reduction methods. In the CAR method, we choose the Oz 
channel as the reference channel. The experimental results 
indicate that the Oz channel has the highest recognition 
accuracy compared with other channels. In the LLE method, 
the number of nearest neighbor points is set to 40.

 c. SSVEP feature enhancement. Typical SR models include BSR, 
FHN, and USSR, among which the USSR model has the best 
BCI performance despite having the most parameters (Chen 
et al., 2023). Therefore, in this study, the USSR model was used 
as a means of feature enhancement.
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 d. SSVEP feature recognition. Then, PSDA and CCA recognition 
methods are used to identify the subjects’ gaze targets.

 e. Target discrimination. Finally, the recognition accuracy is 
obtained by matching the recognition frequency with the 
stimulus frequency.

3. Experiment and results

3.1. Experiments and datasets

The experiment data included 30 males and 12 females (42 
subjects, average age ± SD, 27.2 ± 2.6) originating from Chen et al. 
(2023). Each subject has a normal or corrected vision.

The ring-shaped checkerboards with radial contraction–
expansion motion were adopted as the visual stimuli in our 
experiment. The stimulus paradigm was arranged into a 5 × 7 matrix 
with a horizontal and vertical separation of 100 pixels and 50 pixels 
between two adjacent stimuli, respectively. The frequency range of 35 
focused targets was 3–20 Hz with a frequency interval of 0.5 Hz. The 
35 focused frequencies for each trial were presented simultaneously 
with the data sampled at 1,000 Hz, as shown in Figure  2. The 
g.USBamp (g.tec Inc., Austria) was utilized to record SSVEP signals 
and the channels were set according to the 10/20 electrode system. 
These eight electrodes POz, PO3, PO4, PO5, PO6, Oz, O1, and O2 
were used to record the raw SSVEP signal. SSVEP is a specific EEG 
signal generated by the occipital region of the brain. These eight 
electrodes are located closest to the occipital lobe, so the signals 
collected by them are less noisy and more stable. Each subject is 
required to conduct 35 trials, each consisting of 0.3 s of cues, 3 s of 

visual stimuli, and 0.7 s of rest time. The experimental conditions can 
be found in the study (Chen et al., 2021a). The experimental process 
is displayed in Figure 3.

3.2. CCA coefficient spectrums analysis for 
SSVEP

Based on the above analysis, we know that the SR model can utilize 
the noise energy to enhance the target frequency through synergistic 
effects and noise immunity. Therefore, the main research direction of 
this paper is to preserve as many effective features as possible in the 
original multi-channel signals. As representative dimensionality 
reduction methods among the eight methods, we  compared the 
coefficient spectrums of CCA, PCA-USSR, LLE-USSR, and CCA-USSR 
in Figure 4. In this study, the representative subject (S29) with the 2 s 
data length was utilized to compare the BCI performance. The 
correlation coefficient between the processed SSVEP signal and the 
reference signal at a 0.5 frequency interval of 1-40 Hz is described as 
the CCA coefficient spectrum in our study.

The CCA coefficient spectrum between the filtered EEG and the 
template is presented in Figure 4A. As a classic SSVEP recognition 
method, the CCA method can effectively identify the target frequency 
of most subjects. For example, the CCA coefficients corresponding to 
the seven target frequencies of 3, 7, 3.5, 11.5, 6, 9, and 11 Hz (the CCA 
spectrums marked by the green box) have the maximum amplitude in 
the entire spectrum and the recognition succeeds. However, it is worth 
noting that in these successful cases, the amplitudes of several 
interference peaks are very close to that of the target frequencies, 
making the recognition effect not ideal. On the other hand, the CCA 
coefficients corresponding to the five frequencies of 15, 16, 12, 19, and 
14.5 Hz (the CCA spectrums marked by red boxes) have not the 
maximum amplitude in the CCA spectrum, and their amplitudes are 
second only to the maximum interference peak. Hence, the feature 
extraction for SSVEP recognition finally fails and there is a need for new 
methods to enhance the energy of the target frequency and improve the 
BCI decoding performance under the motion checkerboard pattern.

According to the previous study (Yao et al., 2019), the optimal 
parameter combination for the USSR model is [a, b, 𝛽, h] = [0.1, 1, 
0.35, 0.1].

Compared with the CCA method, the USSR-based methods reduce 
the amplitude of interference peaks in the CCA coefficient spectrum 
and increase the energy of the target frequency, making BCI recognition 
more accurate. The amplitude of target frequencies depends on the 
matching between the dimensionality reduction method and the SSVEP 

FIGURE 1

The flowchart of SSVEP detection using the CCA dimensionality reduction method and USSR model.

FIGURE 2

The user interface of the 35 focused targets.
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rhythm components. As shown in Figure 4B, in the corresponding 
coefficient spectrums at 17, 16, 12, 19, and 18.5 Hz (the coefficient 
spectrums marked in green boxes), which cannot be correctly identified 
by the CCA method, the amplitudes of the focused frequencies are 
enhanced by the PCA-USSR model and have exceeded the amplitude of 
the interference peaks. However, for the corresponding coefficient 

spectrums of 4.5, 7, 3.5, and 8 Hz (the coefficient spectrums marked in 
red boxes), the PCA-USSR method cannot accurately identify target 
frequencies. As shown in Figure 4C, the combination of the nonlinear 
LLE method and the USSR model has similar results compared with the 
linear dimensionality reduction method. For target frequencies that 
cannot be identified by the CCA method, some can be corrected by the 
LLE-USSR method, while others cannot be identified.

As shown in Figure 4D, compared with the typical PCA-USSR and 
LLE-USSR methods, the CCA-USSR method can significantly 
increase the amplitude of the target frequency and has an energy 
concentration effect that matches the checkerboard pattern. Therefore, 
compared with the CCA method, the recognition accuracy of target 
frequency has increased by approximately 43%. For example, for the 
seven frequencies of 17, 9.5, 11.5, 10, 8.5, 19.5, and 4 Hz that cannot 
be identified by the LLE-USSR method, the USSR model can further 
enhance the energy of the target frequency and optimize the SSVEP 
recognition performance. While, in the power spectrums 
corresponding to 3, 3.5, 5, and 8 Hz, since the CCA dimensionality 
reduction method does not retain the effective features of the original 
SSVEP well, the USSR model incorrectly enhances the energy of other 
frequencies, resulting in recognition failure.

FIGURE 3

The experimental process.
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FIGURE 4

(A) The coefficient spectrums of the CCA method. (B) The coefficient spectrums of the PCA-USSR method. (C) The coefficient spectrums of the LLE-
USSR method. (D) The coefficient spectrums of the CCA-USSR method.
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The above analysis has demonstrated that the CCA dimensionality 
reduction method can preserve the effective features of the original 
signal to the greatest extent and the nonlinear weak feature 
enhancement based on USSR dynamics models is highly compatible 
with the non-stationary SSVEP. The USSR model takes advantage of 
the unique conversion of noise energy to signal energy, thereby 
enhancing the amplitude and the energy of focused targets and 
improving the BCI decoding performance. Table 1 shows the average 
accuracy and ITR of 42 subjects based on five dimensionality 
reduction methods and two standard methods for processing SSVEP 
signals (Data length T = 2 s).

3.3. BCI performance

Here, paired t-tests were performed to determine significant 
differences (defined as p < 0.05) in accuracy and ITR for different 
methods. The information transfer rate (ITR) is an important and 
effective indicator to measure SSVEP-BCI recognition performance 
among different methods. It is used to express the amount of 
information transmitted in a unit of time. ITR can be obtained by
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where σ refers to the average recognition accuracy, M refers to the 
number of gaze frequencies and T refers to the data length for analysis.

The higher the average recognition accuracy, the larger the number 
of gaze targets, the shorter the used data length, and the higher the 
obtained ITR. Meanwhile, the data length also affects recognition 
accuracy. For example, too short a data length may result in fewer 
recognizable SSVEP features and a decrease in recognition accuracy.

Using the classic CCA method to identify the gaze frequencies of 
42 subjects can achieve an average accuracy of 61.16 ± 19.59 and an 
ITR of 66.68 ± 33.48. As the state-of-the-art method for SSVEP 
recognition, the average accuracy and ITR of FBCCA are increased to 
65.99 ± 11.68 and 74.22 ± 20.66 bits/min, respectively.

It is worth noting that the CAR-USSR method is not only affected by 
the reference channel but also has the worst robustness among the five 
dimensionality reduction methods with a variance of 48.71  in the 
ITR. Nevertheless, there is no significant difference between the 
CAR-USSR, PCA-USSR, MDS-USSR, and LLE-USSR methods (p > 0.05).

As a representative of nonlinear manifold learning methods, the 
recognition accuracy of the LLE-USSR method greatly depends on the 
number of nearest neighbors. Meanwhile, from the experimental 
results, it can be seen that although the number of nearest neighbors 
is set to 40, the LLE-USSR method has not achieved competitive BCI 
performance. Compared with other dimensionality reduction 
methods, CCA can retain the most features of multi-channel SSVEP 
signals and the CCA-USSR method has the highest recognition 
accuracy, ITR, and robustness (p < 0.05). Meanwhile, compared with 
typical CCA and FBCCA methods, the CCA-USSR method is also 
more suitable for SSVEP signals induced by the motion checkerboard 
paradigm (p < 0.05). Hence, we can conclude that CCA is currently the 
best dimensionality reduction method in EEG signals, and the 
untrained CCA-USSR method can achieve satisfactory results in real-
time BCI applications and spectral analysis.

The analysis data length of SSVEP signals is also an important 
indicator that significantly affects recognition accuracy and ITR. Here, 
Figure 5 compares the average recognition accuracy and ITR of CCA, 
FBCCA, and USSR-based methods under different data lengths (3, 
2.5, 2, 1.5, and 1 s).

From Figure 5, each method exhibits reliable results compared 
with the previous study (Yan et al., 2021), and among these methods, 
the CCA-USSR method has the highest recognition accuracy and ITR 
from 1 to 3 s data length. Note that due to the lack of harmonic 
components in the SSVEP signal induced by the motion checkerboard 
paradigm, the FBCCA method did not achieve ideal results in our 
study. Especially, based on PSDA recognition methods, all USSR-
based methods can achieve the best BCI decoding performance only 
at 2 s date length. The experimental results show that the CCA-USSR 
method can significantly outperform the classic CCA and FBCCA 
methods, as well as other USSR-based methods, at any data length 
(p < 0.05). This also indicates that the CCA method has a high degree 
of matching with SSVEP, which can retain the most features of the 
original multi-channel signal after dimensionality reduction. In 
addition, the CAR-USSR method has excellent BCI performance 
comparable to the classic CCA method at 1 s data length. One possible 
explanation is that CAR relies on electrode selection, so when the data 
length is shorter, the CAR-USSR method can show better BCI 
decoding ability. On the other hand, it is not difficult to infer that the 
nonlinear LLE method is not suitable for non-stationary SSVEP 
signals. One hypothesis is that multi-channel SSVEP signals do not 
meet the manifold distribution assumption of input signals. The 
rationale we get from the experimental results is that although multi-
scale noise may have negative effects on SSVEP recognition, the CCA 
dimensionality reduction method can retain the most features of the 
original multi-channel SSVEP signal, and the USSR model can use 
noise energy to enhance the amplitude of the target frequency, thereby 
improving the detection accuracy and ITR of SSVEP decoding.

Besides, the processing time of unsupervised dimensionality 
reduction methods was detected to further compare the online 
calculation ability of different methods in Table 2.

From Table 2, we can see that the CAR and PCA methods have 
the shortest processing time and the CCA method comes next, while 
the MDS and LLE methods have the slowest processing speed. In 
particular, the processing time of the LLE method is determined by 
the number of nearest neighbor points. The larger the number of 
nearest neighbor points, the higher the recognition accuracy, but the 
processing time also increases exponentially. The above results suggest 
that the CCA-USSR method is suitable for real-time SSVEP detection 
technology and neuroscience.

4. Discussion

This study discusses the impact of different dimensionality 
reduction methods on multi-channel SSVEP signals. Five typical 
unsupervised methods were compared from the perspective of the 
CCA coefficient spectrum, recognition accuracy, ITR, robustness, and 
processing speed. In the CAR method, the selection of channels is 
particularly important. The experimental results found that among 
these eight electrodes POz, PO3, PO4, PO5, PO6, Oz, O1, and O2, 
using Oz as the reference channel can achieve the highest recognition 
accuracy and ITR. This also indicates that the Oz channel which is 
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TABLE 1 Detection performance using the five methods (T  =  2  s).

Subjects Accuracy % 
(CCA)

ITR bits/
min (CCA)

Accuracy % 
(FBCCA)

ITR bits/
min 

(FBCCA)

Accuracy % 
(CAR-
USSR)

ITR bits/
min (CAR-

USSR)

Accuracy % 
(PCA-
USSR)

ITR bits/
min (PCA-

USSR)

S1 94.29 135.68 82.86 107.89 8.57 1.68 54.29 54.27

S2 28.57 18.97 34.29 25.76 80.00 101.70 42.86 37.11

S3 77.14 95.73 68.57 78.97 74.29 89.96 74.29 89.96

S4 48.57 45.40 54.29 54.27 57.14 58.91 48.57 45.40

S5 88.57 121.05 65.71 73.72 54.29 54.27 22.86 12.87

S6 94.29 135.68 77.14 95.73 88.57 121.05 77.14 95.73

S7 74.29 89.96 82.86 107.89 20.00 10.12 57.14 58.91

S8 77.14 95.73 65.71 73.72 5.71 0.50 62.86 68.64

S9 68.57 78.97 60.00 63.70 88.57 121.05 54.29 54.27

S10 34.29 25.76 40.00 33.18 77.14 95.73 37.14 29.39

S11 42.86 37.11 57.14 58.91 62.86 68.64 45.71 41.18

S12 34.29 25.76 68.57 78.97 25.71 15.83 71.43 84.38

S13 31.43 22.28 45.71 41.18 28.57 18.97 65.71 73.72

S14 57.14 58.91 65.71 73.72 77.14 95.73 60.00 63.70

S15 42.86 37.11 71.43 84.38 28.57 18.97 71.43 84.38

S16 62.86 68.64 62.86 68.64 82.86 107.89 85.71 114.32

S17 74.29 89.96 62.86 68.64 82.86 107.89 77.14 95.73

S18 62.86 68.64 65.71 73.72 74.29 89.96 57.14 58.91

S19 85.71 114.32 74.29 89.96 94.29 135.68 65.71 73.72

S20 74.29 89.96 65.71 73.72 2.86 0 37.14 29.39

S21 60.00 63.70 65.71 73.72 51.43 49.76 77.14 95.73

S22 68.57 78.97 68.57 78.97 94.29 135.68 65.71 73.72

S23 65.71 73.72 71.43 84.38 88.57 121.05 48.57 45.40

S24 82.86 107.89 91.43 128.14 85.71 114.32 74.29 89.96

S25 51.43 49.76 60.00 63.70 45.71 41.18 37.14 29.39

S26 74.29 89.96 74.29 89.96 31.43 22.28 65.71 73.72

S27 62.86 68.64 60.00 63.70 8.57 1.68 60.00 63.70

S28 68.57 78.97 71.43 84.38 25.71 15.83 42.86 37.11

S29 40.00 33.18 80.00 101.70 82.86 107.89 57.14 58.91

S30 11.43 3.32 40.00 33.18 8.57 1.68 45.71 41.18

S31 62.86 68.64 68.57 78.97 2.86 0 37.14 29.39

S32 91.43 128.14 77.14 95.73 94.29 135.68 82.86 107.89

S33 40.00 33.18 77.14 95.73 85.71 114.32 28.57 18.97

S34 85.71 114.32 77.14 95.73 17.14 7.59 20.00 10.12

S35 71.43 84.38 77.14 95.73 57.14 58.91 60.00 63.70

S36 68.57 78.97 68.57 78.97 2.86 0 62.86 68.64

S37 54.29 54.27 65.71 73.72 82.86 107.89 54.29 54.27

S38 51.43 49.76 60.00 63.70 71.43 84.38 68.57 78.97

S39 40.00 33.18 62.86 68.64 8.57 1.68 31.43 22.28

S40 42.86 37.11 54.29 54.27 77.14 95.73 17.14 7.59

S41 57.14 58.91 65.71 73.72 5.71 0.50 40.00 33.18

S42 62.86 68.64 62.86 68.64 57.14 58.91 62.86 68.64

Mean ± SD 61.16 ± 19.59 66.68 ± 33.48 65.99 ± 11.68 74.22 ± 20.66 52.38 ± 32.75 51.25 ± 48.71 54.97 ± 17.38 55.36 ± 27.32

(Continued)
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TABLE 1 (Continued)

Subjects Accuracy % 
(MDS-USSR)

ITR bits/min 
(MDS-USSR)

Accuracy % 
(LLE-USSR)

ITR bits/min 
(LLE-USSR)

Accuracy % 
(CCA-USSR)

ITR bits/min 
(CCA-USSR)

S1 57.14 58.91 65.71 73.72 85.71 114.32

S2 34.29 25.76 25.71 15.83 54.29 54.27

S3 74.29 89.96 54.29 54.27 74.29 89.96

S4 54.29 54.27 62.86 68.64 57.14 58.91

S5 57.14 58.91 40.00 33.18 77.14 95.73

S6 82.86 107.89 65.71 73.72 88.57 121.05

S7 60.00 63.70 42.86 37.11 82.86 107.89

S8 60.00 63.70 51.43 49.76 71.43 84.38

S9 54.29 54.27 62.86 68.64 62.86 68.64

S10 37.14 29.39 42.86 37.11 51.43 49.76

S11 51.43 49.76 28.57 18.97 60.00 63.70

S12 71.43 84.38 60.00 63.70 77.14 95.73

S13 65.71 73.72 45.71 41.18 65.71 73.72

S14 54.29 54.27 40.00 33.18 77.14 95.73

S15 77.14 95.73 45.71 41.18 80.00 101.70

S16 85.71 114.32 77.14 95.73 88.57 121.05

S17 82.86 107.89 51.43 49.76 77.14 95.73

S18 57.14 58.91 37.14 29.39 62.86 68.64

S19 62.86 68.64 42.86 37.11 88.57 121.05

S20 68.57 78.97 42.86 37.11 74.29 89.96

S21 68.57 78.97 68.57 78.97 77.14 95.73

S22 65.71 73.72 62.86 68.64 82.86 107.89

S23 45.71 41.18 51.43 49.76 65.71 73.72

S24 77.14 95.73 65.71 73.72 88.57 121.05

S25 40.00 33.18 51.43 49.76 65.71 73.72

S26 71.43 84.38 60.00 63.70 80.00 101.70

S27 65.71 73.72 45.71 41.18 80.00 101.70

S28 42.86 37.11 42.86 37.11 80.00 101.70

S29 62.86 68.64 68.57 78.97 82.86 107.89

S30 51.43 49.76 28.57 18.97 54.29 54.27

S31 45.71 41.18 25.71 15.83 77.14 95.73

S32 80.00 101.70 65.71 73.72 88.57 121.05

S33 28.57 18.97 37.14 29.39 68.57 78.97

S34 28.57 18.97 17.14 7.59 82.86 107.89

S35 62.86 68.64 28.57 18.97 85.71 114.32

S36 71.43 84.38 57.14 58.91 74.29 89.96

S37 57.14 58.91 54.29 54.27 80.00 101.70

S38 74.29 89.96 62.86 68.64 71.43 84.38

S39 25.71 15.83 28.57 18.97 65.71 73.72

S40 22.86 12.87 57.14 58.91 68.57 78.97

S41 54.29 54.27 25.71 15.83 60.00 63.70

S42 68.57 78.97 42.86 37.11 71.43 84.38

Mean ± SD 58.57 ± 16.29 61.29 ± 26.45 48.44 ± 14.73 45.20 ± 21.77 74.01 ± 10.42 89.42 ± 20.35
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located over the occipital region retains the most effective features of 
SSVEP signals. In linear dimensionality reduction methods such as 
CAR, PCA, MDS, and CCA, although they have different rules for 
projecting high-dimensional data to low-dimensional space, CCA 
shows the best adaptability to SSVEP signals and MDS comes next. In 
nonlinear LLE methods, the number of nearest neighbor points 
determines the quality of detection results and processing speed. The 
larger the number of nearest neighbor points, the higher the recognition 
accuracy and ITR, and the longer the processing time. However, due to 
the strong limitations of the LLE method, which assumes that the input 
data satisfies the manifold distribution, it is not suitable for extracting 

the features of SSVEP data. In terms of processing time, CAR, PCA, and 
CCA are promising for real-time BCI detection technology, while MDS 
and LLE need more time for processing BCI.

Only when the dimensionality reduction method retains the most 
features of the original multi-channel signal, the USSR model can 
more effectively utilize synergistic effects to enhance the energy and 
amplitude of target frequencies, thereby increasing ITR. The reason 
why SR is different from other traditional denoising methods is that 
the SR model utilizes a dynamic feature enhancement mechanism 
with the help of the synergetic action of input aperiodic signal, noise, 
and the nonlinear resonance system. The SR model considers noise as 
a positive factor, thereby using noise energy to enhance weak signal 
features. In addition, compared with the first-order bistable stochastic 
resonance, the underdamped second-order SR considers the inertia 
term and normalizes the damping factor. To use an analogy, first-order 
BSR processing means primary filtering and second-order USSR 
processing means secondary filtering, thereby producing a cleaner 
filtered response than first-order SR. This is the reason why the USSR 
can more effectively improve the weak signal detection performance 
than BSR and other classic linear methods.

Although the motion checkerboard paradigm can effectively 
reduce the fatigue of subjects and is more suitable for long-time BCI 
performance detection, its evoked SSVEP signal has fewer harmonic 

FIGURE 5

(A) Average accuracy using the CCA recognition method. (B) Average ITR using the CCA recognition method. (C) Average accuracy using the PSDA 
recognition method. (D) Average ITR using the PSDA recognition method.

TABLE 2 Comparison of the processing time of five unsupervised 
dimensionality reduction methods.

Data length

3  s 2.5  s 2  s 1.5  s 1  s

CAR 0.0013 s 0.0012 s 0.0012 s 0.0011 s 0.0010 s

PCA 0.0025 s 0.0023 s 0.0021 s 0.0019 s 0.0017 s

MDS 5.1042 s 2.7754 s 1.4109 s 0.4317 s 0.1669 s

LLE 9.9095 s 6.2133 s 3.6962 s 1.1774 s 0.3849 s

CCA 0.0637 s 0.0615 s 0.05942 s 0.05776 s 0.0543 s
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components and more concentrated frequency energy (Han et al., 
2018). Therefore, some standard untrained algorithms, such as CCA 
and FBCCA, are not effective in detecting the subject’s purpose (Yan 
et al., 2021). In addition, using some traditional linear methods to 
decode SSVEP signals, the useful features will be attenuated or lost 
while denoising, which seriously affects the improvement of 
recognition accuracy. Nevertheless, the nonlinear SR model has a 
frequency energy concentration effect similar to the motion 
checkerboard pattern. And among typical SR models, the USSR model 
has the best performance. Naturally, the study proposes to combine 
dimensionality reduction methods and nonlinear USSR models to 
extract non-stationary SSVEP features. The experimental results 
indicate that among traditional dimensionality reduction methods, 
the CCA method still has the projecting rule that best matches the 
SSVEP rhythm, which can retain the most original multi-channel 
SSVEP features, and the USSR model can effectively highlight the 
energy and amplitude of the target frequency with noise immunity, 
thereby increasing the algorithm robustness, recognition accuracy, 
and ITR. This untrained method also provides the possibility of 
applying a nonlinear model from one-dimensional signals to multi-
dimensional signals.

5. Conclusion

In this study, we  first compare five typical unsupervised 
dimensionality reduction methods, namely CAR, PCA, MDS, LLE, and 
CCA. The experimental results show that CCA has the highest 
adaptability for SSVEP rhythms and can retain the most effective 
features. Furthermore, compared with the standard CCA and FBCCA 
methods, the novel untrained CCA-USSR method proposed in this 
paper can more effectively highlight the target frequency and have 
higher robustness, thereby increasing recognition accuracy and ITR. In 
addition, the CCA-USSR method also has advantages in processing 
speed and has the potential for real-time BCI detection technology.
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