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The early prediction of epileptic seizures holds paramount significance in patient

care and medical research. Extracting useful spatial-temporal features to facilitate

seizure prediction represents a primary challenge in this field. This study proposes

GAMRNN, a novel methodology integrating a dual-layer gated recurrent unit

(GRU) model with a convolutional attention module. GAMRNN aims to capture

intricate spatial-temporal characteristics by highlighting informative feature

channels and spatial pattern dynamics.We employ the Lion optimization algorithm

to enhance the model’s generalization capability and predictive accuracy. Our

evaluation of GAMRNN on the widely utilized CHB-MIT EEG dataset demonstrates

its e�ectiveness in seizure prediction. The results include an impressive average

classification accuracy of 91.73%, sensitivity of 88.09%, specificity of 92.09%, and

a low false positive rate of 0.053/h. Notably, GAMRNN enables early seizure

prediction with a lead time ranging from 5 to 35 min, exhibiting remarkable

performance improvements compared to similar prediction models.
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1. Introduction

Epilepsy, also known as “fits” or “the falling sickness,” is a chronic neurological

disorder in which sudden, abnormal electrical activity in the brain causes disruptions in

its normal functioning (Artameeyanant et al., 2017). It is estimated that almost 65 million

people worldwide have epilepsy, which accounts for ∼1% of the global population (Bou

Assi et al., 2017). The clinical manifestations of epilepsy are complex and varied, with

symptoms ranging from motor, sensory, autonomic, and cognitive disturbances. While

certain medications can help reduce the frequency of epileptic seizures, they are not always

effective and may lead to serious side effects, threatening to the patients’ daily lives and

overall safety. Therefore, developing a reliable algorithmic model for predicting epileptic

seizures, which can provide early warning and preventive measures, is paramount for the

patients’ survival.

As an epileptic seizure begins, brain activity transitions from one state to another,

accompanied by significant changes in the brain’s electrical signals. Electroencephalography

(EEG) is an effective method for monitoring the waveform changes in brain electrical

signals during epileptic seizures. The EEG during a seizure can be categorized into four

main states: preictal (a period before the onset of a seizure), ictal (a period during

the seizure), postictal (a period following the seizure), and interictal (a period when

the brain is not experiencing a seizure; Natu et al., 2022). Experienced experts can

discern distinct states of epileptic seizure electroencephalogram (EEG) signals through

observation. Nonetheless, the manual segmentation process of epileptic seizure signals

is often laborious and time-consuming, necessitating graphologists with a high level of
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technical proficiency. Hence, its practical applicability is inherently

challenging. The primary task in epileptic seizure prediction is to

accurately extract features from EEG signals during the seizure

period and differentiate them based on distinctive characteristics to

separate preictal and interictal signals. This enables the prediction

of the potential timing of a seizure, providing early warnings to

patients and facilitating the implementation of intervention and

remedial measures to minimize the impact of seizure episodes

on patients. Throughout the course of an epileptic seizure, the

importance of different EEG channels in seizure prediction research

varies. Thus, there are challenges in selecting informative channels

to extract more valuable feature information that ultimately

helps improve the performance of seizure prediction models.

Based on prior work, our proposed method for epileptic seizure

prediction primarily encompasses the following steps: EEG signal

acquisition, EEG preprocessing, feature extraction, model learning

and training, classification of interictal and preictal data segments,

seizure prediction, and model evaluation. During the model

training, we incorporated the Convolutional Block Attention

Module to enhance the model’s attention to important channels

and valuable feature information. Additionally, we utilized the

Lion optimization algorithm for further optimization of the model

training, ultimately improving seizure prediction performance, as

illustrated in Figure 1.

In order to extract features that can effectively differentiate

between pre-ictal and interictal EEG, prior researchers have

attempted various methods. The most commonly used features

include wavelet energy, power spectral density, phase locking value,

permutation entropy, and fractal dimension value (Li et al., 2013;

Joshi et al., 2014; Khalid et al., 2015; Zhang et al., 2020). Fei et al.

(2017) used an improved largest Lyapunov exponent algorithm to

better characterize the chaotic dynamical characteristics of EEG

signals during epilepsy seizures, and the results showed that the

improved algorithm had higher accuracy in identifying pre-seizure

signals. Raghu et al. (2019) proposed a continuous decomposition

index feature, which was proven to have a significant enhancement

trend during epilepsy seizures so that the epilepsy seizure could

be predicted in the pre-seizure period based on its changes. In

addition, some studies use methods such as CSP transformation,

principal component analysis, and autoregressive models to extract

frequency or spatial domain features during epilepsy seizures

(Büyükçakır et al., 2020). Due to the subjective selection of feature

information, which may result in feature redundancy or the

absence of crucial features, some researchers have proposed feature

selection algorithms to select the optimal feature information

(Karthick et al., 2018). Varatharajah et al. (2017) developed a scalp

electroencephalogram (EEG) processing pipeline and introduced a

seizure prediction method. The research findings indicate that the

performance of the proposed prediction algorithm surpasses that

of the baseline algorithm on the tested feature set. Bandarabadi

et al. (2015) used an amplitude distribution-based feature selection

algorithm; the study showed that this algorithm could also improve

the accuracy of epilepsy prediction. After feature information

extraction, the next step is to perform binary classification on the

EEG signals. Yang et al. (2018) proposed a data analysis modeling

method, and research showed that a seizure prediction system

based on support vector machines could achieve robust preictal and

interictal signals prediction. Yuan et al. (2017) utilized the diffusion

distance measure and employed the Bayesian linear discriminant

analysis to identify the periodicity of pre-seizure EEG signals,

achieving high sensitivity and low false alarm rate. In addition,

various methods have been used in seizure detection tasks, such as

extreme learning machines, linear discriminant analysis, decision

trees, random forest, etc. (Song et al., 2012; Rasekhi et al., 2013;

Hussain, 2018; Mohan et al., 2018).

With the significant advancements of deep learning techniques

in fields such as computer vision, it has also started to be

gradually employed in the research of epileptic seizure prediction

(Yıldırım et al., 2018; Liu et al., 2019; Yu et al., 2020). Firstly,

the prediction model based on Convolutional Neural Networks

(CNN) can well capture the feature information of EEG data due

to its characteristics of local connectivity, weight sharing, and

downsampling in time and space. Shasha et al. (2021) partitioned

the experiment into two phases. They computed the Pearson

correlation coefficient of the EEG signals. Subsequently, they fed

the resulting correlation matrix into a simplistic CNN model to

perform binary classification between interictal and preictal states.

This approach effectively minimized computational overhead and

yielded an accuracy rate of 89.98% when evaluated on the CHB-

MIT dataset. Hu et al. (2019) employed CNN as a feature extraction

model and used support vector machines (SVM) as classifiers for

analyzing electroencephalograms (EEG). Truong et al. (2018) used

STFT to extract frequency-domain and time-domain information

from EEG signals on a 30 s window and input the transformed

spectrogram into the neural network for model training. The

model was evaluated on the Freiburg, CHB-MIT, and American

Epilepsy Society seizure prediction challenge datasets and could

predict seizures from 30 to 5 min before the onset of seizures,

substantiating the advantages and generalization abilities of CNN

in the field of epileptic seizure prediction research for capturing

EEG signal features.

Nevertheless, despite the impressive capability of CNNs in

extracting spatial features from signals, they encounter significant

limitations when it comes to capturing the temporal dynamics of

the signals, which is crucial for identifying and predicting epileptic

seizures. Recurrent neural networks (RNNs) can handle sequential

data and are suitable for non-stationary time series signals such

as EEG data, as they can directly learn from raw EEG data to

preserve the maximum temporal feature information of the signal

(Ghosh et al., 2017). However, as the depth of RNNs increases,

problems such as gradient explosion or vanishing may occur,

so researchers have proposed methods using improved RNNs

such as Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU). Tsiouris et al. (2018) employed a feature extraction

methodology to extract raw EEG information and employed Long

Short-Term Memory (LSTM) networks to generate prediction

outcomes. Furthermore, the study evaluated the influence of

different preictal windows on the assessment results. Impressively

high sensitivity and specificity rates of 99.28% were achieved,

along with a false alarm rate of 0.107/h. This experiment also

confirmed the outstanding performance of LSTM in analyzing

preictal EEG signals. Varnosfaderani et al. (2021) proposed an

epileptic seizure prediction model based on a two-layer LSTM

and Swish activation function. This structure performs feature
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FIGURE 1

The overall seizure prediction method flow, as shown in the figure, includes EEG signal acquisition, EEG preprocessing, feature extraction, training

the EEG graphs using the GAMRNN epileptic seizure prediction model augmented with the CBAM module, optimizing the trained model through the

Lion optimization algorithm, partitioning the EEG signals into interictal signals and preictal signals, and ultimately predicting seizures and assessing

the model’s performance.

extraction based on both time and frequency domains and uses the

minimum distance algorithm as a post-processing step. The model

achieved a sensitivity of 86.8%, prediction accuracy of 85.1%, and a

low false positive rate of 0.147/h when evaluated on the Melbourne

dataset, which indicates that LSTM performs at a comparable level

to CNN in the research of epileptic seizure prediction and may

even have a more significant advantage in capturing the temporal

features of EEG signals.

Continuous efforts of previous studies have demonstrated that

integrating temporal and spatial characteristics of EEG signals

is essential for enhancing the efficiency of epileptic seizure

prediction. Consequently, algorithms combining Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

have emerged to capture the crucial temporal and spatial feature

information of EEG signals. Affes et al. (2019) proposed a

Convolutional Gated Recurrent Neural Network (CGRNN) for

seizure prediction and demonstrated that this model outperformed

a CNN-only model in predicting seizures, achieving an average

sensitivity of 89% and an average accuracy of 75.6% using a dataset

from Boston Children’s Hospital. Hu et al. (2020) developed a deep

bidirectional long short-term memory (Bi-LSTM) network as a

predictive model for epileptic seizure prediction. The experiments

employed local mean decomposition (LMD) and statistical feature

extraction techniques to capture essential features. The achieved

sensitivity of the model was 93.61%, with a specificity of 91.85%.

However, these models still face challenges in distinguishing useful

signals from noise and irrelevant information, which may lead to

reduced the performance of seizure prediction.

Since its introduction, the attention mechanism has been

widely applied in various fields such as computer vision (Zhu

et al., 2018) and natural language processing (Wu et al., 2019).

This is due to its ability to allow neural network models to

focus more on relevant information in the input while reducing

attention to irrelevant information. Consequently, it has been

applied in epileptic seizure prediction research to help models

accurately capture useful temporal and spatial features in EEG

signals. Concentrating on the most relevant EEG signals and

disregarding noise and irrelevant information can improve the

classification, and prediction performance of the models. Choi et al.

(2022) proposed an ACGRU generalized prediction model that

combines one-dimensional convolutional layers, gated recurrent

unit layers, and attention mechanisms across patient paradigms

to classify preictal and interictal data. Improved classification

accuracy and predictive performance were achieved on the

EEG dataset of epileptic patients from Eshan Medical Center

Children’s Hospital, surpassing the performance of the original

model. Wang et al. (2022) proposed adding a channel attention

module to their CNN-LSTM-based seizure prediction model

to address the issue of equal weighting for each channel’s

feature map in traditional models, achieving an accuracy of

83.04% after training and improving the recognition rate during

the correct seizure period. These experiments have consistently

demonstrated that neural network models with incorporated

attention modules exhibit superior performance in seizure

prediction algorithms.

Attention modules contribute to the enhancement of predictive

performance. They operate independently on either channel-

specific or spatial-specific features of EEG signals. In addition,

the convolutional attention module combines channel attention

and spatial attention, facilitating concurrent processing of both

channel and spatial information. This incorporation enables the

model to comprehensively capture critical features across diverse

channels and spatial dimensions, thereby elevating the accuracy

and robustness of epileptic seizure prediction. The convolutional

attention module (Woo et al., 2018) achieves the weighting

operation on the channel and spatial information of the feature

matrix through the stacking of blocks and attention modules.

This process optimizes the relationship between different EEG

channels and different spatial features automatically, enabling the

model to focus more deeply on the essential signal features of

the spatial structure of the EEG. Ultimately, it aims to optimize

the performance of the model. On this basis, we propose an

epileptic seizure prediction model with a graph attention module

incorporating recurrent neural networks (GAMRNN) and use

a novel optimization algorithm to train the model, combining

multiple layers of convolution and double layers of GRU units to

jointly extract the spatiotemporal features of the EEG, as shown in

Figure 2. The main contributions of this research are as follows:
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FIGURE 2

The overall workflow of the seizure prediction algorithm involves the following steps: During the data preprocessing stage, the raw EEG signals are

transformed into two-dimensional time-frequency representations. These spectrograms are then fed into our proposed seizure prediction model.

The initial feature extraction is performed by applying three layers of convolutional operations, resulting in the generation of a feature matrix denoted

as F. Subsequently, the convolution attention module is applied to the obtained feature map, applying channel-wise and spatial weighting to produce

F
′′

. Next, the deep temporal feature extraction and modeling of the feature map are conducted using bidirectional gated recurrent units, resulting in

F∗. Following this, the data is passed through fully connected layers and subjected to a softmax function to perform binary classification, predicting

the probability P of the model classifying the data into interictal and preictal states. Finally, post-processing is employed to make seizure predictions.

(1) We propose a novel epileptic seizure prediction model,

GAMRNN, which incorporates a convolutional attention

module to focus on important channel and spatial information

in EEG signals, enabling more effective capturing of spatio-

temporal features.

(2) We utilized the recently introduced Lion optimizer to

optimize the model, thereby expediting the convergence rate

of the networkmodel training and facilitating the performance

of the proposed model in epileptic seizure prediction.

(3) Through ablation experiments on various combinedmodels,

we further validated the crucial roles of the Convolutional

Block Attention Module and the Lion optimizer in epileptic

seizure prediction tasks.

2. Materials and methods

2.1. Epileptic seizure prediction model

Convolutional neural networks (CNNs) have been proven

to possess certain advantages in capturing spatial features in

data. In contrast, recurrent neural networks (RNNs) have been

demonstrated to excel in capturing temporal features of data.

Previous studies have also confirmed that combining both CNNs

and RNNs is conducive to identifying the temporal and spatial

dependencies of epileptic seizure EEG signals. This work employed

a multi-layer convolutional neural network (CNN) combined with

a two-layer gated recurrent unit (GRU) as the fundamental model

for epileptic seizure prediction. To extract more critical temporal

and spatial feature information from important channels and

spatial regions, we propose to incorporate the CBAM scheme

into the base model and name it Graph Attention Module

with Recurrent Neural Networks (GAMRNN) for the overall

architecture of the seizure prediction model, as illustrated in

Figure 3. The CNN is responsible for extracting spatial features

from EEG signals, the CBAMmodule selectively attends to relevant

information from input feature maps with larger weights in

channels and spatial feature points, and the GRU layer is used to

capture the temporal dynamics in the EEG feature map.

2.1.1. Convolutional feature extraction module
Given the limited size of the training dataset and for the sake

of model simplicity, we employed a straightforward and shallow

three-layer CNN architecture. The model consists of three-layer

convolutional blocks for feature extraction. Each block comprises

a batch normalization with a RELU activation function, followed

by a max pooling layer. To ensure uniform input distribution

across layers, batch normalization is applied between each layer,

irrespective of the preceding layer’s operations.The convolutional

layer employs 16 kernels of size n × 5 × 5, 32 kernels of size

3 × 3, and 64 kernels of size 3× 3, where n represents the number

of channels in the EEG signal. The stride for each kernel is 1 ×

2 × 2, 1 × 1, and 1 × 1, respectively. In order to enhance the

performance of the epilepsy seizure prediction task andmitigate the

risk of overfitting, L2 regularization terms were incorporated into

each convolutional layer. This regularization technique promotes

weight values to be smaller and encourages a balanced distribution

of weights. Consequently, it improves the convergence speed and

stability of the model, thus aiding in accurate epilepsy seizure

prediction. Themax pooling layer has a size of 2×2, which is used to

reduce the number of computations and prevent overfitting during

model training. After the initial feature extraction, a feature map of

size 64× 2× 5 is obtained.

2.1.2. Attention enhancement module
In a seizure prediction system, focal epileptic EEG signals

originate from one or multiple scalp electrodes, propagate and

gradually spread to multiple electrodes and brain regions. They

are characterized by overlapping and interfering waveforms. Some

electrodes may be located in more relevant or active pathological

areas, while others may be in less related or less active brain
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FIGURE 3

Epileptic seizure prediction model: the figure depicts the comprehensive framework of our proposed model for seizure prediction (GAMRNN). The

input consists of 30-s windows of preprocessed EEG signals obtained through STFT transformation. The model begins with three convolutional

blocks named C1, C2, and C3, serving as the initial feature extraction modules. Each block consists of a batch normalization layer, a convolutional

layer with ReLU activation function, and a max pooling layer. C1 has 16 three-dimensional kernels of size n × 5 × 5, where n represents the number

of channels in the original EEG signal, and the stride is 1 × 2 × 2. After the convolution operation, the results are passed through a ReLU activation

function, followed by max pooling with a shape of 1 × 2 × 2 to perform downsampling. The operations in C2 and C3 are the same, with 32 and 64

convolutional kernels, respectively. The kernel size is 3 × 3, and the stride is 1 × 1. Both C2 and C3 also employ max pooling with a shape of 2 × 2 for

downsampling.Next, the extracted feature maps are subjected to channel and spatial attention-weighted operations using the CBAM module. The

input and output feature maps have the same shape of 64 × 2 × 5. Subsequently, the feature maps are flattened and reshaped, and inputted into the

first gated recurrent unit (GRU) layer with 256 units, followed by a fully connected layer with sigmoid activation function. The output is then fed into

the second GRU layer with 128 units, and finally through two fully connected layers with 2 units and softmax activation function for classification.

Two dropout layers with a dropout rate of 0.5 are placed before the two fully connected layers.

regions. Some electrodes may be located in more relevant or active

pathological areas, while others may be in less relevant or less active

brain regions. Therefore, the importance of signals varies among

electrodes. In this case, the attention module can assign different

weights to different electrodes and features, allowing the system to

focus on essential electrodes or features.

A previous study has investigated using the CBAM module,

integrated after batch-normalized long short-term memory (Ma

et al., 2021) (BNLSTM) networks, for end-to-end seizure prediction

based on raw EEG data. By introducing the attention mechanism,

the system may capture the key channels and features more related

to seizure events, thereby improving prediction performance. In

this experiment, we placed the CBAM module after the three

convolutional layers, allowing feature selection to be performed

on the already processed feature maps. This approach ensures

that the selected features are more accurate and representative,

thereby enhancing the performance and effectiveness of the seizure

prediction system.

CBAM consists of two modules, namely Channel Attention

(Sun et al., 2019) and Spatial Attention (Chen et al., 2017), as

shown in Figure 4. The feature map obtained after the convolution

layer has the shape F ∈ RC×H×W (where C is the number of

channels and H and W are the height and width of the feature

map obtained after convolution). For each channel, we set the

convolution module as a 2D convolution kernel, and the feature

map obtained through channel attention is CE, while that obtained

through spatial attention is SE.

(a) Channel attention weighting mechanism

The convolutional operation produces a feature map F ∈

RC×H×W , where C denotes the number of channels, and H and

W refer to the height and width of the feature map. This feature

map is initially fed into the Channel Attention module as part of

the CBAMmodule. Channel Attention compresses the feature map

along the channel dimension and calculates weight coefficients for

each channel. The output is a feature map with weight coefficients,

where the dimension of the feature map remains the same as

that of the input feature map. In order to improve computational

efficiency, the input feature map is globally max-pooled and

averaged-pooled to compress the feature map. The pooling resulted

in obtaining two different feature descriptions that represent the

spatial background features of the data. A channel-wise feature

map of size CE(F) ∈ RC×1×1 is obtained through a shared fully

connected layer. The two obtained feature matrix mappings are

added and passed through a sigmoid activation function to assign

proper weights (between 0 and 1) to each input channel C. Finally,

the weight matrix is multiplied by the input feature layer. Although

the channel attention module assigns weights to the channels

of the feature matrix obtained through convolutional operations,

it represents the reorganization and integration of the original

EEG electrode channels, which implies that the channel attention

module assists the model in extracting more important channel

feature information from the EEG signals.

In this study, the channel attention module reallocates the

importance and correlation of each channel in the EEG signal

by generating weight coefficients for each channel based on the

convolutional operations of the EEG electrode leads. The specific

operation is shown in the formula below:

CE(F) = sigmoid(Conv2D(MaxPool(F))+ Conv2D(AvgPool(F)))

(1)

F
′

= CE(F)× F (2)
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FIGURE 4

CBAM Module: After the feature extraction, the feature matrix F ∈ RC×H×W is obtained. In the channel attention module, global and max pooling

operations are applied to F to obtain a C× 1× 1 tensor. This tensor is then passed through two fully connected layers with a ReLU activation

function, reducing the channel dimension to one-fourth of the original number and then restoring it to the original dimension to obtain the feature

matrix mapping. The mapping is combined with F using a sigmoid activation function to assign weights CE(F) ∈ RC×1×1 to each input channel,

representing channel importance levels. The obtained weight matrix is multiplied by the original input feature matrix to obtain F
′

. In the spatial

attention module, F
′

undergoes global average and max pooling operations, and the resulting tensors are stacked and processed with a 1× 1

convolution. The sigmoid activation function maps the spatial feature weights to the range [0,1], obtaining the weights SE(F) ∈ R
1×H×W that represent

the importance of each feature point. These weights are multiplied by F
′

to obtain the weighted feature map F
′′

.

(b) Spatial attention weighting mechanism

The spatial attention further extracts features from EEG data

at the convolutional level, aiming to preserve the spatiotemporal

information of EEG signals as much as possible. The input feature

map F
′

∈ RC×H×W undergoes max pooling and average pooling

operations at each feature point along the spatial dimensions. Then,

the two results are stacked along the channel dimension. A 1 × 1

convolutional layer is applied to adjust the channel dimension to

1, and a sigmoid activation function is used to obtain weight values

(between 0 and 1) for each feature point on the featuremap. Finally,

the weight matrix SE(F
′

) ∈ R1×H×W is multiplied by the original

feature map to obtain the feature map F
′′

. The convolutional layer

adaptively learns features for each channel input, enabling the

network to focus more on meaningful features in the signal and

improve the accuracy of seizure prediction. The specific process is

shown in the following formula:

SE(F
′

) = sigmoid(Conv(concat([MaxPool(F
′

), AvgPool(F
′

)])))

(3)

F
′′

= SE(F
′

)× F
′

(4)

2.1.3. Temporal modeling and classification
module

The Gated Recurrent Unit (GRU; Chung et al., 2014) is

an advancement over the Long Short-Term Memory (LSTM)

model, offering a more streamlined architecture. It incorporates

two gate mechanisms to regulate the flow and forgetting of

preceding temporal information, effectively addressing the issue

of vanishing gradients encountered in recurrent neural networks.

Moreover, GRU exhibits enhanced capability in capturing long-

term dependencies inherent in sequential data, making it well-

suited for analyzing time-series signals. In our study, we employ a

dual-layer GRU network to comprehensively analyze the extracted

feature matrix F
′′

, which allowed us to delve deeper into the

temporal features of the electroencephalography (EEG) signals

associated with seizure activity F∗, thereby facilitating a more

precise and accurate classification.

Specifically, in the GRU module, the hidden state ht−1

represents the temporal information from the previous time step,

while xt represents the current time step’s input feature matrix. This

study defines the time steps based on the sequential order of the

input feature matrix F
′′

. The influence of the previous hidden state

ht−1 on the current time step is controlled by the reset gate rt , as

shown in the following formula:

rt = sigmoid(ht−1Wrh + xtWrx + br) (5)

whereWrh andWry represent the weight matrices of the reset gate,

and br is the bias matrix with a size equal to the number of hidden

units nh. Moreover, the update gate ut ∈ R1×nh is responsible for

controlling the balance between the previous hidden state and the

current input at each time step, determining the extent to which the

previous hidden state is retained and fused with the current input

feature.

ut = sigmoid(ht−1Wuh + xtWux + bu) (6)

where weight matrices Wuh and Wux represent the weights of the

update gate, and bu is equal to the number of hidden units nh. The

temporary hidden state h
′

t at time step t is obtained by element-wise

multiplication.

h
′

t = tanh(ht−1Whh × rt + xtWxh) (7)

where weight matrices Whh and Wxh are used, along with the

hyperbolic tangent activation function tanh, to control the flow of

information through the reset gate rt , which determines the degree

to which the previous hidden state is retained. Finally, by utilizing

the update gate ut , the new hidden state ht is computed through

a linear combination of the previous hidden state ht−1 and the

current state h
′

t , as shown in the following equation:

ht = (1− ut)× ht−1 + ut × h
′

t (8)
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In summary, the distinctive feature of the dual-layer GRU

module in predicting epileptic seizures lies in its effective

integration of temporal information and modulation of

information flow through gating mechanisms. The dual-layer

GRU structure in this study consists of 256 and 128 units, with

a dropout rate of 0.5 to mitigate overfitting. The first GRU layer

learns temporal dependencies and sequential relationships of

neighboring feature maps from F
′′

. The second GRU layer captures

deeper long-term dependencies and contextual information using

the hidden state from the first layer, resulting in the feature

matrix F∗. By modeling and synthesizing temporal features, the

dual-layer GRU module effectively utilizes the features extracted

by the convolutional layer and CBAM module, enhancing the

classification accuracy of seizure onset and interictal data and

improving the prediction model’s performance.

Following the GRU layers are two fully connected layers and

two Dropout layers. The first fully connected layer has 64 neurons

and uses the sigmoid activation function, taking the output of the

Dropout1 layer as input. The second fully connected layer consists

of 2 neurons, taking the output of the Dropout2 layer as input.

Finally, the Activation layer is used to pass the final softmax output

to the output layer of the model, completing the classification task.

2.2. Lion optimizer

During the model training process, we employed a recently

proposed optimization algorithm called the Lion optimizer (Chen

et al., 2023), developed by researchers from Google and UCLA.

Unlike adaptive optimizers like Adam and SGD, the Lion optimizer

only requires momentum tracking and utilizes symbolic operations

to compute updates, leading to fewer hyperparameters and simpler

computations. It has shown superior performance to traditional

optimization algorithms when applied to deep learning models in

tasks like image classification while accelerating the model training

process. Thus, in our research, we introduced the Lion optimizer

in the context of seizure prediction models and conducted

comparative experiments with the Adam optimizer to assess its

impact on model performance.

3. Experiment and results

In the experimental section, we firstly performed preprocessing

on the EEG dataset, including splitting the raw data into 30-

second windows, removing noise and artifacts, and transforming

the EEG data into time-frequency spectrograms. Secondly, the

data was partitioned into training and testing sets and fed

into the model for training. Meanwhile, we utilized the Lion

optimization algorithm to further optimize the model’s training

process. Thirdly, post-processing operations were applied to the

obtained classification results to predict seizure occurrences, and

various metrics were used to evaluate the model’s seizure prediction

performance. Finally, several ablation experiments were conducted

to individually assess the impact of each component on the overall

model’s predictive performance.

TABLE 1 Detailed information of seizure subjects in CHB-MIT dataset.

Subject no. Age Gender Records Seizure onset

Chb01 11 F 42 7

Chb02 11 M 36 3

Chb03 14 F 38 7

Chb04 22 M 42 4

Chb05 7 F 39 5

Chb06 1.5 F 18 9

Chb07 14.5 F 19 3

Chb08 3.5 M 20 5

Chb09 10 F 19 4

Chb10 3 M 25 7

Chb11 12 F 35 3

Chb12 2 F 24 21

Chb13 3 F 33 12

Chb14 9 F 26 8

Chb15 16 M 40 20

Chb16 7 F 19 10

Chb17 12 F 21 3

Chb18 18 F 36 6

Chb19 19 F 30 3

Chb20 6 F 29 8

Chb21 13 F 33 4

Chb22 9 F 31 3

Chb23 6 F 9 7

3.1. Dataset

In this experiment, we utilized the CHB-MIT dataset to

validate the seizure prediction performance of the proposed

model (Goldberger et al., 2000). The dataset consists of scalp

electroencephalogram (EEG) recordings from 23 pediatric

epilepsy patients, collected through collaboration between

the Massachusetts Institute of Technology (MIT) and Boston

Children’s Hospital. The EEG data were sampled at a rate of

256Hz and acquired using 22 electrodes placed according to the

international 10–20 system for EEG electrode placement. The

dataset spans approximately 1136 hours of continuous EEG signal

activity and includes 198 epileptic seizure events. The patients’ ages

range from 1.5 to 22 years. Detailed information about the dataset

is provided in Table 1. The CHB-MIT public dataset provides

expert annotations indicating the start and end times of seizure

events. In this study, we define the interictal period as a time

interval of at least 4 h before and after the seizure, following the

standard proposed by Truong et al. (2018) for seizure prediction

research, providing a reference for comparison with their method.

Additionally, we excluded the cases with more than ten seizures

in the dataset, as their seizure occurrences are too close in time

and the prediction results are less meaningful for these patients.
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FIGURE 5

EEG signal of patient Chb01: the depicted figure showcases the scalp electroencephalographic (EEG) recordings obtained from subject Chb01

during a seizure episode. The onset of the seizure activity becomes evident at 2995 s, marked by a prominent escalation in EEG frequency and the

emergence of complex waveforms characterized by irregularities and spikes. These distinct alterations in the EEG signal morphology signify the

initiation of a seizure event, indicating a significant disruption in the underlying neural activity. The observed contrast in EEG patterns between the

preictal and ictal periods highlights the pronounced impact of the seizure activity on the brain’s electrical dynamics.

To facilitate comparison with related experiments, we evaluated

the epilepsy seizure prediction model in detail using data from 13

patients. Figure 5 shows the EEG segments of a seizure event in

patient chb01.

3.2. Data preprocessing

The raw EEG signals are characterized by a large quantity

and continuous long duration, making them unsuitable for direct

input into convolutional neural networks for feature extraction.

Therefore, data preprocessing is required. Firstly, preictal and

interictal data are extracted separately from the original EEG data.

Subsequently, the data is splitted into 30-second windows, and

the short-time Fourier transform (STFT) technique is employed to

transform the raw EEG signals into two-dimensional spectrograms

with frequency and time axes. The transformation helps retain

crucial information from the original signals (Truong et al., 2019;

MuhammadUsman et al., 2020). During data collection, the dataset

is contaminated with 60Hz power line noise. To address this issue,

bandpass filtering is applied to remove frequency components

between 57Hz–63Hz and 117Hz–123Hz, along with excluding the

0Hz component.

Due to the uneven distribution of the two classes in the

dataset, namely, the number of preictal data is significantly

smaller than the number of interictal data in a single EEG

recording of a seizure episode, it is likely that the model may

not learn sufficient useful features due to the scarcity of one class

during training, ultimately affecting the classification accuracy. To

overcome this data imbalance issue, we employ the overlapping

sampling technique along the temporal axis of the EEG signal,

generating additional preictal samples using a sliding window

of 30 s. After preprocessing, the spectrograms are fed into the

GAMRNNmodel for feature extraction and classification. Through

extensive training, the model learns the discriminative features of

seizure EEG signals and performs sample classification into preictal

and interictal states.

3.3. Experimental setting

In order to train the model and learn relevant features from

the preprocessed dataset, it is necessary to partition the dataset

into training and testing sets. Here, we employed the leave-one-

out cross-validation method. For a subject with N occurrences of

seizures in their data records, N-1 seizure interictal and preictal

segments were concatenated as the training set, while the remaining

occurrence of seizure interictal and preictal segments were used

as the testing set. Furthermore, 75% of the training set data was

utilized for training the model, while the remaining 25% was used

as a validation set to assess the learning and training performance of

the proposed model and prevent overfitting. We also incorporated

an early stopping mechanism during the model training process. If

the loss did not improve for ten consecutive epochs, the training
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was halted prematurely, and the model parameters with the best

performance during training were saved. This approach aimed to

minimize resource waste and training time.

The experiment was implemented on Python 3 using the Keras

and TensorFlow frameworks. The training batch size was set to 64,

and the number of epochs was set to 50. For Lion optimizer, the

cross-entropy loss was used to compute the training loss. We set

the hyperparameter β1 for exponential decay rate to 0.95, β2 to 0.98,

learning rate η to 0.0001, and weight decay rate λ to 0.015 based on

instructions of lion optimizer and our experiences.

3.4. Metrics for epileptic seizure prediction

Seizure prediction horizon (SPH) and seizure onset prediction

(SOP) are two temporal periods used to evaluate the results of

seizure prediction. SPH refers to the time interval from the onset

of an alert to the expected seizure phase, while SOP represents the

time span during which the seizure is anticipated to occur. A correct

alert within the SPH serves to notify healthcare professionals and

family members that a seizure is likely to happen within the

subsequent SOP, enabling them to take timely measures. Consistent

with Truong et al. (2018), this study sets the SPH to 5 min and the

SOP to 30 min. The method for setting SPH and SOP is shown in

Figure 6. The criterion for accurate prediction is the occurrence of

at least one seizure event during the SOP period following the onset

of the alert, while no seizures should occur within the SPH period.

False alarms, on the other hand, refer to alerts issued in the absence

of any seizures during the SOP period. To reduce false positives, a

K-of-N post-processing method is employed (Truong et al., 2018),

where an alert is triggered only when K seizure-like segments are

identified within a continuous sequence of N segments. In this

study, the parameters k = 8 and n = 10 are set, with predictions

made every 30 s. Consequently, if more than 4 min of seizure-like

segments are identified within a continuous 5 min data segment, an

alert is issued.

The performance of the epilepsy seizure prediction model

was evaluated using sensitivity (SEN), specificity (SPEC), accuracy

(ACC), area under the curve (AUC), and false positive rate per hour

(FPR/h) metrics. In typical binary classification tasks, sensitivity,

specificity, and accuracy are calculated from the confusion matrix

in statistics. Sample prediction can result in four possible scenarios:

TP (True Positive), meaning the actual EEG signal data is preictal

and the predicted result is also preictal; FP (False Positive), meaning

actual interictal signal data is predicted as preictal signal data; TN

(True Negative), meaning the predicted data is interictal signal

data, and it is indeed interictal signal data; FN (False Negative),

meaning actual preictal signal data is predicted as interictal signal

data. Based on the confusion matrix, the following metrics can be

calculated:

Sensitivity = TP/(TP + FN) (9)

Specificity = TN/(TN + FP) (10)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

The ROC (Receiver Operating Characteristic) curve is a

graphical representation where the X-axis is the false positive rate

(FPR), and the Y-axis is the true positive rate (TPR). Different

TPR and FPR values can be obtained and plotted as an ROC

curve by changing the classifier’s threshold. The AUC (Area

Under the Curve) is the area under the ROC curve, with a value

between 0.5 and 1. A larger AUC indicates a better performance of

the classifier.

4. Results

4.1. General results

Based on the same experimental settings, we conducted a

performance evaluation of the GAMRNN seizure prediction model

and compared it with the GCRNN prediction model. We selected

the same 13 patient data from the CHB-MIT dataset for evaluation

on both models. The experimental results are shown in Table 2.

We observed and compared the classification and prediction

performance of the two models from the aspects of accuracy,

sensitivity, and false positive rate, taking the average values of all the

subjects’ experimental results. From the table, we can conclude that

our proposed GAMRNN prediction model demonstrates better

seizure prediction performance on most subjects’ data, with an

average accuracy of 91.73%, which is a 6.44% improvement over

the CGRNN prediction model. The GAMRNN model achieved

a sensitivity of 88.09% in correctly predicting seizures, showing

an ∼6% increase in sensitivity compared to the original model,

which indicates that the model successfully captured 56 out of 64

seizures. After incorporating the attention convolutionmodule and

optimizing the model using the Lion optimizer in the CGRNN

model, the false positive rate decreased from 0.2042 to 0.053/h.

Except for patients Chb10 and Chb14, the false positive rate

for seizures in other patients approached 0. The improvement

in these evaluation metrics has significant practical implications

for the daily life of epilepsy patients. Above results confirm that

the proposed seizure prediction model can effectively distinguish

between preictal and interictal EEG signal data, enabling accurate

decisions on whether a seizure will occur in the later stage of the

EEG signal, thereby greatly reducing the occurrence of false alarms

for seizures.

However, due to various reasons, such as differences in

the number of seizures, proximity to seizures, or patient-

specific characteristics, the seizure prediction model may not

achieve the same prediction performance for every patient.

The variance calculated for various metrics of the two seizure

prediction models indicates that our proposed model demonstrates

greater stability in evaluating the 13 patient datasets compared

to the baseline model. The comparative experiments also

provide evidence that the attention modules indeed assist the

seizure prediction model in focusing more on crucial regions

within the feature maps. By incorporating channel and spatial

dimensions, the attention modules enable the model to emphasize

the essential spatiotemporal features in the EEG signal data

while reducing attention to relatively less significant regions.

As a result, the overall model performance for classifying

two types of seizure EEG signals is enhanced, leading to
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FIGURE 6

Diagram of the Seizure Prediction Period (SPH) and Seizure Onset Period (SOP): in the post-processing phase, a successful prediction of seizure

onset by the seizure prediction model is defined as the absence of any seizure events during the SPH period following the onset alert, followed by

the occurrence of one or more seizure events during the subsequent SOP period. When no seizure events occur during the SOP period following the

onset alert, it is considered a false alarm.

TABLE 2 Seizure detection performance on the CHB-MIT dataset.

CGRNN GAMRNN

Patient Accuracy Sensitivity FPR (/h) Accuracy Sensitivity FPR (/h)

Chb01 0.9337 0.8429 0.057 0.9455 0.9548 0

Chb02 0.9398 0.1611 0 0.9415 0.3652 0

Chb03 0.9313 0.6389 0 0.9417 0.8361 0

Chb05 0.6884 0.2867 0.3468 0.9088 0.88 0.0694

Chb09 0.9814 1 0 0.9945 0.9833 0

Chb10 0.6572 0.4056 0.566 0.7811 0.7389 0.2264

Chb13 0.8793 0.9967 0.2081 0.9141 0.9933 0.0694

Chb14 0.5178 0.8 0.7385 0.7711 0.8433 0.1846

Chb18 0.8525 0.6167 0.2041 0.904 0.9375 0.0408

Chb19 0.9827 0.7889 0 0.9893 0.9322 0

Chb20 0.8952 0.9733 0.1469 0.9544 0.99 0.098

Chb21 0.867 0.8125 0.3134 0.8903 1 0

Chb23 0.9615 0.9833 0.0752 0.9886 0.9967 0

Average 0.8529 0.7159 0.2043 0.9173 0.8809 0.053

Variance 0.0189 0.0723 0.0505 0.0047 0.0280 0.0054

significant improvements in accuracy, sensitivity, and false positive

rate evaluations.

4.2. Results of ablation study

Our study conducted two sets of ablation experiments. The first

set of experiments aimed to validate the performance enhancement

of the GAMRNNmodel by adding the CBAMmodule and using the

Lion optimizer. Specifically, the CBAMmodule and Lion optimizer

were sequentially added to the model, and their performance on

different datasets was compared and analyzed. The second set of

experiments aimed to validate the individual effects of the Channel

Attention Module (CAM) and Spatial Attention Module (SAM)

when applied separately to the model. Additionally, we compared

the combinationmodule with the order of CAM and SAM switched

to the CBAM module. The accuracy, sensitivity, and specificity

results obtained from the two groups of ablation experiments are

presented in Table 3.

GAMRNN (CAM only) and GAMRNN (SAM only):We

incorporated Channel Attention Module (CAM) and Spatial

Attention Module (SAM) separately into the model to assess

the individual impacts of these attention mechanisms on

model performance. Specifically, when CAM or SAM was

added independently to the model, the accuracy remained

similar. However, there was approximately a 6% decrease

compared to the model using the combined attention mechanism

CBAM. Moreover, sensitivity and specificity were lower than

the Convolutional Attention Module. These results indicate that

utilizing a single attention mechanism alone has a limited impact
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TABLE 3 Ablation experimental results.

Methods Accuracy Sensitivity Specificity

GAMRNN (CAM
only)

85.71 76.32 86.27

GAMRNN (SAM
only)

85.53 76.59 85.59

GAMRNN (Lion
only)

87.47 76.17 88.75

GAMRNN (CBAM
and Adam)

90.03 83.75 91.52

GAMRNN (CBAM
and Lion)

91.73 88.09 92.09

on the performance of the seizure prediction model. However,

the predictive performance was significantly enhanced when

employing the Convolutional Attention Module that integrates

both CAM and SAM and applies them jointly to the model.

Additionally, we conducted experiments by interchanging the

order of the attention modules (first applying SAM and then

CAM) and combining them in the model. While there was a slight

improvement in accuracy and specificity, it was not as pronounced

as the original CBAM combination, suggesting that the order of

combining attention modules within the Convolutional Attention

Module has the most significant impact on enhancing the model’s

performance. In conclusion, the Convolutional Attention Module

plays a more prominent role in improving the seizure prediction

model than individual CAM and SAM, and the specific order of

combining CAM and SAM within the Convolutional Attention

Module has the most significant influence on model performance

enhancement.

GAMRNN (Lion only): This model is derived from the

proposed model by removing the CBAM module, allowing for

the evaluation of the epileptic seizure prediction performance

without the attention convolutional module. The experimental

results demonstrate that the model without CBAM exhibits a

significant performance decrease in accuracy, sensitivity, and

specificity compared to the proposed predictionmodel. Specifically,

the classification accuracy of interictal and preictal data decreased

from 91.73 to 87.47%. The sensitivity of correctly identifying

preictal data decreased from 88.09 to 76.17%, and the specificity

of correctly identifying interictal data also decreased by 3.34%.

These changes in results indicate the crucial role of the CBAM

module in the proposed epileptic seizure prediction model, as the

model without CBAM shows a significant decrease in classification

performance. Therefore, we hypothesize that the inclusion of

CBAM in the model allows for further attention to be given to

essential channels and spatial feature points within the feature

maps after the initial three-layer convolutional feature extraction,

thereby aiding the model in focusing on extracting more crucial

feature information and enhancing the classification and prediction

performance of the model.

GAMRNN (CBAM and Adam): This model is obtained by

removing the Lion optimizer from the proposed model and using

the Adam optimizer, which is the same as the baseline model,

to observe its impact on model training. A comparison reveals

that this model also experiences a corresponding decrease in

performance in various aspects, although the decrease is not

particularly significant. For instance, the average accuracy of the

model without the Lion optimizer is only reduced by ∼1.70%, the

sensitivity is reduced by ∼4.34%, and the specificity is reduced by

0.57%. During model training, a visual inspection indicates that

each epoch takes∼1–2 s less than the Adam optimizer model. This

suggests that the Lion optimizer accelerates the training process and

effectively reduces the training loss of themodel, thereby enhancing

the stability of correct seizure prediction. In summary, the Lion

optimizer plays a role in performance evaluation and training

for epileptic seizure prediction research tasks. It also lays the

foundation for utilizing the Lion optimization algorithm in more

complex studies, offering more possibilities for training models in

epileptic seizure prediction research.

The above analysis provides a detailed examination of the

individual effects of the attention module and the Lion optimizer

in the proposed model. The experimental results indicate that

incorporating both modules into the research on epileptic seizure

prediction enhances the classification and prediction performance

of the model. As shown in Figure 7, the AUC results comparison

represents the model’s ability to accurately classify interictal and

preictal data. It can be observed that regardless of whether

the Channel Attention Module (CAM) or the Spatial Attention

Module (SAM) is individually integrated into the seizure prediction

model or if they are combined with interchanged order, the

classification performance of the model on most patients data

is significantly inferior to the predictive model proposed in this

study, which utilizes the Convolutional AttentionModule. Figure 8

illustrates the AUC comparison of the CGRNN baseline model

and the GAMRNN model, which gradually incorporates both

modules, using data from 13 patients. The graph shows that the

models achieve good classification performance on most patient

data, which becomes more pronounced as the two modules are

successively integrated. Among them, the AUC performance on

the Chb01, Chb09, and Chb23 data approaches 1. However,

the classification performance on the Chb02, Chb10, and Chb14

patient data is relatively lower due to the imbalance in these data

categories. However, significant improvements are observed after

incorporating the CBAM module and using the Lion optimizer,

further demonstrating that these two modules aid in accurately

recognizing and classifying imbalanced data. Therefore, the results

of the above ablation experiments indicate that the proposed

GAMRNNmodel has better EEG signal classification performance.

It combines the STFT spectrogram input with channel weights,

simultaneously focusing on the spatial features of the signal, and

uses GRU-gated units to extract important temporal information

from the features, providing specific advantages in reducing false

positives and improving model accuracy.

5. Discussion

With the emergence of various deep learning techniques, they

have gradually been applied to predict epileptic seizures. In order

to compare our proposed method with other methods on the same

dataset to make the comparison more convincing, we selected

several studies that evaluated models using the same dataset.

Table 4 shows the comparative experimental results. There is no
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FIGURE 7

Comparison of AUCs with di�erent attention mechanisms added to the models: the bar chart depicts the AUC evaluation results of four models,

namely, GAMRNN (CAM only), GAMRNN (SAM only), GAMRNN (first SAM then CAM), and GAMRNN(CBAM and Lion), on 13 patient datasets. The

comparison reveals that the proposed GAMRNN model with attention convolutional modules added in the normal sequence exhibits the most

distinct and superior classification performance compared to the other three models.

FIGURE 8

Comparison of AUC among di�erent models: the figure depicts the AUC evaluation of four epilepsy seizure prediction models, namely CGRNN,

GAMRNN (Lion only), GAMRNN (CBAM and Adam), and GAMRNN (CBAM and Lion), on the CHBMIT 13-patient dataset. AUC represents the

classification performance of the prediction models. As shown in the figure, the combination of the cbam module and lion optimizer has a certain

e�ect on the classification performance of the models.

absolute good or bad result because the models proposed by

different researchers have differences, and slight changes in each

step of epileptic seizure prediction may also lead to experimental

differences. Our GAMRNN model is much better than the CNN

model proposed by Truong et al. (2018) in all aspects. They

used a three-layer convolutional model for feature extraction and

achieved a prediction accuracy of 81.2% on CHB-MIT. Affes

et al. (2019) proposed a CGRNN model combining three layers of

convolution and two layers of gated units, achieving a classification

sensitivity of 89.07%. The difference between our CGRNN model

and theirs lies in the data preprocessing part, and it can be seen

that the attention convolution module we introduced has a positive
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TABLE 4 Comparative experimental results.

References Methods Accuracy Sensitivity FPR (/h) AUC

Truong et al. (2018)

CNN – 81.2 0.16 –

Affes et al. (2019)

CGRNN 75.6 89.07 1.6 –

Büyükçakır et al. (2020)

MLP – 89.8 0.081 –

Zhang et al. (2021)

Bi-LSTM 80.09 86.67 0.26 –

Sun et al. (2021)

CADCNN – 97.1 0.029 91.7

Proposed model GAMRNN 91.73 88.09 0.053 91.56

effect. Büyükçakır et al. (2020) utilized the Hilbert decomposition

method to decompose scalp EEG data signals from 10 patients

in the CHB-MIT dataset into seven components. They achieved

a sensitivity of 89.8% and a false alarm rate of 0.081/h using an

MLP classifier. Although our proposed method exhibits a slightly

lower sensitivity, we achieved a lower false seizure prediction

rate. Zhang et al. (2021) extracted the feature of multi-scale

sample entropy from 23 EEG signals from the same dataset and

used a bidirectional LSTM model to predict the occurrence of

epileptic seizures. The prediction accuracy achieved was 80.09%,

with an FPR of 0.26/h. In comparison, our model demonstrated

relatively superior performance. Sun et al. (2021) also proposed

a Channel Attention Dual-input Convolutional Neural Network

(CADCNN) that incorporates both time-frequency spectrograms

and raw EEG signals as inputs to a convolutional neural network

for feature extraction and fusion. By leveraging channel attention

mechanisms, their method achieved excellent results, exhibiting

superior sensitivity compared to the model proposed in this study

but similar AUC performance. Therefore, we hypothesize that

the different forms of dual-channel input EEG signals may help

improve the accuracy of feature extraction.

Our proposed study features a relatively simple overall

model architecture, resulting in lower resource overhead

and computational complexity. The total number of training

parameters is ∼880,000, including parameters from convolutional

kernels, recurrent gating units, and fully connected layers. The

experiments were conducted on a server equipped with an RTX

2080 Ti GPU (11 GB of VRAM), and the memory required for

the dataset and model source code was ∼40 GB. Training the

model on the CHB-MIT dataset, which includes data from 13

patients, took ∼8 h. The training time per patient varied from a

few seconds to several tens of seconds per epoch, and the overall

training time depended on the number of seizures and recording

duration per patient. Despite its simplicity in implementation, this

experiment achieved favorable performance, which highlights its

relative excellence.

In the process of comparing our proposed method with

others, we have reflected on potential issues that may exist. For

example, the evaluation of the model on Chb02, Chb10, and Chb14

showed relatively inferior predictive performance compared to

other patients. The significant inter-individual variability among

patients often results in some individuals having predictable

epileptic seizures while others experience unpredictable seizure

occurrences. In addition to these factors, this may be closely

related to the seizure condition of each patient. The Chb02

patient had only three seizures in all the records, indicating a

significant imbalance in the ratio between preictal and interictal

data. This imbalance adversely affected the model’s ability to

learn from preictal data, leading to reduced sensitivity and

classification performance in identifying this data type correctly.

Similarly, for the Chb10 and Chb14 patients, the relatively dense

occurrence of seizure events in the recorded data files resulted

in limited interictal periods available for model learning. This

limitation affected the model’s ability to differentiate between

interictal and preictal data, leading to poorer overall classification

performance. Therefore, in future research, we intend to employ

data augmentation techniques to generate additional EEG data,

addressing the issue of data imbalance in epileptic seizure

occurrences. This endeavor aims to facilitate the epileptic seizure

prediction model in achieving enhanced performance and superior

outcomes.

This paper proposes a seizure prediction method based

on a recurrent neural network with convolutional attention

modules. Firstly, we use multiple layers of convolution to extract

spatial information from multi-channel EEG recordings and

apply attention mechanisms to focus on specific channels and

spatial locations, mimicking the visual perception process of

humans. Our model combines two channel attention modules

and a spatial attention module to reassign weights to each

feature channel and point in the convolution process. Two

gated recurrent units are added after the attention modules

to perform deep feature extraction on the temporal sequence.

Experimental results show that our proposed method achieves

high accuracy, sensitivity, and low false positive rate in cross-

validation evaluation on the dataset, which further proves

the potential of attention mechanism modules and the Lion

optimization algorithm in seizure EEG prediction research,

providing ideas and insights for future research in this field. In

addition, we plan to explore methods for addressing imbalanced

data issues and evaluate the proposed model’s performance on

more scalp EEG and intracranial EEG datasets to improve its

generalization capability.
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