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The affective Brain-Computer Interface (aBCI) systems, which achieve predictions 
for individual subjects through training on multiple subjects, often cannot 
achieve satisfactory results due to the differences in Electroencephalogram 
(EEG) patterns between subjects. One tried to use Subject-specific classifiers, 
but there was a lack of sufficient labeled data. To solve this problem, Domain 
Adaptation (DA) has recently received widespread attention in the field of EEG-
based emotion recognition. Domain adaptation (DA) learning aims to solve the 
problem of inconsistent distributions between training and test datasets and 
has received extensive attention. Most existing methods use Maximum Mean 
Discrepancy (MMD) or its variants to minimize the problem of domain distribution 
inconsistency. However, noisy data in the domain can lead to significant drift 
in domain means, which can affect the adaptability performance of learning 
methods based on MMD and its variants to some extent. Therefore, we propose 
a robust domain adaptation learning method with possibilistic distribution 
distance measure. Firstly, the traditional MMD criterion is transformed into a 
novel possibilistic clustering model to weaken the influence of noisy data, thereby 
constructing a robust possibilistic distribution distance metric (P-DDM) criterion. 
Then the robust effectiveness of domain distribution alignment is further improved 
by a fuzzy entropy regularization term. The proposed P-DDM is in theory proved 
which be an upper bound of the traditional distribution distance measure method 
MMD criterion under certain conditions. Therefore, minimizing P-DDM can 
effectively optimize the MMD objective. Secondly, based on the P-DDM criterion, 
a robust domain adaptation classifier based on P-DDM (C-PDDM) is proposed, 
which adopts the Laplacian matrix to preserve the geometric consistency of 
instances in the source domain and target domain for improving the label 
propagation performance. At the same time, by maximizing the use of source 
domain discriminative information to minimize domain discrimination error, the 
generalization performance of the learning model is further improved. Finally, a 
large number of experiments and analyses on multiple EEG datasets (i.e., SEED and 
SEED-IV) show that the proposed method has superior or comparable robustness 
performance (i.e., has increased by around 10%) in most cases.
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1. Introduction

In the field of affective computing research (Mühl et al., 2014), 
automatic emotion recognition (AER) (Dolan, 2002) has received 
considerable attention from the computer vision community (Kim 
et  al., 2013; Zhang et  al., 2017). Thus far, numerous 
Electroencephalogram (EEG)-based emotion recognition methods 
have been proposed (Musha et al., 1997; Jenke et al., 2014; Zheng, 
2017; Li X. et al., 2018; Pandey and Seeja, 2019). From a machine 
learning perspective, EEG-based AER can be  modeled as a 
classification or regression problem (Kim et al., 2013; Zhang et al., 
2017), where state-of-the-art AER techniques typically train their 
classifiers on multiple subjects to achieve accurate emotion 
recognition. In this case, subject-independent classifiers usually 
have poor generalization performance, as emotion patterns may 
vary across subjects (Pandey and Seeja, 2019). Significant progress 
in emotion recognition has been made by improving feature 
representation and learning models (Zheng et al., 2015; Zheng and 
Lu, 2015; Li et al., 2018a,b, 2019; Song et al., 2018; Du et al., 2020; 
Zhong et al., 2020). Since the individual differences in EEG-based 
AER are a natural existence, we may obtain a not good result by 
qualitative and empirical observations if the learned classifier 
generalize to previously unseen subjects (Jayaram et  al., 2016; 
Zheng and Lu, 2016; Ghifary et al., 2017; Lan et al., 2019). As a 
possible solution, subject-specific classifiers are often impractical 
due to insufficient training data. Moreover, even if they are feasible 
in some specific scenarios, it is also an indispensable task to fine-
tune the classifier to maintain a sound recognition capacity partly 
because the EEG signals of the same subject are changing now and 
then (Zhou et al., 2022). To address the aforementioned challenges, 
the domain adaptation (DA) learning paradigm (Patel et al., 2015; 
Tao et al., 2017, 2021, 2022; Zhang et al., 2019b; Dan et al., 2022) 
has been proposed and has achieved widespread effective 
applications, which enhances learning performance in the target 
domain by transferring and leveraging prior knowledge from other 
related but differently distributed domains (referred to as source or 
auxiliary domains), where the target domain has few or even no 
training samples.

Reducing or eliminating distribution differences between different 
domains is a crucial challenge currently faced during DA learning. To 
this end, mainstream DA learning methods primarily eliminate 
distribution biases between different domains by exploring domain-
invariant features or samples (Pan and Yang, 2010; Patel et al., 2015). 
In order to fully exploit domain-invariant feature information, 
traditional shallow DA models have been extended to the deep DA 
paradigm. Benefiting from the advantages of deep feature 
transformation, deep DA methods have now achieved exciting 
adaptation learning performance (Long et al., 2015, 2016; Ding et al., 
2018; Chen et  al., 2019; Lee et  al., 2019; Tang and Jia, 2019). 
Unfortunately, these deep DA methods can provide more transferable 
features and domain-invariant features, they can only alleviate but not 
eliminate the domain distribution shift problem caused by domain 
distribution differences. In addition, these deep DA methods can 
demonstrate better performance advantages, which may be attributed 
to one or several factors such as deep feature representation, model 
fine-tuning, adaptive regularization layers/terms, etc. However, the 
learning results of these methods still lack theoretical or practical 
interpretability at present.

DA theoretical studies have been proposed for domain adaptation 
generalization error bound (Ben-David et  al., 2010) by the 
following inequality:
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where the expected error of the target hypothesis e h ( )  is mainly 
constrained by three aspects: (1) the expected error of the source 
domain hypothesis e h ( ); (2) the distribution difference between the 
source and target domains dH S TD D,( ) ; (3) the difference in label 
functions between the two domains [i.e., the third term from Equation 
(1)]. Therefore, we will consider the three aspects simultaneously in 
this paper to reduce the domain adaptation generalization error 
bound (Zhang et al., 2021). Most existing methods assume that once 
the domain difference is minimized, a classifier trained only on the 
source domain can also generalize to the target domain well. 
Therefore, current mainstream DA methods aim to minimize the 
statistical distribution difference between the two domains. To this 
end, reducing or eliminating the distribution difference between 
domains to achieve knowledge transfer from the source domain and 
improve learning performance in the target domain is the core goal of 
domain adaptation learning methods. However, the key to this goal is 
effectively measuring the distribution difference between domains. 
Existing criteria for measuring the distance between different domains 
mainly include Maximum Mean Discrepancy (MMD) (Gretton et al., 
2007), Bregman divergence, Jensen-Shannon divergence, etc. MMD 
is the most commonly used domain distribution difference 
measurement criterion in existing research, which can be divided into 
two categories alignment method: based on distribution alignment 
(including instance re-weighting and feature transformation) and 
classification model alignment with some representative works 
(Gretton et al., 2007; Pan et al., 2011; Tao et al., 2012, 2015, 2016, 2019; 
Baktashmotlagh et al., 2013; Chu et al., 2013; Long et al., 2013; Ganin 
et al., 2016; Liang et al., 2018; Luo et al., 2020; Kang et al., 2022).

To address the domain distribution shifting phenomenon, early 
instance re-weighting methods calculate the probability of each 
instance belonging to the source or target domain by likelihood ratio 
estimation (i.e., the membership of each instance). The domain shift 
problem can be relieved by re-weighting instances based on their 
membership. MMD (Gretton et al., 2007) is a widely adopted strategy 
for instance re-weighting, which is simple and effective. However, its 
optimization process is often carried out separately from the classifier 
training process, it’s difficult to ensure that both are optimal at the 
same time. To address this issue, Chu et al. (2013) proposed a joint 
instance re-weighting DA classifier. To overcome the conditional 
distribution consistency assumption of the instance re-weighting 
method, the feature transformation methods have received widespread 
attention and exploration (Pan et al., 2011; Baktashmotlagh et al., 
2013; Long et al., 2013; Liang et al., 2018; Luo et al., 2020; Kang et al., 
2022). Representative methods include Pan et al. (2011) proposed the 
Transfer Component Analysis (TCA) method, which learned a 
transformation matrix. It adopted MMD technology to minimize the 
distribution distance between source domains and target domain, and 
preserved data divergence information, but did not consider domain 
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semantic realignment. Then, Long et al. (2013) proposed a Joint DA 
(JDA) method, which fully considered the domain feature distribution 
alignment and class conditional distribution alignment with the target 
domain labels in the class conditional distribution initialized by 
pseudo-labels. Recently, Luo et al. (2020) proposed a Discriminative 
and Geometry Aware Unsupervised Domain Adaptation (DGA-DA) 
framework, which combined the TCA and JDA methods. It 
introduced a strategy that made different classes from cross-domains 
mutually exclusive. Most of the existing affective models were based 
on deep transfer learning methods built with domain-adversarial 
neural network (DANN) (Ganin et al., 2016) proposed in Li et al. 
(2018c,d), Du et al. (2020), Luo et al. (2018), and Sun et al. (2022). The 
main idea of DANN (Ganin et al., 2016) was to find a shared feature 
representation for the source domain and the target domain with 
indistinguishable distribution differences. It also maintained the 
predictive ability of the estimated features on the source samples for a 
specific classification task. In addition, the framework preserved the 
geometric structure information of domain data to achieve effective 
propagation of target labels. Baktashmotlagh et al. (2013) proposed a 
Domain Invariant Projection (DIP) algorithm, which investigated the 
use of polynomial kernels in MMD to construct a compact domain-
shared feature space. The series of DANN methods still has some 
challenges, PR-PL (Zhou et al., 2022) also explored the prototypical 
representations to further characterize the different emotion categories 
based on the DANN method. Finally, the study designed a clustering-
based DA concept to minimize inner-class divergence. A review of 
existing DA method research shows that MMD is the main 
distribution distance measurement technique adopted by feature 
transformation-based DA methods. Traditional MMD-based DA 
methods focused solely on minimizing cross-domain distribution 
differences while ignoring the statistical (clustering) structure of the 
target domain distribution, which to some extent affects the inference 
of target domain labels. To address this issue, Kang et  al. (2022) 
proposed a contrastive adaptation network based on unsupervised 
domain adaptation. The initialization of the labels from the target 
domain was realized by the clustering assumption. The feature 
representation is adjusted by measuring the contrastive domain 
differences (i.e., minimizing within-class domain differences and 
maximizing between-class domain differences) in multiple fully 
connected layers. During the training process, the assumptions of the 
target domain label and the feature representations are continuously 
cross-iterated and optimized to enhance the model’s generalization 
capability. Furthermore, inspired by clustering patterns, Liang et al. 
(2018) proposed an effective domain-invariant projection integration 
method that uses clustering ideas to seek the best projection for each 
class within the domain, bridging the domain-invariant semantic gap 
and enhance the inner-class compactness in the domain. However, it 
still essentially belongs to MMD-based feature transformation 
DA methods.

It is worth noting that existing MMD-based methods did not fully 
consider the impact of intra-domain noise when measuring domain 
distribution distance. In real scenarios, noise inherently exists in 
domains, and intra-domain noise can lead to mean-shift problems in 
distance measurement for traditional MMD methods and their 
variants. This phenomenon to some extent is affecting the 
generalization performance of MMD-based DA methods. As shown 
in Figures 1A1, B1 represent the noise-free source domain and target 
domain, respectively. ms* and mt* are the means of the source domain 

and target domain, respectively. Figure  1C1 shows the domain 
adaptation result based on the MMD method. When the source 
domain has noises (i.e., Figure 1A2), the mean shift occurs and it’s 
difficult to effectively measure the distribution distance by the MMD 
criterion. It matches the most of target domain samples (i.e., 
Figure 1B2) to a certain category of source domain (i.e., Figure 1C2). 
It declines the inferring performance of domain adaptation learning.

Existing research (Krishnapuram and Keller, 1993) pointed out that 
the possibilistic-based clustering model can effectively suppress noise 
interference during the clustering process. Therefore, Dan et al. (2021) 
proposed an effective classification model based on the possibilistic 
clustering assumption. Inspired by this work, we aim to jointly address 
the robustness and discriminative issues in the MMD criterion to 
enhance the adaptability of MMD-based methods and propose a robust 
Probabilistic Distribution Distance Measure (P-DDM) criterion. 
Specifically, by measuring the distance between EEG data (from either 
the source or target domain) and the overall domain mean (i.e., the 
mean of the source domain and target domain), the corresponding 
matching membership is used to judge the relevance between the EEG 
data and the mean. In other words, the smaller the distance between the 
EEG data and the mean, the larger the membership, and vice versa. In 
this way, the impact of noise in the matching process can be alleviated 
by the value of membership. The robustness and effectiveness of P-DDM 
are further enhanced by introducing a fuzzy entropy regularization term. 
Based on this, a domain adaptation Classifier model based on P-DDM 
(C-PDDM) is proposed, which introduces the graph Laplacian matrix 
to preserve the geometric structure consistency within the source 
domain and target domain. It can improve the label propagation 
performance. At the same time, a target domain classification model 
with better generalization performance is obtained by maximizing the 
use of source domain discriminative information to minimize domain 
discriminative errors. The main contributions of this paper are as follows:

 1) The traditional MMD measurement is transformed into a 
clustering optimization problem, and a robust possibilistic 
distribution distance metric criterion (P-DDM) is proposed to 
solve the domain mean-shift problem in a noisy environment;

 2) It is theoretically proven that under certain conditions, P-DDM 
is an upper bound of the traditional MMD measurement. The 
minimization of MMD in domain distribution measurement 
can be effectively achieved by optimizing the P-DDM;

 3) A DA classifier mode based on P-DDM is proposed (i.e., 
C-PDDM), its consistent convergence is proven, and the DA 
generalization error bound of the method is proposed based on 
Rademacher complexity theory;

 4) A large number of experiments are conducted on two EEG 
datasets (i.e., SEED and SEED-IV), demonstrating the robust 
effectiveness of the method and a certain degree of 
improvement in the classification accuracy of the model.

2. Proposed framework: C-PDDM

In domain adaptation learning, DS = { }
=

x yis i
s
i

n
,

1
 denotes n 

samples and its associated labels of the source domain. 

X x xs s
n
s d n= ¼é

ë
ù
ûÎ

´
1 , ,   indicates all the source samples. 
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denotes the mean value of the source domain and target domain, 
respectively. Our proposal has some assumptions:

 1) However, the distributions of source domain () and target 
domain () are different (i.e., P QX XS T( ) ¹ ( ) and X XS T= ),  
they share the same feature space with X X XS T, Î  are feature 
space of the source domain and target domain, respectively.

 2) The condition probability distributions of the source domain 
and target domain are different [i.e., P QY X Y XS S T T( ) ¹ ( ) ],  
but they share the same label space with Y Y YS T, Î  are label 
space of the source domain and target domain, respectively.

In the face of a complex and noisy DA environment, the proposed 
method will achieve the following objectives by the DA generalization 
error theory (Ben-David et al., 2010) to make the distance metric for 
domain adaptation more robust and achieve good target classification 
performance: (1) Robust distance metric: solve the problem of domain 
mean shift under the influence of noise, thereby effectively aligning 
the domain distribution differences; (2) Implement target domain 

knowledge inference: we bridge the discriminative information of the 
source domain while minimizing the domain discriminative error 
based on preserving the consistency of domain data geometry, and 
learn a target domain classification machine with high generalization 
performance. Based on the descriptions of the above objectives, the 
general form of the proposed method can be described as:

 
Q Wl li k

s tY W X X R Y W, , min , , ,( ) = ( ) + ( )
 

(2)

where W lk s tX X, ,( )  is the robust distance metric, which reduces 
the impact of noisy data on the alignment of domain distribution 
differences. R(Y, W) is the domain adaptation learning loss function 
that includes the label matrix Y (that is, the comprehensive label 
matrix of the source and target domains) and the comprehensive 
learning model W of the source domain and the target domain.

2.1. Design of possibilistic distribution 
distance metric

2.1.1. Motivation
In a certain reproducing kernel Hilbert space (RKHS) , the 

original space data representation can be transformed into a feature 
representation in the RKHS through a certain non-linear 
transformation f :d H®  (Long et al., 2016). The corresponding 
kernel function is defined as K X X X X1 2, :( ) ´ ®  , where 
K x x x x1 2 1 2 H

, ,( ) = ( ) ( )f f , x x X1 2, Î . It is also a commonly used 
kernel technique in current non-linear learning methods (Pan et al., 

FIGURE 1

The influence comes from the noises or outliers during domain matching. (A1) Source domain with noise. (B1) Target domain. (C1) Domain adaptation. 
(A2) Source domain without noise. (B2) Target domain. (C2) Domain adaptation.
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2011; Long et  al., 2015). For the problem of inconsistent 
distributions in domain adaptation, existing research has shown 
(Bruzzone and Marconcini, 2010; Gretton et al., 2010) that when 
sample data is mapped to a high-dimensional or even infinite-
dimensional space, it can capture higher-dimensional feature 
representations of the data (Carlucci et  al., 2017). That is, in a 
certain RKHS, the distance between two distributions can 
be effectively measured through the maximum mean discrepancy 
(MMD) criterion. Based on this, it is assumed that   is a collection 
of functions of a certain type f : f : ®  , The maximum mean 
discrepancy (MMD) between two domain distributions   and  
can be defined as:

 
MMD f x f x

f



P E E

P
, : sup .



[ ] = ( )éë ùû - ( )éë ùû
æ
è
ç

ö
ø
÷

Î  
(3)

MMD measure minimizes the expected difference between two 
domain distributions through the function f, making the two domain 
distributions as similar as possible. When the sample size of the 
domain is sufficiently large (or approaches infinity), the expected 
difference approximates (or equals) the empirical mean difference. 
Therefore, Equation (3) can be  written in the empirical 
form of MMD:
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To prove the universal connection between the traditional 
MMD criterion and the mean clustering model, we  give the 
following theorem: Theorem 1. The MMD measure can be loosely 
modeled as a special clustering problem with one cluster center, 
where the clustering center is m , and the instance clustering 
membership is Vk .

Proof: As defined by MMD:
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where m dm d m= + -( )s 1 t  is the cluster center with 0 1£ £d . When 
n m= , let 0.5δ = . When n m¹ , the number of samples in the source 

domain and target domain can be set the same during sampling. The 
sample membership Vk  of one cluster center is defined as:
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(6)

From Equation (5), it can be seen that the one cluster center form 
with clustering center n is an upper bound of the traditional MMD 
measure. In other words, the MMD measure can be relaxed to a special 
one cluster center objective function. By optimizing this clustering 
objective, the minimization of MMD between domains can be achieved.

As indicated in Theorem 1 and Baktashmotlagh et al. (2013), the 
domain distribution MMD criterion is essentially related to the 
clustering model, which can be  used to achieve more effective 
distribution alignment between different domains by clustering 
domain data. It is worth noting that the traditional clustering model 
has the disadvantage of being sensitive to noise (Krishnapuram and 
Keller, 1993), which makes domain adaptation (DA) methods based 
on MMD generally face the problem of domain mean shift caused by 
noisy data. To address this issue, this paper further explores more 
robust forms of clustering and proposes an effective new criterion for 
domain distribution distance measurement.

2.1.2. P-DDM
Recently proposed possibility clustering models can effectively 

overcome the impact of noise on clustering performance (Dan et al., 
2021). Therefore, this paper further generalizes the above special one 
cluster center to a possibility one cluster center form and proposes a 
robust possibility distribution distance metric criterion P-DDM. By 
introducing the possibility clustering assumption, the MMD hard 
clustering form is generalized to a soft clustering form, which controls 
the contribution of each instance according to its distance from the 
overall domain mean. The farther the distance, the smaller the 
contribution of the instance, thus weakening the influence of mean 
shift caused by noisy data in the domain and improving the robustness 
of domain adaptation learning.

To achieve robust domain distribution alignment, the distribution 
distance measurement criterion based on the possibility clustering 
assumption mainly achieves two goals: (1) Calculate the difference in 
distribution between kernel space domains based on the possibility 
clustering assumption, by measuring the distance between each 
instance in the domain and the overall domain mean; (2) Measure the 
matching contribution of each instance. Any instance in the overall 
domain has a matching contribution value lk Î , k N= ¼1 2, , , 
which is the matching contribution degree of xk to the overall domain 
mean, and the closer the distance, the larger the value of lk. Thus, the 
possibility distribution distance measure can be defined as:
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where the parameter b is the weight exponent of lk, which is used to 
adjust the uncertainty or degree of the data points belonging to 
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multiple categories. In order to circumvent the trivial solution, b is set 
to 2 in the subsequent equations of this paper. The detailed process of 
different values of b can be found in references (Krishnapuram and 
Keller, 1993). W p k s tX Xl , ,( )  is an objective function of possibility 
clustering with a cluster center of μ, and when l Vk k

2 = , 
W p k s tX Xl , ,( )  takes the form of the above-mentioned special one 
cluster center.Theorem 2.When lk r

Îé
ëê

ù
ûú

1
1, , the possibility distribution 

distance measure W p k s tX Xl , ,( )  is an upper bound of the 
traditional MMD method.

Proof: Combining Equation (5) and Equation (7), we have the 
following inference process:
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According to the value range of Vk, when lk rÎ ( )é
ë

ù
û

1 1,  and r = min 
(n, m), the second inequality in Equation (8) holds, thus proving that 
W p k s tX Xl , ,( )  is the upper bound of traditional MMD. According 
to Theorem 1 and Theorem 2, the traditional MMD metric criterion 
can be modeled as a possibilistic one cluster center objective form. 
From this perspective, it can be  considered that the possibilistic 
distribution distance metric target domain can not only achieve 
alignment of domain feature distribution, but also weaken the 
“negative transfer” effect of noisy data in the domains during training.

Equation (7) only considers the overall mean regression problem, 
which clusters each instance with the overall domain mean, while 
ignoring the semantic structural information of the instance in 
domain distribution alignment. It may lead to the destruction of the 
local class structure in the domain. Inspired by the idea of global and 
local from Tao et  al. (2016), we  further consider the semantic 
distribution structure in domain alignment and calculate the semantic 
matching contribution of each instance. Therefore, based on the 
feature distribution alignment, we propose an integrated semantic 
alignment. It can be rewritten as follows:
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where m dm d mc c t c= + -( )s, ,1 , m fs c
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, c C= ¼0 1 2, , , , , C is the number of classes. nc  

is the number of samples of the c-th class in the source domain, mc  is 

the sample number of the c-th class in the target domain, and n n
c

C
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=
å

0
,  

m m
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C
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=
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0
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0
. When c = 0, ms c,  and mt c,  are the mean 

values of the source domain and the target domain, respectively. 
Equation (9) is a feature distribution alignment form. When 
c CÎ ¼[ ]1 2, , , , ms c,  and mt c,  are the associated c-th class mean values 
of the source domain and the target domain, respectively. lk c,  is the 
membership of xk  belonging to the c-th class in the overall domain 
(i.e., integrate the source domain and target domain into one domain).

To further improve the robustness and effectiveness of the 
possibilistic distribution distance metric method on noisy data, we add 
a fuzzy entropy regularization term related in Equation (9). Therefore, 
the semantic alignment P-DDM in (9) can be  further defined 
as follows:
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(10)

where b  is a tunable balancing parameter that forces the value of lk c,  
for relevant data to be as large as possible to avoid trivial solutions. 
After the above improvements, P-DDM is a monotonic decreasing 
function on lk c, . Through the fuzzy entropy term in the second part 
of Equation (10), P-DDM reduces the impact of noise data on model 
classification. The larger the fuzzy entropy, the greater the sample 
discrimination information, which helps to enhance the robustness 
and effectiveness of distribution distance measurement. Additionally, 
the possibility distribution measurement model regularized by fuzzy 
entropy can effectively suppress the contribution of noise data in 
domain distribution alignment, thereby reducing the interference of 
noise/abnormal data to domain adaptation learning. The robustness 
effect of fuzzy entropy can be further seen in the empirical analysis of 
reference (Gretton et al., 2010).

2.2. Design of domain adaptation function

The P-DDM criterion addresses the problems of domain 
distribution alignment and noise impact. Next, we will achieve the two 
goals required for the inference of target domain knowledge: (1) to 
preserve the geometric consistency in the source domain and the 
target domain, i.e., the label information between adjacent samples 
should be consistent, and (2) to minimize the structural risk loss of 
both the source and target domains. Given the description of the 
objective task, the general form of the objective risk function can 
be described as:

 R Y W Y W,( ) = +W W , (11)

where WY  is the loss of joint knowledge transfer and label 
propagation, which preserves the geometric consistency of the data 
between the source and target domains, and WW  is the structural risk 
loss term, which includes both the source domain and the target 
domain. Next, these two terms will be designed separately.
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2.2.1. Joint knowledge transfer and label 
propagation

Firstly, G X M= ,  denotes an undirected weighted graph of the 
overall domain. M N NÎ ´  is a weighted matrix with M Mij ji= ³ 0.  
Mij  is calculated by:
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(12)

where x Ne xk mÎ ( ) means that xk is the neighbor of xm. s  is the local 
influence range parameter that controls the Gaussian kernel function 
and is also a hyper-parameter. The larger the value of s , the larger the 
local influence range, and vice versa, the smaller the local influence 
range. When s  is fixed, the change in Mij  decreases monotonically as 
the distance between xi and x j increases.

In combination with source domain knowledge transfer and 
graph Laplacian matrix (Long et al., 2013; Wang et al., 2017), the 
objective form of label propagation modeling can be described as:
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Y
T= ( )min ,tr Y LY

 
(13)

where Y Y ;Y= [ ]Î ´
s t

N C , Yt is the target domain label matrix. The 
label value for a sample in the target domain corresponding to a 
position in Yt  is all zeros when the sample has no label. Ys is the 
source domain label matrix. L M D N N= - Î ´  is the Laplacian 
graph matrix (Long et  al., 2013) with D is a diagonal 

matrix and D Mii
j

N
ij=

=
å

1
.

2.2.2. Minimize structural risk loss
In our proposed method, the classifier of the source domain (the 

corresponding target domain classification model) is defined as 
f W X bs ss

T
s s= +  (the corresponding f W X bt tt

T
t t= + ). bs(bt) is the 

source domain bias (the target source bias). Wss(Wtt ) is the parameter 
matrix of the source domain (the parameter matrix of the target 
domain). Let  [ ],ss ss WW b= , X Xs s = [ ],1 , W W bt tt t = [ ], , X Xt t = [ ],1 , 
we can rewrite both classifiers of the source domain and the target 
domain respectively: f W Xs s

T

s
� � �=  and f W Xt t

T

t
� � �= . Let W W Ws t= éë ùû

 , , 
X X Xs t= éë ùû

 , . We rewrite the final classifier as: F W X WT( ) = .
According to the minimum square loss function, the problem of 

minimizing structural risk loss in both domains (source domain and 
target domain) can be described as:
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(14)

where the first term denotes the structure risk loss and y Yk Î  The 
second term is the constraint term of W. By using l2 1,  regularization, 
we  can achieve feature selection and it can effectively control the 
complexity of the model to prevent over-fitting of the target 
classification model to some extent.

The classification task proposed in this method is ensured by the 
dual prediction of the label matrix Y and the decision function W to 
guarantee the reliability of the prediction. The target classification 

function is combined by Equation (13) and Equation (14). It’s 
described as follows:
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2.3. Final formulation

By combining the semantic alignment P-DDM form [i.e., 
Equation (10)] and the target classification function [i.e., Equation 
(16)], the final optimization problem formulation of the proposed 
method C-PDDM can be described as follows:
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(16)

where b , a , and r  are balance parameters.
With all model parameters obtained, target domain knowledge 

inference can be achieved by maximizing the utilization of source 
domain discriminative information, linearly fusing the two classifiers 
fs  and ft , and using this linear fusion model for target domain 

knowledge inference. The fusion form can be written as follows:

 
j y f x f x

j
i
t

s i
t

t i
t

j
= = + -( )arg max ( ) ( ) ( )u u 1

where u Î[ ]0 1,  is an adjustable parameter that balances the two 
classifiers, in order to reflect the importance of source domain 
discriminative information as prior knowledge, υ is set to 0.9 based 
on empirical experience.

3. C-PDDM optimization

The optimization problem of C-PDDM is a non-convex problem 
with respect to lk c, , W, and Y. We will adopt an alternating iterative 
optimization strategy to achieve the optimization and solution of lk c, ,  
W, and Y, so that each optimization variable has a closed-form solution.

3.1. Update λk,c as given W and Y

As we fix W and Y, the objective function in Equation (16) reduces 
to solving:
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Theorem 3. The optimal solution to the primal optimization 
problem of the objective function (17) is:
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(19)

Combining and simplifying the terms in Equation (19), we get the 
solution of lk c,  is Equation (18), Theorem 3 is proved. From Theorem 3, 
the membership of any sample can be obtained by Equation (18).

3.2. Update W as given Y and λk,c

Since the first and the third terms in Equation (16) do not have W, 
the optimization formula for C-PDDM can be rewritten as:
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(20)

where l is a matrix with l Î ´N C, each element is lk c,
2 , lk c,  means 

the membership of xk  belonging to the c-th class.Theorem 4.The 
optimal solution to the primal optimization problem of the objective 
function (20) is:

 W AY= , (21)

with A UT= ( ) ( ) +( ) ( )
-

lf f r fX X X
1

.

Proof. According to Equation (19), let ¶ ¶ =P
W

2 0, we have:
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where ¶
¶

=
r W
W

UW2 1, , U  is a diagonal matrix, its diagonal 

element is U
wii
i

=
1 , wi  is the i-th vector of W . The solution 

obtained by organizing Equation (22) is Equation (21).

3.3. Update Y by fixing W and λk,c

Finally, lk c,  is fixed. W AY=  is substituted into Equation (16). 
The constraint YYT I=  can reduce the interference information in 
the label matrix Y , the objective form for optimizing the solution of 
Y is described as:
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(23)

where H B BT= +a lL , B X IT= ( ) -f A .
The optimization problem (23) is a standard singular value 

decomposition problem, where Y is the eigenvector of the matrix H . 
Y can be obtained by solving the singular value decomposition of the 
matrix H .

4. Algorithm

4.1. Algorithm description

In unsupervised domain adaptation learning scenarios (i.e., the 
target domain does not have any labeled data), in order to achieve 
semantic alignment between domains, initial labels of the target 
domain can be obtained through three strategies (Liang et al., 2018): 
(1) random initialization; (2) zero initialization; (3) use the model 
trained on the source domain data to cluster the target domain data 
to obtain initial labels. (1) and (2) belong to the cold-start method. (3) 
belongs to the hot-start method which is relatively friendly to 
subsequent learning performance. Therefore, we  adopt the third 
method to initialize the prior information of lk c, , W , and Y . The 
proposed method adopts the iterative optimization strategy commonly 
used in multi-objective optimization, and the algorithm stops iterating 
when the following conditions are satisfied: 
Q Ql l ek c

z z z
k c
z z zW Y W Y

, ,
, , ( , , , , ) ,( ) - <- - -1 1 1  where Q lk c

z z zW Y, , ,( )  
denotes the value of the objective function at the z-th iteration. e  is a 
pre-defined threshold.

https://doi.org/10.3389/fnins.2023.1247082
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tao et al. 10.3389/fnins.2023.1247082

Frontiers in Neuroscience 09 frontiersin.org

4.2 Computational complexity

This article uses Big O to analyze the computational complexity of 
Algorithm 1. The proposed method C-PDDM mainly consists of two 
joint optimization parts: P-DDM and target label propagation. Specifically, 
we first construct the k-Nearest Neighbor (i.e., k-NN) graph and compute 
the kernel matrix K  in advance requiring computational costs of O dn2( ) 
and O dN 2( ), respectively. Then, the optimization process of Algorithm 
1 requires T  iterations to complete with the P-DDM minimization 
(including possibility membership inference) process requires 
O d N d N3 2 2+ +( ). The target label matrix Ft requires O n n c3

3 2+( ) to 
complete inferring thing. The target classification model W  requires 
O nc dc2 2+( ) to finish updating, Therefore, the overall computational 
cost of Algorithm 1 is O T d N d N n n c dn dN3 2 2 3 2 2 2

3+ + + +( ) + +( ).
Before training in Algorithm 1, pre-computing the C-PDDM kernel 

matrix and Laplacian graph matrix and loading them into memory can 
further improve the computational efficiency of Algorithm 1. In short, 
the proposed algorithm is feasible and effective in practical applications.

5. Analysis and discussion of C-PDDM

5.1. Analysis of convergence

To prove the convergence of Algorithm 1, the following lemma 
is proposed.

Lemma 1 (Nie et  al., 2010). For any two non-zero vectors 
V V d

1 2, Î , the following inequality holds:
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Then, we  prove the convergence of the proposed algorithm 
through Theorem 5.Theorem 5. Algorithm 1 decreases the objective 
value of the optimization problem (17) in each iteration and 
converges to the optimal solution.

Proof. For expression simply, the updated results of 
optimization variables lk c, , W , and Y  after t -th iteration are 
denoted as ltk c, , Wt , and Yt , respectively. The internal loop 
iteration update in Step  8 of Algorithm 1 corresponds to the 
following optimization problem:
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According to the definition of matrix U , we have:
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where
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ALGORITHM 1 Domain adaptation learning based on C-PDDM.

Input: The source domain data X Ys s,{ }, the target domain data Xt , unknown labels of the target domain Yt  (the initialization can be obtained by cluster algorithm), 
model parameter values of b a r q, , ,  and the threshold of iteration stop e , and the maximal iteration number Z .
Output: The contribution matrix lk c,  matches each instance to the mean points of each class in the entire domain, the decision function W and the label matrix Y.
Procedure:
1. Initialize the label values for unlabeled data from the target domain.
2. Compute the means of different classes in the target domain and the source domain respectively, denoted as mt c,  and ms c, , c C= ¼0 1 2, , , , .
3. Then compute the mean of different class data in the overall domain (i.e., integrate the source domain and the target domain), denoted as m m mc s c t c= +( )1

2
, ,

4. Obtain the initialization lk c,
0  of lk c,  using (18);

5. Obtain the initialization W0  of W using (21);
6. Obtain the initialization Y0 of Y using (23);
7. Compute the value of the objective function ˜ ,W ,Ylk c,

0 0 0( );
8.for z = 1to Zdo:
{
8.1 Fix the current W and Y for updating lk c, to lk c

z
,  by Eq. (18)；

8.2 Fix the current lk c, and Y for updating W to Wz  by Eq. (21)；
8.3 Fix the current lk c, and W for updating Y to Yz  by Eq. (23)；
}

while ˜ ,W ,Y ˜ ,,W ,,Yl l ek c
z z z

k c
z z z

, ,
( )( ) - ³- - -1 1 1

9. return lk c, , W, and Y;
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Based on Lemma 1, we can obtain the following inequality:
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Therefore, we can derive:
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Finally, Theorem 6 is proved.
According to the update rule in Algorithm 1 and Theorem 6, it is 

known that the optimization objective (17) is a decreasing function 
concerning the objective value. Therefore, it can be  inferred that 
Algorithm 1 can effectively converge to the optimal solution.

5.2. Analysis of generalization

Rademacher complexity can effectively measure the ability of a 
function set to fit noise (Ghifary et al., 2017; Tao and Dan, 2021). 
Therefore, we  will derive the generalization error bound of the 
proposed method through Rademacher complexity. Let 
H h: { : }= ®X Y  be a set of hypothesis functions in the RKHS   

space, where   is a compact set and  is a label space. Given a loss 
function loss × ×( ) ´ ® +, :   and a. neighborhood distribution  
on  , the expected loss of two hypothesis functions h h H, Î  is 
defined as:

 
LD Dh h E loss h x h xx, ( ), ( ) ( ) = ( )é

ë
ù
û~

The domain distribution difference between the source domain 
distribution   and the target domain distribution  can 
be defined as:
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Let f and f be  the true label functions for   and  , 
respectively, and let the corresponding optimized hypothesis 
functions be:
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Their corresponding expected loss is denoted as P Q Ph h* *( ), . Our 
C-PDDM method achieves the empirical loss target of P Q Ph h* *( ),  
through the objective function R Y W,( ).

The following theorem gives the generalization error bound of the 
proposed method:

Theorem 6 (Generalization Error Bound) (Nie et  al., 2010). Let 
H f f and f r: { : , }= Î ® £ £

¥
H X
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n
s
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 = ¼( ) ~1, ,  are datasets of 
the source domain and the target domain, respectively. q-Lipschitz  
function loss is loss q× ×( ) ´ ® [ ], ,:  0 . When a b, Î ´  , 
loss a loss b q a b( ) - ( ) = - . The generalization error bound for any 
hypothesis function hÎ with a probability of at least 1-d  of having 
Rademacher complexity Â ( )X H
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where Â ( )X H

  is Rademacher complexity.

Theorem 6 shows that the possibilistic distribution distance measure 
W lk s tX X, ,( )  and the model alignment function R Y ,W( ) can 
simultaneously control the generalization error bound of the proposed 
method. Therefore, the proposed method can effectively improve its 
generalization performance in domain adaptation by minimizing both 
the possibilistic distribution distance between domains and model bias. 
The experimental results on real-world datasets also confirm 
this conclusion.

5.3. Discussion of kernel selection

The literature (32) theoretically analyzed and pointed out that the 
Gaussian kernel cluster provides an effective RKHS embedding space for 
the consistency estimation of domain distribution distance measure. The 
detailed derivation process can be  found in Sriperumbudur et  al. 
(2010a,b). Therefore, all the kernel functions used in this paper are 
Gaussian kernel k e x xi j

s
s= - - 2

2 2
2/ . In order to illustrate the impact of the 

Gaussian kernel bandwidth on the distribution of sample RKHS 
embedding, the following theorem is introduced:

Theorem 7 (Sriperumbudur et  al., 2010a). The function set of 
Gaussian kernel.
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For any k ks q, ÎKs  and 0 < < < ¥q s , then z zs qk s t k s tX X X X, ,( ) ³ ( ).
According to Theorem 7, the larger the kernel bandwidth, the larger 

the RKHS embedding distance of the domain distribution, which slows 
down the convergence speed of the domain distribution distance measure 
W lk s tX X, ,( )  based on the soft clustering hypothesis of the MMD 
criterion. In order to further study the performance impact of Gaussian 
kernel bandwidth, the Gaussian kernel bandwidth is parameterized, that 
is, the generalized Gaussian kernel function is defined as:

 
k , exps q s q

/
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where q  is a tunable parameter, as will be  shown in the 
experimental analysis below. When q  is too large, the samples within 
the domain are highly cohesive, leading to a certain degree of mixing 
between positive and negative classes, which is not conducive to 
effective classification of the model. Conversely, when q  is too small, 
it may slow down the convergence of the distribution distance 
measurement algorithm based on the possibilistic clustering 
hypothesis to some extent. Therefore, this paper limits q qÎ[ ]1 0, , 
where q0 is a sufficiently large tunable parameter. The above analysis 
shows that the distribution distance measurement based on the 
possibilistic clustering hypothesis can not only constrain the 
divergence of the distributions between domains to be as consistent as 
possible, but also reduce the divergence of the sample distributions 
within each domain within a certain range of kernel bandwidths, 
thereby accelerating the convergence speed of the domain distribution 
divergence difference measurement and further improving the 
execution efficiency of the algorithm.

It is worth noting that kernel selection is an open problem in 
kernel learning methods. Recently, some studies have proposed the 
use of Multi-Kernel Learning (MKL) (Long et al., 2015) to overcome 
the kernel selection problem in single-kernel learning methods. 
Therefore, we can also use MKL to improve the performance of the 
proposed method. Specifically, the first step is to construct a new space 
that spans multiple kernel feature mappings, represented by fa a{ } =1

 , 
which projects X  into  different spaces. Then, an orthogonal 
integration space can be  built by connecting these  spaces, and 
� � �f f f fx x x xi i

T
i
T

i
T T N( ) = ( ) ( ) ¼ ( )é

ëê
ù
ûú

Î1 2, , ,   represents the mapping 
features in the final space, where x Xi Î . In addition, the kernel matrix 
in this final space can be written as K K K Knew =

é
ëê

ù
ûú1 2

~ ~ ~
; ;...;



, where Ki  is 
the i-th kernel matrix from  feature spaces. The kernel functions that 
can be used in practice include the Gaussian kernel function, inverse 
square distance kernel function K x xij i j= + -( )1 1

2

s , Laplacian kernel 
function K ij i jx x= - -( )exp s , and inverse distance kernel 
function K x xij i j= + -( )1 1 s , etc.

6. Experiments

6.1. Emotional databases and data 
preprocessing

In order to make a fair comparison with stat-of-the-art (SOTA) 
methods, a large number of experiments were conducted for effective 
validation on two well-known open datasets [i.e., SEED (Zheng and 
Lu, 2015) and SEED-IV (Zheng et al., 2019)]. The SEED dataset has a 
total of 15 subjects participating in the experiment to collect data, each 
subject needs to have three sessions at different times, each session 
contains 15 trials, with a total of 3 emotional stimuli (negative, neutral, 
and positive). In the SEED-IV dataset, there are also 15 subjects 
participating in the experiment to collect data, each subject needs to 
have three sessions at different times, each session contains 24 trials, 
with a total of 4 emotional stimuli (happy, sad, fearful, and peaceful).

The EEG signals of the two datasets (i.e., SEED and SEED-IV) are 
collected simultaneously from the 62-channel ESI Neuroscan system. 
In the EEG signal preprocessing, the down-sampled data sampling 
rate is reduced to 200 Hz, then the environmental noise data is 
manually removed, and the data is filtered through a 0.3 Hz–50 Hz 

band-pass filter. In each trial, the data is divided into multiple 
segments with a length of 1 s. Based on the predefined 5 frequency 
band-passes [Delta (1–3 Hz), Theta (4–7 Hz), Alpha (8–13 Hz), Beta 
(14–30 Hz), and Gamma (31–50 Hz)], the corresponding differential 
entropy (DE) is extracted to represent the logarithmic power spectrum 
in the specified frequency band-pass, and a total of 310 features (5 
frequency bands and 62 channels) are obtained in each EEG segment. 
Then, all features are smoothed by the Linear Dynamic System (LDS) 
method, which can utilize the time dependency of emotion transitions 
and filter out the noise EEG components unrelated to emotions (Shi 
and Lu, 2010).

6.1.1. Settings
The settings of the hyper-parameter for the C-PDDM method are 

also crucial before analyzing the experimental evaluation results. For 
all methods, in both the source and target domains, a Gaussian kernel 
K x x x xi i( , ) exp( )= - - 2 2

2s  is used, where s  can be  obtained by 
minimizing MMD to obtain a benchmark test. Based on experience, 
we first select s  as the square root of the average norm of the binary 
training data, and s C  (where C is the number of classes) for multi-
class classification. The underlying geometric structure depends on k 
neighbors to compute the Laplacian matrix. In the experiment of this 
paper, it can be observed that the performance slightly varies when k 
is not large. Therefore, to construct the nearest neighbor graph in 
C-PDDM, this paper conducts a grid search for the optimal number 
of nearest k neighbors in 3 5 10 15 17, , , ,{ }, and provides the best 
recognition accuracy results from the optimal parameter configuration.

Before presenting the detailed evaluation, it is necessary to explain 
how the hyper-parameters of C-PDDM are tuned. Based on 
experience, the parameter b  is used to balance the fuzzy entropy and 
domain probability distribution alignment in the objective function 
(16). Both parameters a  and r  are adjustable parameters, and they are 
used to balance the importance of structure description and feature 
selection. Therefore, these two parameters have a significant impact 
on the final performance of the method.

Considering that parameter uncertainty is still an open problem 
in the field of machine learning, we determine these parameters based 
on previous work experience. Therefore, we evaluate all methods on 
the dataset by empirically searching the parameter space to obtain the 
optimal parameter settings and give the best results for each method. 
Except for special cases, all parameters of all relevant methods are 
tuned to obtain the optimal results.

As unsupervised domain adaptation does not have target labels to 
guide standard cross-validation, we perform leave-one-subject-out on 
the two datasets: SEED and SEED-IV (the details of this protocol are 
shown in Section 6.2). We obtain the optimal parameter values on 
{10

6- , 10
5- , …, 10

5, 10
6} by obtaining the highest average accuracy on 

the two datasets using the above method. This strategy often 
constructs a good C-PDDM model for unsupervised domain 
adaptation, and a similar strategy is adopted to find the optimal 
parameter values for other domain adaptation methods. In the 
following sub-sections, a set of experiments is set up to test the 
sensitivity of the proposed method C-PDDM to parameter selection 
(i.e., Section 6.4.1), in order to verify that C-PDDM can achieve stable 
performance within a wide range of parameter values. In addition, the 
hyper-parameters of other methods are selected according to the 
original literature.

https://doi.org/10.3389/fnins.2023.1247082
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tao et al. 10.3389/fnins.2023.1247082

Frontiers in Neuroscience 12 frontiersin.org

6.2. Experiment protocols

In order to fully verify the robustness and stability of the proposed 
method, we  adopt four different validation protocols (leave-one-
subject-out) (Zhang et al., 2021) to compare the proposed method 
with the SOTA methods.

 1) Cross-subject cross-session leave-one-subject-out cross-
validation. To fully estimate the robustness of the model on 
unknown subjects and trials, this paper uses a strict leave-one-out 
method cross-subject cross-session to evaluate the model. All 
session data of one subject is used as the target domain, and all 
sessions of the remaining subjects are used as the source domain. 
We repeat the training and validation until all sessions of each 
subject have been used as the target domain once. Due to the 
differences between subjects and sessions, this evaluation 
protocol poses a significant challenge to the effectiveness of 
models in emotion recognition tasks based on EEG.

 2) Cross-subject single-session leave-one-subject-out cross-
validation. This is the most widely used validation scheme in 
emotion recognition tasks based on EEG (Luo et al., 2018; Li 
J. et al., 2020). One session data of a subject is treated as the 
target domain, while the remaining subjects are treated as the 
source domain. We repeat the training and validation process 
until each subject serves as the target once. As with other 
studies, we  only consider the first session in this type of 
cross-validation.

 3) Within-subject cross-session leave-one-session-out cross-
validation. Similar to existing methods, a time series cross-
validation method is employed here, where past data is used to 
predict current or future data. For a subject, the first two 
sessions are treated as the source domain, and the latter session 
is treated as the target domain. The average accuracy and 
standard deviation across subjects are calculated as the 
final results.

 4) Within-subject single-session cross-validation. Following the 
validation protocols proposed in existing studies (Zheng and 
Lu, 2015; Zheng et al., 2019), for each session of a subject, 
we take the first 9 (SEED) or 16 (SEED-IV) trials as the source 
domain and the remaining 6 (SEED) or 8 (SEED-IV) trials as 

the target domain. The results are reported as the average 
performance of all participants. In the performance 
comparison of the following four different validation protocols, 
we use “*” to indicate the replicated model results.

6.3. Results analysis on SEED and SEED-IV

6.3.1. Cross-subject cross-session
For verifying the efficiency and stability of the model under 

cross-subject and cross-session conditions, we used cross-subject 
cross-session leave-one-subject-out cross-validation on the SEED 
and SEED-IV databases to validate the proposed C-PDDM. As 
shown in Tables 1, 2, the results show that our proposed model 
achieved the highest accuracy of emotion recognition. The 
C-PDDM method, with or without using deep features, achieved 
emotion recognition performances of 73.82 ± 6.12 and 86.49 ± 5.20 
for the three-class classification task on SEED, and 67.83 ± 8.06 and 
72.88 ± 6.02 for the four-class classification task on 
SEED-IV. Compared with existing research, the proposed 
C-PDDM has a slightly lower accuracy on SEED-IV than PR-PL, 
but PR-PL uses adversarial learning, which has a higher 
computational cost. In addition, the proposed C-PDDM method 
has the best recognition performance in the other three cases. 
These results indicate that the proposed C-PDDM has a higher 
recognition accuracy and better generalization ability, and is more 
effective in emotion recognition.

6.3.2. Cross-subject single-session
Table 3 summarizes the model results of the recognition task under 

cross-subject single-session leave-one-subject-out and compares them 
with the performance of the latest methods in the literature. All results 
are presented in the form of mean ± standard deviation. The results 
show that our proposed model (C-PDDM) achieves the best 
performance (74.92%) with a standard deviation of 8.16 when 
compared with traditional machine learning methods. The recognition 
performance of C-PDDM is better than the DICE method, indicating 
that the C-PDDM method is superior to the DICE method in dealing 
with noisy situations. When compared with the latest deep learning 

TABLE 1 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using cross-subject cross-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF (Breiman, 2001) 69.60 ± 7.64 KNN (Coomans and Massart, 1982) 60.66 ± 7.93

SVM* (Suykens and Vandewalle, 1999) 62.24 ± 5.48 Adaboost (Zhu et al., 2006) 71.87 ± 5.70

TCA* (Pan et al., 2011) 65.31 ± 6.04 CORAL (Sun et al., 2016) 69.22 ± 4.11

SA (Li Y. et al., 2020) 61.41 ± 9.75 GFK* (Gong et al., 2012) 67.36 ± 6.52

DICE* (Liang et al., 2018) 73.56 ± 4.23 C-PDDM 73.82 ± 6.12

Deep learning methods

DCORAL* (Sun et al., 2016) 80.87 ± 6.04 DAN* (Long et al., 2015) 82.51 ± 3.71

DDC (Tzeng et al., 2014) 82.17 ± 4.96 DANN* (Ganin et al., 2016) 84.79 ± 6.44

PR-PL (Zhou et al., 2022) 85.56 ± 4.78 C-PDDM+ResNet101 86.49 ± 5.20

Here, the model results reproduced by us are indicated by “*”. The bold values are the best performance in tables.
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methods, especially with deep transfer learning networks based on 
DANN (Li J. et al., 2020) [such as ATDD-DANN (Du et al., 2020), 
R2GSTNN(Li et al., 2019), BiHDM (Li Y. et al., 2020), BiDANN (Li 
et al., 2018c), WGAN-GP (Luo et al., 2018)], the proposed C-PDDM 
method effectively addresses individual differences and noisy label 
issues in aBCI applications. The recognition performance of PR-PL is 
slightly better than the C-PDDM, which may be because the PR-PL 
method uses adversarial loss for model learning, resulting in higher 
computational costs. Overall, the C-PDDM method has a competitive 
result, indicating that the C-PDDM method has better generalization 
performance in cross-subject within the same session.

6.3.3. Within-subject cross-session
By calculating the mean and standard deviation of the 

experimental results for each subject, the cross-session 

cross-validation results for each subject on the different datasets 
SEED and SEED-IV are shown in Tables 4, 5, respectively. For 
these two datasets, our proposed C-PDDM method, which 
compared with the existing traditional machine learning 
methods, has results close to or better than the DICE method 
on both SEED and SEED-IV. This may be  because each  
subject is less likely to generate noisy data in different sessions, 
which does not highlight the advantages of C-PDDM. In 
addition, for the SEED-IV dataset (four-class emotion 
recognition), regardless of traditional machine learning or the 
latest deep learning methods, the performance of the C-PDDM 
method is the best when the number of categories increases. 
This indicates that the proposed method is more accurate and 
has stronger scalability in more nuanced emotion recognition  
tasks.

TABLE 2 The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using cross-subject cross-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF 50.98 ± 9.20 KNN 40.83 ± 7.28

SVM 51.78 ± 12.85 Adaboost 53.44 ± 9.12

TCA 56.56 ± 13.77 CORAL 49.44 ± 9.09

SA 64.44 ± 9.46 GFK 45.89 ± 8.27

KPCA (Suykens and Vandewalle, 1999) 51.76 ± 12.89 DNN (Suykens and Vandewalle, 1999) 49.35 ± 9.74

DICE 66.75 ± 7.25 C-PDDM 67.83 ± 8.06

Deep learning methods

DGCNN (Song et al., 2018) 52.82 ± 9.23 DAN 58.87 ± 8.13

RGNN (Zhong et al., 2020) 73.84 ± 8.02 BiHDM (Li Y. et al., 2020) 69.03 ± 8.66

BiDANN (Li et al., 2018c) 65.59 ± 10.39 DANN 54.63 ± 8.03

PR-PL 74.92 ± 7.92 C-PDDM+ResNet101 72.88 ± 6.02

The bold values are the best performance in tables.

TABLE 3 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using cross-subject single-session leave-
one-subject-out cross-validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

TKL (Li et al., 2018c) 63.54 ± 15.47 T-SVM* (Li et al., 2018c) 68.57 ± 9.54

TCA 63.64 ± 14.88 TPT* (Suykens and Vandewalle, 1999) 73.86 ± 11.05

KPCA 61.28 ± 14.62 GFK 71.31 ± 14.09

SA* 66.00 ± 10.89 DICA (Ma et al., 2019) 69.40 ± 07.80

DNN 61.01 ± 12.38 SVM 58.18 ± 13.85

DICE 74.22 ± 7.33 C-PDDM 74.92 ± 8.16

Deep learning methods

DGCNN 79.95 ± 9.02 DAN 83.81 ± 8.56

RGNN 85.30 ± 6.72 BiHDM 85.40 ± 7.53

WGAN-GP (Luo et al., 2018) 87.10 ± 7.10 MMD (Li J. et al., 2020) 80.88 ± 10.10

ATDD-DANN (Du et al., 2020) 90.92 ± 1.05 JDA-Net (Li J. et al., 2020) 88.28 ± 11.44

R2G-STNN (Li et al., 2019) 84.16 ± 7.63 SimNet* (Pinheiro, 2018) 81.58 ± 5.11

BiDANN 83.28 ± 9.60 DResNet (Ma et al., 2019) 85.30 ± 8.00

ADA (Li J. et al., 2020) 84.47 ± 10.65 DANN 81.65 ± 9.92

PR-PL 93.06 ± 5.12 C-PDDM+ResNet101 92.19 ± 4.70

Here, the model results reproduced by us are indicated by “*”. The bold values are the best performance in tables.
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6.3.4. Within-subject single-session
The previous evaluation strategy only considered the first two 

sessions of the SEED dataset as the source domain for the experiment. The 

evaluation results of emotion recognition for each subject within each 
session are presented in Table  6. When compared with traditional 
machine learning methods, the C-PDDM method has comparable 

TABLE 5 The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using within-subject cross-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF 60.27 ± 16.36 KNN 54.18 ± 16.28

TCA* 59.49 ± 12.07 CORAL* 66.88 ± 14.67

SA* 56.94 ± 11.45 GFK* 60.66 ± 10.00

DICE 69.68 ± 12.52 C-PDDM 70.48 ± 9.08

Deep learning methods

DCORAL (Chen et al., 2021) 65.10 ± 13.20 DAN 60.20 ± 10.20

DDC (Chen et al., 2021) 68.80 ± 16.60 MEERNet (Chen et al., 2021) 72.10 ± 14.10

PR-PL 74.62 ± 14.15 C-PDDM+ResNet101 76.29 ± 11.36

The bold values are the best performance in tables.

TABLE 6 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using within-subject single-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

SVM* 77.80 ± 12.61 GRSLR (Li et al., 2018a) 87.39 ± 8.64

RF 78.46 ± 11.77 GSCCA (Zheng, 2017) 82.96 ± 9.95

CCA 77.63 ± 13.21 DBN (Zheng et al., 2015) 86.08 ± 8.34

DICE 86.28 ± 9.22 C-PDDM 86.74 ± 7.59

Deep learning methods

DGCNN 90.40 ± 8.49 RGNN 94.24 ± 5.95

ATDD-DANN 91.08 ± 6.43 BiHDM 93.12 ± 6.06

R2G-STNN 93.38 ± 5.96 SimNet* 90.13 ± 10.84

BiDANN 92.38 ± 7.04 STRNN (Zhang et al., 2019a) 89.50 ± 7.63

GCNN (Breiman, 2001) 87.40 ± 9.20 DANN 91.36 ± 8.30

PR-PL 94.84 ± 9.16 C-PDDM+ResNet101 96.38 ± 6.88

The bold values are the best performance in tables.

TABLE 4 The mean accuracies (%) and standard deviations (%) of emotion recognition on the SEED database using within-subject cross-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

RF 76.42 ± 11.15 KNN* 72.96 ± 12.10

TCA* 77.63 ± 11.49 CORAL 84.18 ± 9.81

SA* 67.79 ± 7.43 GFK* 79.28 ± 7.44

DICE 81.58 ± 7.55 C-PDDM 81.58 ± 9.30

Deep learning methods

DAN 89.16 ± 7.90 SimNet 86.88 ± 7.83

DDC 91.14 ± 5.61 ADA 89.13 ± 7.13

DANN 89.45 ± 6.74 MMD 84.38 ± 12.05

JDA-Net 91.17 ± 8.11 DCORAL (Sun et al., 2016) 88.67 ± 6.25

PR-PL 93.18 ± 6.55 C-PDDM+ResNet101 92.56 ± 5.29

The bold values are the best performance in tables.
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performance, and it still outperforms the performance of the DICE 
method. When compared with the latest deep learning methods, the 
C-PDDM method achieves the highest recognition performance, 
reaching 96.38%, which is even higher than the PR-PL method. This 
comparison demonstrates the high efficiency and reliability of the 
proposed C-PDDM method in various emotion recognition applications.

For the SEED-IV dataset, we calculated the performance of all 
three sessions (emotional categories: happiness, sadness, fear, and 
neutral). Our proposed model outperforms the existing latest classical 
research methods and achieves the highest accuracy of 71.85 and 
83.94% in Table 7. This comparison shows that the more emotional 
categories there are, the more prominent the generalization of the 
proposed C-PDDM method in applications.

6.4. Discussion

For comprehensively study the performance of the model, 
we evaluated the effects of different settings in C-PDDM. Please note that 
all the results presented in this section are based on the SEED dataset, 
using the cross-subject single-session cross-validation evaluation protocol.

6.4.1. Ablation study
We conducted ablation studies to systematically explore the 

effectiveness of different components in the proposed C-PDDM 
model and their respective contributions to the overall performance 
of the model. As shown in Table 8, when 5 labeled samples existed at 
each category in the target domain, the recognition accuracy 
(93.83% ± 5.17) is very close to the recognition accuracy of C-PDDM 
(unsupervised learning) (92.19% ± 4.70). This decrease indicates the 
impact of individual differences on model performance and highlights 
the huge potential of transfer learning in aBCI applications. Moreover, 
the results show that simultaneously preserving the local structure of 
data in both the source and target domains helps improve model 
performance; otherwise, the recognition accuracy decreases 
significantly (90.60% ± 5.29 and 91.37% ± 5.82, respectively). When 
W 2 1,  is changed to W 2 , the model’s recognition accuracy drops to 

91.84% ± 6.33. This result reflects the sample selection and denoising 
effects achieved when using l2 1,  constraint.

For the pseudo-labeling method, when the pseudo-labeling method 
changes from fixed to linear dynamic, the corresponding accuracy 
increases from 89.95 to 92.19%. When adopting multi-kernel learning, 
the accuracy further improves to 93.68%. The results indicate that multi-
kernel learning helps rationalize the importance of each kernel in 
different scenarios and enhances the generalization of the model.

Next, we analyze the impact of different hyper-parameters on the 
overall performance of the model. According to the experimental 
results, it can be seen that the recognition accuracy with a , b , r  are 
dynamically learned better than fixed values. When ignoring the local 

TABLE 8 The ablation study of our proposed model.

Ablation study about training strategy Pacc

target prior information (5 labeled samples per category) 93.83 ± 5.17

only preserving the local structures on the source 90.60 ± 5.29

only preserving the local structures on the target 91.37 ± 5.82

imposing l2-norm on W 91.84 ± 6.33

fixed pseudo-labeling 89.95 ± 5.61

dynamic pseudo-labeling 92.19 ± 4.75

multiple kernel leaning 93.68 ± 6.04

Hyper-parameter controlling strategy

a = 0 (ignoring the local structures) 90.27 ± 5.51

fixed a =1 for local preserving regularization 91.93 ± 5.44

fixed b =100 for fuzzy entropy regularization 92.17 ± 6.30

fixed r  for W  regularization 92.16 ± 5.38

d = 0 88.47 ± 6.00

d = 0 3. 88.91 ± 3.49

d = 0 5. 92.19 ± 4.70

d = 0 85. 91.83 ± 2.80

d =1 89.85 ± 5.66

b = 0 (ignoring the fuzzy entropy regularization) 90.56 ± 6.59

The proposed model

C-PDDM+ResNet101 92.19 ± 4.70

TABLE 7 The mean accuracies (%) and standard deviations (%) of emotion recognition on SEED-IV database using within-subject single-session cross-
validation.

Methods Pacc Methods Pacc

Traditional machine learning methods

SVM 56.61 ± 20.05 GRSLR 69.32 ± 19.57

RF 50.97 ± 16.22 GSCCA 69.08 ± 16.66

CCA 54.47 ± 18.48 DBN 66.77 ± 07.38

DICE 71.67 ± 11.29 C-PDDM 71.85 ± 9.18

Deep learning methods

DGCNN 69.88 ± 16.29 RGNN 79.37 ± 10.54

GCNN 68.34 ± 15.42 BiHDM 74.35 ± 14.09

A-LSTM (Breiman, 2001) 69.50 ± 15.45 SimNet* 71.38 ± 13.12

BiDANN 70.29 ± 12.63 DANN 63.07 ± 12.66

PR-PL 83.33 ± 10.61 C-PDDM+ResNet101 83.94 ± 11.39

The bold values are the best performance in tables.
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structural information and fuzzy entropy information in the domain, 
the performance drops by about 2% (i.e., a = 0, a =1, b = 0 , and 
b =100). In addition, from the results, it can be  inferred that the 
performance is optimal when the value of d  is around 0.5, indicating 
that the means of different categories in the source domain and target 
domain are equally important.

6.4.2. Effect of noisy labels
In order to further verify the robustness of the model in the noisy 

label learning process, we randomly add noise to the source labels at 
different ratios and test the performance of the corresponding model on 
unknown target data. Specifically, we  replace the corresponding 
proportion of real labels in Y s with randomly generated labels to train the 
model by semi-supervised learning and then test the performance of the 
trained model in the target domain. It should be noted that only noise 
data is added in the source domain, and the target domain needs to 
be used for model evaluation. In the implementation, the noise ratios are 

adjusted to 5, 15, 25, and 30% of the sample number of the source domain, 
respectively. The results in Figure 2 show that the accuracy of the proposed 
C-PDDM decreases at the slowest rate as the number of noise increases. 
It indicates that C-PDDM is a reliable model with a high tolerance to 
noisy data. In future work, we  can combine recently proposed new 
methods, such as Xiao et al. (2020) and (Jin et al. (2021), to further 
eliminate more common noise in EEG signals and improve the stability 
of the model in cross-corpus applications.

6.4.3. Confusion matrices
In order to qualitatively study the performance of the model in each 

emotion category, we analyze the confusion matrix through visualization 
and compare the results with the latest models (i.e., BiDANN, BiHDM, 
RGNN, PR-PL, DICE ResNet101). As shown in Figure 3, all models are 
good at distinguishing positive emotions from other emotions (with 
recognition rates above 90%), but relatively not good at distinguishing 
negative emotions and neutral emotions. For example, the emotion 
recognition rate in BiDANN (Li et al., 2018c) is even lower than 80% 
(76.72%). In addition, the PR-PL method achieves the best performance, 
possibly due to its adoption of adversarial networks, but at the cost of 
increased computational expenses. Compared with other existing 
methods (Figures 3A–C,E), our proposed model can improve the model’s 
recognition ability, especially in distinguishing neutral and negative 
emotions, and its overall performance is better than the DICE method (as 
shown in Figures 3E,F).

6.4.4. Convergence
The proposed C-PDDM adopts an iterative optimization strategy 

and uses experiments to prove its convergence. The experiment is 
completed on the MATLAB platform, and the device configuration 
used is as follows: 64 GB memory, 2.5 GHz CPU, and 8-core Intel 
i7-11850H processor. Figure  4 shows the convergence process of 
C-PDDM at different iteration times. The results are shown in 
Figure 4. We can observe clearly that the proposed algorithm can 
achieve the minimum convergence at about 30 iterations. In the 
algorithm, the objective function of optimizing the sub-problem at 

FIGURE 3

Confusion matrices of different models: (A) BiDANN; (B) BiHDM; (C) RGNN; (D) PR-PL; (E) DICE+ResNet101; and (F) C-PDDM+ResNet101.

FIGURE 2

Robustness on source domain with different noise levels.
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each time is a decreasing function, which proves that the C-PDDM 
method has good convergence.

7. Conclusion

This paper proposes a novel transfer learning framework 
based on a Clustering-based Probability Distribution Distance 
Metric (C-PDDM) hypothesis, which uses a probability 
distribution distance metric criterion and fuzzy entropy 
technology for EEG data distribution alignment, and introduces 
the Laplace matrix to preserve the local structural information of 
source and target domain data. We  evaluate the proposed 
C-PDDM model on two famous emotion databases (SEED and 
SEED-IV) and compare it with existing state-of-the-art methods 
under four cross-validation protocols (cross-subject single-
session, single-subject single-session, single-subject cross-session, 
and cross-subject cross-session). Our extensive experimental 
results show that C-PDDM achieves the best results in most of the 
four cross-validation protocols, demonstrating the advantages of 

C-PDDM in dealing with individual differences and noisy label 
issues in aBCI systems.
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