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Introduction: Lobular giant motion detector (LGMD) neurons, renowned for

their distinctive response to looming stimuli, inspire the development of visual

neural network models for collision prediction. However, the existing LGMD-

based models could not yet incorporate the invaluable feature of depth distance

and still su�er from the following two primary drawbacks. Firstly, they struggle

to e�ectively distinguish the three fundamental motion patterns of approaching,

receding, and translating, in contrast to the natural abilities of LGMD neurons.

Secondly, due to their reliance on a general determination process employing an

activation function and fixed threshold for output, these models exhibit dramatic

fluctuations in prediction e�ectiveness across di�erent scenarios.

Methods: To address these issues, we propose a novel LGMD-based model with

a binocular structure (Bi-LGMD). The depth distance of the moving object is

extracted by calculating the binocular disparity facilitating a clear di�erentiation

of the motion patterns, after obtaining the moving object’s contour through the

basic components of the LGMD network. In addition, we introduce a self-adaptive

warning depth-distance, enhancing the model’s robustness in various motion

scenarios.

Results: The e�ectiveness of the proposed model is verified using computer-

simulated and real-world videos.

Discussion: Furthermore, the experimental results demonstrate that the proposed

model is robust to contrast and noise.

KEYWORDS

collisionprediction, lobula giantmovementdetectors (LGMDs), binocular vision, disparity,

depth distance

1. Introduction

In the real world, collisions often lead to some kind of danger and unexpected loss.

Therefore, many modern artificial machines, such as ground vehicles and unmanned aerial

vehicles (UAVs), should be equipped with the intellectual abilities of collision prediction.

Current methods for collision prediction, such as laser, infrared, radar, and ultrasonic,

are not very suitable for daily civilian machines because of the disadvantages of high

price, large size, high power consumption, and so on. Meanwhile, vision-based sensors,

with the characteristics of economy and energy saving, have gradually become one of the

most mainstream methods of sensing collision in the past decades. However, in terms of

effectiveness and robustness, it still needs to be further improved (Mukhtar et al., 2015).

As we know, in nature, many insects show excellent collision prediction and collision

avoidance abilities based on visual information, which benefits from their millions of years

of evolution (Eichler et al., 2017). Despite their minuscule and simple brains, these lowly

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1247227
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1247227&domain=pdf&date_stamp=2023-09-05
mailto:jgpeng@gzhu.edu.cn
mailto:fplihaiyang@126.com
https://doi.org/10.3389/fnins.2023.1247227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1247227/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2023.1247227

creatures seem to hold the key to solving some ofmankind’s greatest

problems (Franceschini, 2014; Xu et al., 2023), and bring us some

inspirations to build a collision prediction neural network based

on visual information (Serres and Ruffier, 2017; Fu et al., 2018a).

Among these insects, locusts are the most representative. When

locust plague breaks out, millions of locusts can travel hundreds

of miles together free of collision (Kennedy, 1951). Researchers

observe that when a collision is imminent, locusts can respond

quickly and change their flight direction in a very short time

(hundreds of milliseconds; Fu et al., 2019c). How do locusts

achieve it?

Lobula giant movement detector (LGMD), which is a huge

single neuron located on the third visual neuropile of the lobule,

was found byO’Shea andWilliams (1974). LGMDneuron responds

vigorously to approaching objects while producing little or no

response to receding ones (O’shea and Rowell, 1976; Sztarker and

Rind, 2014; Wernitznig et al., 2015; Rind et al., 2016). Further,

researchers conduct a lot of experiments and explorations around

the reflection properties of LGMD neuron (Gabbiani and Krapp,

2006; Dewell and Gabbiani, 2018, 2019; Zhu et al., 2018), and

the results show that the LGMD neuron is an ideal model for

constructing collision prediction visual neural network.

Based on these biological experiments, Rind and Bramwell

(1996) proposed an LGMD-based neural network model. The

model is composed of four groups of cells—photoreceptor cells

(P cells), excitatory cells (E cells), inhibitory cells (I cells), and

summing cells (S cells), as well as two single cells—feed-forward

inhibition and LGMD. Since then, Yue and Rind (2006) introduced

an extra artificial layer (G layer) to extract the extended edge of

the approaching object by enhancing the cluster output, which

improved the model’s performance and achieved ideal results in

real-world scenarios.

Following the above two studies, a large number of LGMD-

based visual neural network models have sprung up. For example,

based onON/OFF channels (Fu, 2023), Fu et al. (2019b) realized the

special selectivity to darker looming objects in brighter background

in the model, which simulated the response of LGMD2 neurons

in the infancy of locusts. Inspired by the visual pathway of

Drosophila, Li et al. (2022) added a contrast channel to the

LGMD-based model, which improved the stability of the model

under different contrasts. Luan et al. (2021, 2022) used a similar

network model to build a visual neural network with the ability

to encode spatial position information, and successfully simulated

MLG1 neurons in crabs. Zhao et al. (2018, 2019, 2021) further

optimized the original model by designing the temporal and

spatial distribution in the model according to the latest discovery

of locust anatomical synaptic connection, which was successfully

applied to UAV agile flight. Some models are also be tested in

ground vehicle scenarios (Hartbauer, 2017; Fu et al., 2019a), mobile

robots (Hu et al., 2016; Čížek et al., 2017), and recently in UAVs

(Poiesi and Cavallaro, 2016; Salt et al., 2017, 2019) and micro

robots (Fu et al., 2020, 2021). In addition, it is also embodied

in hardware implementation, such as the FPGA (Meng et al.,

2010).

However, the current models lack the consideration of the

depth distance of moving objects, which is certainly a highly

valuable feature for collision prediction tasks. This absence of

depth distance information in the existing models results in several

shortcomings. First, existing models are not able to distinguish

well between the three fundamental motion modes of approaching,

receding and translating, resulting in their inability to consistently

demonstrate a preference for approaching objects. Secondly, the

response result of the models is heavily influenced by activation

function parameters and corresponding given hard thresholds.

Thirdly, the models are sensitive to various input image stream

factors, including noise and contrast. While some models enhance

certain aspects by designing artificial mechanisms, extracting the

core feature of depth distance holds the potential to effectively

address all of these issues simultaneously.

For that, a novel LGMD-based neural network model with

binocular vision is proposed in this paper, named Bi-LGMD. This

model requires two image stream inputs, coming from the left

and right eye, respectively. For both inputs, a basic LGMD-based

model is used to extract the contours of the moving object. Then,

based on the principle of binocular stereo vision, the obtained

contour information is used to compute the disparity of the

moving object, and the moving object’s depth distance at each time

step is further estimated. Based on this, motion patterns can be

effectively distinguished. Moreover, different from existing models,

the activation function is not required in our model. Instead, the

concept of warning depth-distance is introduced. Depending on the

change of the estimated depth distance at each time, the warning

depth-distance is dynamically and adaptively adjusted through a

specific computational rule. The LGMD neuron is activated only

when an approaching object reaches the warning depth-distance.

Hence, the parameter setting problem for the activation function

is avoided. More importantly, the model is more robust to input

image streams. On the one hand, this is due to the consideration of

more essential kinematic features of depth-distance. On the other

hand, the computational process of disparity is mainly based on the

matching of two contours from the left and right channel, rather

than the pixel value itself, so the factors that seriously affect the

pixel value of an image (such as noise, contrast, etc.) have a great

impact on existingmodels, but the computational result of disparity

is relatively stable.

The main innovations of this paper can be summarized

as follows:

1. This paper proposes a novel LGMD-based model with binocular

structure, and the essential feature of depth distance is

introduced into the model for the first time. As a result,

the proposed model is able to clearly distinguish motion

modes such as approaching, receding and translating, with

improved selectivity.

2. We design a dynamic adaptive warning depth distance related

to the approaching velocity. On the one hand, the model

could be adapted to more complex approaching modes. On the

other hand, the model does not rely on the activation function

parameters and a given hard threshold, alleviating the extreme

sensitivity of the existing models to activation parameters.

3. Unlike existing models that heavily rely on the pixel values

of G layer outputs, the proposed model ultimately focuses on

matching the overall left and right outputs. Based on this novel

perspective, the proposed model has stronger robustness to

factors such as noise and contrast in the input image streams.
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The rest of this paper is organized as follows. Section

2 introduces some related work, including motion pattern

recognition in the model and the advantages of incorporating

stereo vision. Section 3 describes the proposed Bi-LGMD visual

neural network. Systematic experiments and analyses of the model

results are illustrated in Section 4. Thereafter, further discussions

are given in Section 5. Section 6 concludes the paper.

2. Related work

2.1. Motion pattern recognition

LGMD neuron is viewed as an ideal paradigm for constructing

collision prediction models. Numerous LGMD-based models are

validated to indeed respond significantly to looming stimuli, yet

it is difficult to be completely unresponsive to other motion

patterns. Therefore, further improvements are still needed to

clearly distinguish between the basic motion patterns including

approaching, receding and translating.

In the past, some models attempted further improvements in

terms of the selective response of the model to motion patterns, for

example, Lei et al. (2022) improved the LGMD-based model using

the ON-OFF competition mechanism, enabling it to distinguish

a looming object from a near and fast translatory moving object.

However, it does not explore the response to receding stimuli,

and the competition mechanism does not seem to be effective

in distinguishing between approaching and receding. Fu et al.

(2018b) designed a spike frequency adaptation (SFA) mechanism

to enhance the collision selectivity to approaching objects, however,

the model still has a brief and small response to the receding

and translating stimuli, which may cause false alarms in situations

where the model parameters are inappropriate (especially the

activation parameter and spiking threshold).

In general, while some models could make partial

discrimination between different motion patterns, there are

still some problems, such as how to choose the spiking threshold.

By contrast, the trend of depth distance is the most intuitive way to

distinguish basic motion patterns. Once it is effectively estimated,

the model can understand the motion patterns more “visually,”

knowing exactly which of the “approaching, receding, and

translating” the motion pattern belongs to at the current moment.

The results of the discrimination of motion modes will no longer

be affected by parameters and thresholds, and its discrimination

method is obviously simple, robust, and interpretable.

2.2. Binocular structure and stereo vision

Binocular vision, which allows for depth perception, is crucial

for arthropods to interact with their environment. This is

particularly important for behaviors such as motion navigation,

prey capture, and attack avoidance (Nityananda et al., 2016a;

Scarano et al., 2018). The binocular structure of arthropods is

capable of processing information from both eyes to estimate depth

and distance in the visual scene through a concept known as

“disparity” (Parker, 2007; Nityananda et al., 2016b). Recent research

on arthropods, like crabs, has shown a strong binocular coupling

between their eyes indicating the use of binocular depth vision

in capturing prey (Horridge and Sandeman, 1964; Scarano et al.,

2018). Praying mantises, for example, use their stereoscopic vision

to estimate the distance to their prey. Once it is within reach, they

trigger a rapid strike of their forelegs (Rossel, 1986; Rosner et al.,

2019).

Although the computational mechanisms behind binocular

vision in arthropods are not yet fully understood, experimental

findings indicate that different types of neurons in the Lobula

region of their brains compute binocular information (Rosner

et al., 2020). Rosner and colleagues have provided evidence that

individual neurons in the praying mantis brain can recognize

specific binocular information such as disparity and eccentricity,

allowing them to determine locations in three-dimensional space.

They identified the existence of disparity-sensitive neurons in the

insect’s brain and proved their role in the development of stereo

vision (Rosner et al., 2019).

Interestingly, stereoscopic vision in insects, including mantises,

differs from that of humans. Insects rely on changes in luminance

rather than luminance directly to perceive depth (Rosner et al.,

2019), which implies that insects pay more attention to moving

and changing visual information rather than static details in the

background. This unique approach allows insects like praying

mantises to develop an efficient stereoscopic vision system using

a visual network of neurons that is significantly smaller than the

human brain (Rossel, 1983; Collett, 1996).

Therefore, the introduction of binocular structures in LGMD-

based neural networks to extract depth-distance information is

intuitively significant for enhancing collision prediction. Indeed,

there has been some research work related to binocular LGMD

modeling. For example, Yue and Rind (2009) proposed a network

model with two LGMD modules for near-range path navigation.

In their work, the input image will be decomposed into left and

right parts for the two LGMD modules, and the two outputs will

be compared in terms of strength and weakness to determine

which way the robot’s wheels should dodge. In addition, Fu et al.

(2017) also designed similar binocular structures using LGMD1

and LGMD2 to investigate how this combined strategy performs

for different visual stimuli when applied to a robot. However,

it appears that there are few models based on LGMD that

utilize binocular structures to develop stereo vision, extract depth-

distance information, and explore the advantages of incorporating

such information into LGMD-based models.

3. Formulation of the model

In this section, the proposed model and the corresponding

computational methods are described in detail. Here, we first

introduce the overall framework of the Bi-LGMD model, and then

give a more specific description in the following sections.

As shown in Figure 1, in general, the proposed model contains

two parallel channels to process the input image stream from the

left and right camera, respectively. Each channel consists of five

layers, including photoreceptor (P), excitation (E), inhibition (I),

summation (S), and grouping (G) layers. Then, the outputs of the

two parallel channels will be integrated in the disparity (DP) layer,
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FIGURE 1

Schematic of the Bi-LGMD visual neural network. For visual stimulation in the three-dimensional world, the left and right cameras are used to shoot

at the same time, and the two input image streams are processed separately in the early stage. In the last Medulla to Lobula layer, all the information

is integrated through the disparity principle, so as to extract the depth distance information of the moving object. Finally, the LGMD neuron responds

based on the changes in estimated depth distance.

and the information will eventually be transmitted to the LGMD

layer.

In this model, inputs from both cameras are considered equally

important. Therefore, the two parallel channels have exactly the

same structure and the same calculation method, and the relevant

parameters are set to be the same in the subsequent experiments.

For convenience, in the following sections, the subscripts l and r

are used to represent that the corresponding variables belong to

the left and the right channel, respectively. In the following basic

process, we describe the computational method in the left channel

as an example, which is exactly the same as in the right channel.

3.1. Basic process

The basic process includes P, E, I, S, G layers. This classical

process framework has been used in many existing models, such

as Fu et al. (2019b, 2020), Luan et al. (2021), Lei et al. (2022), and

Wang et al. (2023). In fact, our model does not change significantly

for this part, so we will briefly review it here.

3.1.1. P layer
In this layer, the photoreceptors are arranged as a matrix.

Each photoreceptor captures the grayscale luminance of the

corresponding pixel in the input image stream and computes the

temporal difference between the sequence frames to preliminarily

extract motion information. The mathematical formula can be

defined as

Pl(x, y, t) = Ll(x, y, t)− Ll(x, y, t − 1)+

np∑

i=1

aiPl(x, y, t − i) (1)

where L(x, y, t) stands for the grayscale luminance of the pixel (x, y)

at time t, and P(x, y, t) represents the grayscale luminance change;

np indicates the maximum number of frames the persistence of the

luminance change could last, and ai is a decay coefficient, which is

defined by

ai = (1+ ei)−1 (2)

3.1.2. IE layer
The IE layer is the core of the “critical race” mentioned by

Rind and Bramwell (1996). Both excitatory cells (E cells) and

lateral inhibitory cells (I cells) receive the outputs of the P cells.

E cells directly receive the excitation from the corresponding

P cells without temporal latency, while the I cells, which pass

inhibition, receive the excitation from the surrounding adjacent P

cells by convolving, and there is one image frame time-delay. The

mathematical formulas are defined as follows:

El(x, y, t) = Pl(x, y, t) (3)
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Il(x, y, t) =

1∑

i=−1

1∑

j=−1

Pl(x+ i, y+ j, t − 1)wI(i, j) (4)

where E(x, y, t) and I(x, y, t) are the activity of excitatory cells and

lateral inhibitory cells, respectively. wI is the local inhibition weight

that meets the following matrix, which is also used in Yue and Rind

(2006), Fu et al. (2018b), Luan et al. (2021), and Li et al. (2022).

wI =



0.125 0.25 0.125

0.25 0 0.25

0.125 0.25 0.125




3.1.3. S layer
In the S layer, the information processing results of E cells and

I cells in the upper layer need to be summarized. Here, a simple

linear operation is adopted (Note that inhibition has the opposite

sign against excitation):

Sl(x, y, t) = |El(x, y, t)| − |Il(x, y, t)| ∗WI (5)

where WI is a constant which means global inhibition weight. In

addition, since inhibition can reduce the activity of excitatory cells

to 0 at most, it needs to be corrected here.

Sl(x, y, t) = [Sl(x, y, t)]
+ (6)

where [x]+ = max(0, x).

3.1.4. G layer
To further enhance the outputs of the S layer, theG layer obtains

a passing coefficient Ce through the cell’s surrounding neighbors

to filter out the isolated and decayed excitations, as illustrated in

Figure 2. The computational formulas are as follows:

Cel(x, y, t) =

1∑

i=−1

1∑

j=−1

Sl(x+ i, y+ j, t)we(i, j) (7)

Gl(x, y, t) = Sl(x, y, t) · Cel(x, y, t) · wl(t)
−1 (8)

FIGURE 2

Schematic illustration of G layer processing, adapted from Yue and

Rind (2006). The S cells surrounded by strong excitations obtain

bigger passing coe�cients, while the isolated ones gain smaller

passing coe�cients and may be ruled out by the threshold. The

excitation strength is represented by gray levels, where the darker

the color, the stronger the excitation.

we =
1

9
×



1 1 1

1 1 1

1 1 1


 (9)

wl(t) = max([Cel]t) · C
−1
w + 1c (10)

where w is a scale parameter computed at every time step. Cw is a

constant.max([Ce]t) stands for the largest element in matrix [Ce]t .

1c is a small real number, which prevents the denominator from

being 0 during calculation. Finally, a threshold Tde is introduced

for the final calculation as follows.

Ĝl(x, y, t) =

{
Gl(x, y, t), if Gl(x, y, t) ≥ Tde

0, otherwise
(11)

Therefore, after the processing of the G layer, the grouped

excitations in the S layer representing expanding edges become

stronger, while the isolated excitations caused by background

details are largely filtered out.

3.2. Disparity layer (DP layer)

It is well-known that many creatures in nature have two eyes.

The binocular structure can produce stereo vision, and obtain the

information of depth distance through the disparity, which can

not be achieved by a single eye (Ayache, 1991; Yang et al., 2017;

Vienne et al., 2018). In this section, we use this principle to estimate

the depth distance of moving objects at each time step. For this

purpose, the information from the left and right cameras will be

integrated into the DP layer.

3.2.1. Computing method of disparity
In the pictures taken by the left camera and the right

camera, the imaging positions of the same object are different

(see Figure 3A). More specifically, the imaging positions of closer

objects are shifted considerably, while the difference is smaller for

more distant objects. As shown in Figure 3B, this visual difference

is called “disparity” (Ayache, 1991; Ding et al., 2021).

However, how to calculate the disparity in our model? Since the

G layer mainly extracts the edge of the moving object, Ĝl and Ĝr can

be used to obtain the disparity of the moving object. In the sense of

the disparity described above, it can be computed by the following

mathematical formula:

DP(t) = argmax
d

R∑

x=1

C−d∑

y=1

Ĝl(x, y+ d, t) · Ĝr(x, y, t) (12)

where DP represents the pixel-level disparity, R and C denote

the rows and columns of the input image size. Note that the

formulation here follows the conventions used in the matrix so that

the disparity is on the component y.

In theory, the search range of disparity d should be the

entire image width. However, in practice, we can reduce the

computational cost of the search process based on some clear facts.

For example, since amoving object is always continuously changing
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FIGURE 3

Schematic of binocular vision and disparity. (A) The images taken by the left and the right cameras. (B) For the far scenery, there is a small disparity,

indicated by orange. For the person near, there is a large disparity, represented by black.

in depth distance, the results at the previous time steps can be used

as a reference and searched within a reasonable range. In addition,

mathematically, this optimization function usually gets a larger

calculation result near its optimal disparity, so we can also quickly

find the optimal disparity by jumping search.

3.2.2. Computing method of depth distance
Based on basic geometric knowledge, the depth distance

between the object and the stereo cameras in the world coordinate

system can be calculated using disparity. Specifically, the following

relation holds when the stereo cameras with the same focal length

are on the same horizontal line and the optical axes are parallel

(Zhen et al., 2017; Sun et al., 2019):

D(t) =
b · f

DP(t) · pixelsize
(13)

where D stands for the depth distance of the object. b, f , pixelsize

are constants, which can be obtained from the information of stereo

cameras, representing the baseline length, focal length, and physical

size corresponding to one pixel, respectively.

3.3. LGMD layer

After the DP layer, the proposed Bi-LGMD model is able

to acquire the depth distance information. By comparing D(t)

and D(t − 1), the motion mode of the moving object at

the current time t can be clearly distinguished (approaching,

receding, and translating). However, to achieve a reasonable early

warning response to the approaching movement, it is necessary to

further judge whether the current approaching state is sufficiently

dangerous. To this end, the early warning depth distance, an

adaptive dynamic threshold, is introduced into our model.

3.3.1. Warning depth distance (DW)
In fact, the proposed Bi-LGMD model also potentially extracts

the approaching velocity information at each time step after DP

layer. It is evident that faster moving objects require a greater

warning depth-distance to ensure safety. Thus, the warning depth-

distance should possess the following properties:

DW(t) = F(D(t − 1)− D(t)) (14)

where F(·) is a strictly monotonically increasing function.

There are many functions satisfying the above basic properties.

For simply, linear functions are selected for discussion in this paper.

Therefore, the specific formula is as follows:

DW(t) = CT · (D(t − 1)− D(t)) (15)

Although the linear function appears relatively simple, its

implications are significant. The coefficient CT holds a realistic

physical interpretation, as it represents the time required for the

machinery to avoid collisions, dependent upon individual machine

attributes, such as flexibility in avoidance behavior. Consequently,

if the moving object continues to approach at its current speed,

the system will sound an early warning at the depth distance

of DW , leaving the machine CT time to avoid collisions. It is

important to note that DW is dynamically adaptive, adjusting the

warning depth-distance accordingly in response to changes in

approaching speed.
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By the way, as a parameter with realistic physical

meaning, CT will be set within an appropriate range.

If CT is set too large, the system may trigger an alarm

prematurely. On the other hand, if CT is set too small,

the machine may not have sufficient time to complete the

avoidance maneuver.

3.3.2. Activation of the LGMD neuron
In contrast to existing models that use the sigmoid function

to produce activation values ranging from 0.5 to 1, our model

employs a binary output: 0 and 1, representing the deactivation and

activation of the LGMD neuron, respectively.

Specifically, the output of the LGMD layer is determined by

two parts: one is whether the moving object is approaching, and

the other is whether the moving object reaches the warning depth-

distance DW . The output of the LGMD layer is 1 only if the above

two parts are both true, and 0 otherwise. In this computational

mode, only approaching objects are likely to activate the LGMD

neuron, while objects in other motion modes are certainly not

expected to activate it. Further, even if the object is in the process

of approaching, the LGMD neuron will not be activated when the

object does not reach the warning depth-distance. In other words,

the approaching object is in a distant position and does not pose a

collision threat for the time being, so the LGMD neuron does not

need to be activated.

LGMD(t) =

{
1, if D(t) < DW(t) and D(t) < D(t − 1)

0, otherwise
(16)

4. Experimental results and analysis

In this section, a series of systematic experiments will be

performed from different aspects as comprehensively as possible.

Also, some reasons for the experimental results will be analyzed

in detail. All experiments can be divided into the following three

categories: (1) Basic Synthetic Stimuli Testing, (2) Real Physical

Stimuli Testing, and (3) Model Performance Testing. The state-of-

the-art model (Fu et al., 2018b) will be used for comparison.

4.1. Experimental setup

For basic synthetic stimuli testing and model performance

testing, all the input visual stimuli are generated using Matlab

R2021b according to the projection principle (see Figure 4). The

background is set to a solid color, and the pixel has a grayscale value

of 0.5. For each frame, the image resolution is 600 × 600 pixels. As

to real physical stimuli testing, the input visual stimuli are partly

from our own recorded video (rolling ball) and partly from the

publicly available KITTI dataset (vehicle scene; Geiger et al., 2013).

The image resolutions are 1,280× 720 pixels and 1,242× 375 pixels

for the videos of the rolling ball and vehicle scene, separately.

All videos are at 30 Hz, and the whole parameters are set

according to this sampling rate in the experiments. We list the

parameters of the proposed Bi-LGMD model in Table 1. Without

special explanation, np is 1 and CT is 15. For the comparative

TABLE 1 Setting parameters of the proposed Bi-LGMDmodel.

Parameter Description Value

np Luminance change persistence in Equation (1) 0–2

WI Inhibition weight in Equation (5) 0.3

Cw Constant to calculate w in Equation (10) 4

1c Small real number in Equation (10) 0.01

Tde Decay threshold in G layer in Equation (11) 30

CT Time required to avoid collision in Equation (15) 10–20

model, the parameters recommended in their literature are used.

The computer is equipped with a Core i5 processor with a clock

speed of 3.10 GHz, 16 GB of memory, and the operating system is

Windows 10. All the experiments are conducted using MATLAB

R2021b. The example video clips are shown with results in the

following section.

4.2. Basic synthetic stimuli testing

To verify the basic validity of the proposed Bi-LGMD model,

the computer-simulated stimuli are first used for testing. Common

basic motion modes include the following five types: approaching,

receding, translating, elongating, and shortening. In this section,

all the above five types of simulated stimuli are used in the

experiments. In addition, grating motion is also chosen for testing

as a special phenomenon. As a collision prediction model, the

most desirable result would undoubtedly be to respond only to the

approaching motion, and not to any other form of movement.

Figure 4 illustrates the method of generating simulated

stimulus videos required for the experiments in this section.

For the proposed Bi-LGMD model, two cameras are needed to

generate video data (see Figure 4A), whereas for the comparative

model, only one camera is needed to generate a single video

data (see Figure 4B). In addition, Figures 4C–G represent the five

basic motion modes mentioned above. These data are generated

by Matlab R2021b, simulated by projection transformation

of the depth distance and position of the moving object.

Moreover, in these experiments, the objects are all moving at a

constant speed.

Figure 5 corresponds to the situation of two basic motion

modes in the depth direction: approaching and receding, where

Figures 5A–D show the experimental results of the proposed

model and comparative model for the approaching motion, and

Figures 5E–H show the experimental results of the two models

for the receding motion. For each motion mode, experiments are

conducted with darker and lighter objects separately to eliminate

the effect of the brightness of the object relative to the background

on the experimental results. However, the experimental results

show that the brightness of the object has no effect on the results

for either the proposed Bi-LGMDmodel or the comparative model,

and a uniform output is given here, as shown in Figures 5C, D,

G, H. For the proposed Bi-LGMD model, the computed disparity

results are presented in particular, while the ground truth is also
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FIGURE 4

Schematic of how the stimulus videos are generated for the Bi-LGMD model and the comparative model, as well as five specific motion modes. (A)

Binocular vision input for the Bi-LGMD model. (B) Monocular visual input for the comparative model. (C) Approaching motion. (D) Receding

motion. (E) Translating motion. (F) Elongating motion. (G) Shortening motion.

FIGURE 5

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli moving in the direction of depth. (A)

Schematic diagram of an approaching darker object. (B) Schematic diagram of an approaching brighter object, with the same motion process as in

(A). Identical experimental results for the two sets of simulated stimuli are shown in (C, D). (C) The output of the proposed Bi-LGMD model, including

the computed disparity (compared with the ground-truth), as well as the final response. (D) The output of the comparative model, including the

sigmoid membrane potential (SMP), and its comparison to a given hard threshold (set to 0.7). Similarly, for the receding motion in the depth direction,

the corresponding schematic and experimental results are presented in (E–H) in the same way. Specifically, (E) schematic diagram of a receding

darker object. (F) Schematic diagram of a receding brighter object, with the same motion process as in (E). (G) The output of the proposed Bi-LGMD

model. (H) The output of the comparative model.

marked for comparison. Based on this, the Bi-LGMD model can

calculate the depth distance information and obtain a final 0–1

binarized response output. For the comparative model, the sigmoid

membrane potential (SMP) is shown and combined with a given

hard threshold (set to 0.7), and the same form of response output is

obtained for inter-model comparison.

From the experimental results, it can be seen that the

disparity calculated by the Bi-LGMD model matches the
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FIGURE 6

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli of translating motion (no change in depth

distance). (A) The translating leftward darker object. (B) The translating leftward brighter object. (C) The output of the proposed Bi-LGMD model. (D)

The output of the comparative model. (E) The translating rightward darker object. (F) The translating rightward brighter object. (G) The output of the

proposed Bi-LGMD model. (H) The output of the comparative model.

FIGURE 7

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli of elongating and shortening motion (no

change in depth distance). (A) The elongating darker object. (B) The elongating brighter object. (C) The output of the proposed Bi-LGMD model. (D)

The output of the comparative model. (E) The shortening darker object. (F) The shortening brighter object. (G) The output of the proposed Bi-LGMD

model. (H) The output of the comparative model.

actual value perfectly. Moreover, the model responds to

the approaching stimulus, while it remains unresponsive

to the receding process of the object. In fact, as we know,

when the object recedes, the disparity of the moving object

decreases gradually. Therefore, the model calculates that

the depth distance of the object is getting larger, and then,

the output of the LGMD layer will be 0, which makes the

final result unresponsive. On the contrary, when the object

is approaching, in the initial stage, the model calculates

that the moving object is far away, so there is no response

temporarily. However, as the object gets closer and closer, once the

warning depth-distance is reached, the model quickly produces a

lasting response.

Figure 6 shows the experimental results of the proposed Bi-

LGMD model and the comparative model for simulated stimuli

of translating motion. As can be seen, whether the direction of

translation is to the left or to the right, and whether the moving

object is darker or brighter, the final response is always 0 for

the proposed Bi-LGMD model. In fact, in the three-dimensional

real world, when a moving object is translating horizontally, it is

always at the same depth distance, so the disparity of the moving

object keeps unchanged. The proposed Bi-LGMD model attempts

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1247227
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2023.1247227

to capture exactly this core feature and, from the computational

results, the model does indeed accurately extract the correct

disparity results and therefore achieves satisfactory results. For the

comparative model, the final response is also always 0. However,

as we have seen, the result is based on the comparison of the SMP

with a given threshold, so there is conceivably the possibility that

the model parameters could have a serious effect on the final result.

Furthermore, the fact that the comparative model is based on the

summation of the pixel values output from the G layer means that

the SMP is also affected by the translating speed of the moving

object. Overall, the proposed model effectively extracts more

essential depth-distance information and will therefore behave

more robustly.

Elongating and shortening movements, which are special cases

of translating motion, only show a single translating edge due to the

limited visual field. However, especially for elongating motion, one-

sided changes can easily be confused for edge expansions, which

are then misinterpreted by the model as approaching movements.

Figure 7 shows the experimental results of the proposed Bi-LGMD

model and the comparative model for the moving object in the

process of elongating and shortening. As can be seen, the proposed

model still extracted the correct disparity information very well

and obtained satisfactory experimental results. The experimental

analysis for this group of tests is similar to that in translational

motion and will not be repeated here.

Grating movement is a very common phenomenon in our daily

life. For example, when the sun shines on the front windshield

of a moving car, we can see the bright and dark grating moving

stripes from the driver’s seat. Obviously, the ideal model does

not need to respond to this. However, the grating motion is

always accompanied by the luminance change of the whole field,

resulting in an easily observable response in the model. In order

to suppress this unnecessary response, the existing LGMD-based

models introduce the feedforward inhibition (FFI) mechanism.

However, no evidence has been found to show how feedforward

inhibition could increase the selectivity for approaching over

receding objects (Keil and Rodriguez-Vazquez, 2003), and from

the perspective of biological neurology, there are still some doubts

about the explanation and rationality of it. Moreover, the parameter

setting of the FFI mechanism itself is also a relatively complex

problem. Figure 8 shows the experimental results of the proposed

Bi-LGMD model and the comparative model for simulated stimuli

of grating motion. As can be seen, both models achieve the desired

non-response result. However, the two models do not work in

the same way. The proposed Bi-LGMD model is based on the

computed disparity information, and since there is no change in

depth distance, it is judged that there is no collision risk. In the

comparative model, the FFI mechanism is triggered by the change

of pixel gray value in a large area, forcing the response of the

model to be suppressed. It is worth noting that the spacing between

the grating stripes, and the moving speed, moving direction as

well as the brightness of the grating stripes will not affect the

experimental results of the proposed Bi-LGMD model. In fact,

the “disparity” and “depth distance” are always the essence in any

case, and they are not affected by the above factors. Therefore,

the Bi-LGMD model can easily judge the grating motion as a

translating motion.

So far, in all five basic motion modes as well as the grating

motion, the Bi-LGMD model only responds to the approaching

motion, while remaining unresponsive to any other motion modes,

which fully meet our expectations. Moreover, such response results

are independent of the brightness of the moving object. These

results are largely due to the fact that the Bi-LGMD model obtains

the depth distance of the object by calculating the disparity, and

thus further effectively distinguishing the approaching motion

mode from others. Actually, according to the computed disparity,

the Bi-LGMD model can clearly classify various specific motion

modes into the following three categories: approaching, receding,

and translating. In addition, for approaching motion, the model

will further extract the approaching velocity at each time step,

combined with the current depth distance information, the model

only generates a collision warning if it actually perceives the threat

of an imminent collision, that is, if the object reaches a dynamically

adaptive warning depth-distance.

4.3. Real physical stimuli testing

In the previous section, the validity and superiority of the

proposed Bi-LGMD model is initially verified by simulated

stimuli. In this section, real physical stimuli are used for

testing. Compared with the computer-simulated stimuli, the

biggest difference is that there is more environmental noise in

the real physical scenes, such as shadows, reflections, etc. In

addition, the motion speed and motion state of moving objects

are also relatively unstable. Therefore, visual stimulation in real

physical scenes is undoubtedly a more difficult challenge for

the collision prediction task, but at the same time, it is also

one of the important criteria to evaluate the performance of

the model.

Firstly, the videos of a small moving ball taken indoors are used

for testing. Two GoPro motion cameras of the same model (Hero

8 Black) are used to capture the scene simultaneously. The optical

axes are kept parallel throughout the entire shooting process. The

experimental results are shown in Figure 9. In the approaching ball

video, the green ball is approaching from a distance along a fixed

oblique track. Due to a certain inclination of the track, under the

action of gravitational potential energy, the approaching speed of

the ball gradually accelerates, and the ball bounces on the table

after it gets off the track in the later stage. There are obvious

shadows, reflections, and so on in the video. It can be seen from

the experimental results that bothmodels produce an early warning

response, in which the proposed model has an earlier warning

time, while the comparative model produces the early warning

response in the late stage when the ball’s approaching speed is faster.

Reverse the video sequence to simulate the receding process, and

the Bi-LGMDmodel has no response to that because the computed

disparity is getting smaller over time. However, the comparative

model has two early warnings at the beginning. The outputs are

not shown here for brevity. For the translating ball video (in fact,

it is difficult to ensure that the ball moves strictly in translation,

so the ball is not always at the same depth distance. The so-called

translation here is just a rough visual effect.), no warning response

was generated for both models.
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FIGURE 8

Experimental results of the proposed Bi-LGMD model and the comparative model for simulated stimuli of grating motion (no change in depth

distance). (A) The grating motion with darker stripes. (B) The grating motion with brighter stripes. (C) The output of the proposed Bi-LGMD model. (D)

The output of the comparative model.

FIGURE 9

Experimental results of the proposed Bi-LGMD model and the comparative model for real scene videos of indoor moving ball. (A) The input image

streams of a approaching ball. The blue and orange boxes indicate inputs from the left and right cameras, respectively. (B) The output of the

proposed Bi-LGMD model, including the computed disparity, as well as the final response. (C) The output of the comparative model, including the

sigmoid membrane potential (SMP), and its comparison to a given hard threshold (set to 0.7). Similarly, for the translating ball, the corresponding

schematic and experimental results are presented in (D–F) in the same way. Specifically, (D) the input image streams of a translating ball. (E) The

output of the proposed Bi-LGMD model. (F) The output of the comparative model.
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Following that, the outdoor vehicle scene videos are used for

testing. Here, the public KITTI data set is adopted. For each of the

three basic motion modes, a video is chosen for the experiment,

as shown in Figure 10. For approaching motion, a white vehicle is

approaching from the front as shown in Figure 10A. For receding

motion, a black vehicle drives away as shown in Figure 10D.

For translating motion, a white car moves from the left to the

right in the field of view as shown in Figure 10G. It can be seen

that the experimental results of the proposed Bi-LGMD model

are fully in line with expectations, and can effectively calculate

parallax and obtain satisfactory model output based on depth and

distance information. Compared with the comparative model, the

explainability and robustness of the Bi-LGMD model are stronger,

especially for the backward motion, the Bi-LGMD model shows

better experimental results.

4.4. Model performance testing

As a binocular LGMD-based visual neural network for collision

prediction, Bi-LGMD is fundamentally different from the existing

models in many aspects. The estimation of the depth distance of a

moving object, indeed, brings great benefits to the model. In this

section, we will discuss this in detail, and analyze the advantages of

Bi-LGMD by comparing it with existing models. In the following

experimental comparison, since monocular and binocular stimuli

need to be generated correspondingly, we use computer-simulated

synthetic stimuli to carry out the experiment.

4.4.1. Sensitivity to model parameters
Parameters are undoubtedly crucial for any model and even

have a direct impact on the model results. In this part, the topic

of parameters of Bi-LGMD and existing models will be discussed.

In fact, as we can see, the basic process (P, E, I, S, G layers) of

the proposed Bi-LGMD model is consistent with existing models,

therefore the parameters after the G layer will mainly be discussed.

In existing models, the following function is used to activate

the summation result of G layer as the output of the LGMD layer

(representing the membrane potential of the LGMD neuron). After

that, a given firing threshold Tfir is used to determine whether the

LGMD neuron is activated, such as Yue and Rind (2006), Fu et al.

(2018b, 2019b, 2020), Luan et al. (2021), Lei et al. (2022), and Li

et al. (2022).

LGMD(t) =

(
1+ exp

(−
∑R

x=1

∑C
y=1 Ĝ(x, y, t)

α · R · C

))−1

(17)

Therefore, there are two important parameters involved: α and

Tfir . Obviously, the existingmodels must fully consider the problem

that the given threshold should roughly match the activation

result, which is actually relatively difficult to adjust adaptively. As

we know, the sigmoid function curve y(x) = [1 + exp(−x)]−1

increases monotonically, with a range of 0.5–1. For a standard

collision process that gradually approaches from a distance, the

ideal sigmoid activation result should be approximately from 0.5

to nearly 1, which requires that the parameter α is very suitable so

that the ratio
∑R

x=1

∑C
y=1 Ĝ(x, y, t)/(α · R · C) could almost fill the

interval [0, 3] since y(3) ≈ 0.9526. In other words, if the α is chosen

too large so that the ratio is very small, the sigmoid activation results

will be all near 0. Conversely, if the α is chosen too small, resulting

in the ratio being basically >3, the sigmoid activation results will

be all around 1. Obviously, in these cases, it is difficult to match the

sigmoid activation results with the given thresholds. In addition, it

can be seen from the formula that the value of α will also be affected

by the image sizes R and C, which means that for the same collision

scenario, cameras with different resolutions or different fields of

view will have a serious impact on the model, which makes it more

difficult to determine the parameters α. In summary, the existing

models are very sensitive to the above two parameters (α and Tfir),

making them less robust.

By contrast, in the Bi-LGMD model, there is only one

parameter DW after G layer. Furthermore, this parameter DW(t)

is adaptively adjusted with the motion state of the object at each

time step. In more detail, DW is linearly determined by CT for

convenience in our case, and CT is given a very clear realistic

physical meaning, which can be used as a guide for adjusting.

In addition, Figure 11 demonstrates the impact of these

parameters on the proposedmodel and the comparativemodel. The

video stimuli used in the experiment were simulated approaching

black blocks similar to those shown in Figure 4C. To more

comprehensively illustrate the impact of parameters on the model,

we set the following motion pattern: the object remains stationary

for the first 15 frames, then begins to approach and stops

approaching at frame 37. The speed remains constant during the

approaching process.

It can be seen from the experimental results that the parameter

α has a great impact on the sigmoid membrane potential results

of the existing models, and if an inappropriate value α is selected,

the existing models will fail (under the given firing threshold Tfir).

Contrastingly, the influence of parameter CT on the results of the

proposed Bi-LGMD model is mainly reflected in the early warning

response time. Specifically, the larger the CT value, the earlier

the early warning response time. However, the Bi-LGMD model

will always produce a warning before the collision. In addition,

according to the actual physical meaning of CT , we can reasonably

adjust the value range of CT based on the system performance.

Hence, the proposed model has fewer parameters and is more

robust than the existing model. In terms of parameter adjustment,

the proposed model has more clear guiding significance, so it can

be considered that the proposed model is superior to the existing

models in this respect.

4.4.2. Adaptability to motion modes
By estimating the depth distance of amoving object at each time

step, the Bi-LGMD model accurately identifies its motion modes,

as seen in the previous experiment. To further fully illustrate

the advantage of estimating depth distance, more detailed motion

patterns are used for testing. Since the Bi-LGMD model does not

respond to receding and translating motion, we mainly take the

approachingmotion as an example to illustrate. In particular, unlike

the previous experiments in which the object is always moving at a

constant velocity, we will explore other different approaching cases.

Similar to the experimental setup in Figure 11, during the first 15
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FIGURE 10

Experimental results of the proposed Bi-LGMD model and the comparative model for real scene videos of outdoor moving vehicle. There are three

sets of experiments, each showing examples of the input image streams and the corresponding output of the two models. (A) The input of a

approaching vehicle. (D) The input of a receding vehicle. (G) The input of a translating vehicle. The blue and orange boxes indicate inputs from the

left and right cameras, respectively. (B, E, H) Are the outputs of the proposed Bi-LGMD model, including the computed disparity, as well as the final

responses. (C, F, I) Are the outputs of the comparative model, including the sigmoid membrane potential (SMP), and its comparison to a given hard

threshold (set to 0.7).
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FIGURE 11

Experimental results of the e�ects of parameters on the comparative model and the proposed Bi-LGMD model. (A) The experimental results of the

comparative model. (B) The experimental results of proposed Bi-LGMD model.

frames and the last 15 frames, the object remains stationary in the

simulated stimulus video. The experimental description and results

are shown in Figure 12.

Figure 12A depicts three different approaching patterns in

terms of depth distance and image size over time, represented by

different colors. Among them, the mode represented by the green

line is approaching at a constant speed (Marked as Approaching

Pattern 1), which is the pattern set in all previous experiments.

In particular, the pattern represented by the blue line is a special

deceleration approach, leading to a linear increase in imaging

size (Marked as Approaching Pattern 2). The pattern represented

by the red line is also a deceleration approach, leading to a

gradual decrease in the increment of imaging size (Marked as

Approaching Pattern 3).

Figures 12B, C shows the experimental results of the

comparative model and the proposed Bi-LGMD model for

the Approaching Pattern 2. As can be seen, the SMP output of the

comparative model is almost a horizontal straight line, indicating

that the activity of LGMD cells is always maintained at the same

level. In fact, parameter α does not change the overall shape of

the response, so that the model either reaches the given firing

threshold at the beginning of movement or never, both of which

are not the ideal results. Such experimental results are directly

related to the fact that the imaging size varies linearly. By contrast,

the Bi-LGMD model only outputs 1 for the first few frames when

the object begins to approach, and 0 for the rest of the time. This

result is actually reasonable. As can be seen, the approaching speed

is very fast at the beginning, so the model needs to trigger an

early warning immediately. However, when the approaching speed

of the moving object gradually slows down, there is no collision

threat temporarily, so the output changes to 0. The warning

depth-distance DW of each time step obtained from the model

is shown in (E), when the approaching speed slows down, the

warning depth-distance DW decreases accordingly, which reflects

its dynamic adaptive process. Similarly, Figures 12D, E shows the

experimental results of the comparative model and the proposed

Bi-LGMDmodel for the Approaching Pattern 3.

In summary, the comparative model is not well-adapted to

various approach models, while the Bi-LGMD model can achieve

satisfactory results based on depth distance estimation, as well as

the dynamic adaptive warning depth distance mechanism.

4.4.3. Robustness to the input image streams
Robustness is one of the important indexes for model

evaluation. In the existing models, the quality of the input image

streams has a certain impact on the results, which makes the

model not robust enough. In this section, we select two key factors

affecting image quality (contrast and noise) for testing. We make

a detailed analysis based on the results, and further compare the

differences between Bi-LGMD and the existing models.

4.4.3.1. Contrast

The contrast between the moving object and the background

is obviously a very important factor. In this group of experiments,

since both the background and the moving object are set to a solid

color, the contrast ratio can be simply regarded as the gray value of

the background (the gray value of the moving darker object is set to

0). Intuitively, the greater the contrast, the easier it is for the model

to recognize moving objects and successfully perceive collisions.

But as the contrast gradually decreases, the task of sensing collisions

becomes more difficult.

Figure 13 shows the approaching motion with three different

contrasts. The motion process is based on the Approaching Pattern

1 shown in Figure 12A. For the above three cases, we generated

monocular data and binocular data according to the imaging

principle. As can be seen, in the comparative model, the higher

the contrast, the stronger the activation result of the sigmoid

membrane potential of the LGMD cell. Therefore, in the case of low

contrast, the activation result is far lower than the given threshold,

which makes the model unable to successfully perceive collisions

and generate early warnings. However, for the proposed Bi-LGMD

model, even if the contrast is small enough, the output of the model

is still not affected at all. It is because the Bi-LGMD model does
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FIGURE 12

Experimental results of the proposed Bi-LGMD model and comparative model for three di�erent approaching modes. (A) The specific details of three

di�erent approaches modes. Mode represented by the green line is approaching at a constant speed. Mode represented by the blue line is a special

deceleration approach, leading to a linear increase in imaging size. Mode represented by the red line is also a deceleration approach, leading to a

gradual decrease in the increment of imaging size. (B) The output of the comparative model for the approaching mode represented by the red blue

in (A). (C) The output of the proposed Bi-LGMD model for the approaching mode represented by the blue line in (A). (D) The output of the

comparative model for the approaching mode represented by the red line in (A). (E) The output of the proposed Bi-LGMD model for the approaching

mode represented by the red line in (A). (F) The dynamic adaptive warning depth distance (DW ) and depth distance in (E).

not care about the pixel value, but only needs to match the relevant

position of the moving object from the left and right camera to

obtain the correct disparity, so as to determine the depth distance of

the moving object. As shown in Figure 13D, the model converts the

focus from pixel value to corresponding position matching, which

is a major difference in the Bi-LGMD model. Under this change of

thinking, the model does not rely on the absolute size of the pixel

value, so no matter how the contrast is, the pixel position matching

is still accurate. Therefore, the contrast factor has no effect on the

estimation of the depth distance of the moving object, so naturally,

it does not affect the final effect at all.

4.4.3.2. Image noise

In the previous section, all synthetic stimuli used in the

experiment are clean. However, the input image streams in the real

world are always accompanied by different kinds and degrees of

noise, which is caused by hardware equipment and other factors.

In other words, noise is often an inevitable objective factor in

image sampling. To test the robustness of the model to noise,

different levels of White Gaussian Noise are randomly added to the

synthetic stimulus.

Similar to the experiment on contrast, there are three groups

of approaching processes with different levels of noise, as shown in

Figure 14. Gaussian noise variances (GNV) from left to right are

0.01 (slight noise, green), 0.02 (moderate noise, yellow), and 0.05

(serious noise, blue), respectively. It can be seen that noise has a

serious impact on existing models, while the Bi-LGMD model is

very robust. The reasons here are the same as those mentioned

above. For the existing model, the noise seriously affected the pixel

value, thereby affecting the results of the model. However, for Bi-

LGMD, thematching of corresponding positions is relatively stable.

5. Further discussion

As a research based on binocular LGMD visual neural network,

this paper proposes a novel model with depth distance as the

essential feature, and verifies the feasibility and superiority of this

idea through systematic experiments. In fact, the advantages of
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FIGURE 13

Experimental results of the proposed Bi-LGMD model and the comparative model for same approaching process with di�erent contrast. (A) Visual

examples in three di�erent contrasts, decreasing from left to right. (B) Experimental results of the comparative model. (C) Experimental results of the

proposed Bi-LGMD model. (D) Schematic of the essential di�erences between the two models when dealing with low contrast problems.
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FIGURE 14

Experimental results of the proposed Bi-LGMD model and the comparative model for same approaching process with di�erent levels of noise. (A)

Visual examples in three di�erent levels of noise, increasing from left to right. (B) Experimental results of the comparative model. (C) Experimental

results of the proposed Bi-LGMD model. (D) Schematic of the essential di�erences between the two models when dealing with noise.
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introducing depth distance into models are not limited to the

work described in this paper. On the basis of the proposed Bi-

LGMD model, there are more research directions worth exploring

in the future.

Two points are briefly listed here: (1) For the case of multiple

moving objects, the existing LGMD-based models are difficult to

obtain ideal results due to themixture of multiple stimuli. However,

based on the proposed Bi-LGMDmodel, it is possible to distinguish

moving objects at different depth distances and obtain the motion

pattern of each object to achieve better model results. (2) More

exploration of the approaching azimuth of the moving object can

be attempted. Obviously, as a collision prediction model, it needs

to respond strongly to stimuli that approach directly from the front,

while it does not need to respond to the oblique approach motion

such as passing-by. Based on the Bi-LGMD model and making full

use of depth distance information, these ideas above will be our

follow-up research.

6. Conclusion

This paper presents a LGMD-based neural network with

binocular vision for collision prediction. In this model, the depth-

distance information of moving objects is further taken into

account, which enables the model to correctly distinguish between

approaching and other modes of motion, and the model results

are more interpretable. Moreover, the early warning depth-distance

parameter in the proposed model is designed to be dynamically

adaptive, which allows the model to generate early warnings at the

most appropriate time depending on the individual performance

of the system, which is a great improvement over existing LGMD-

based models. The model no longer depends on the activation

function and a given hard threshold, which mitigates the sensitivity

to model parameters. The proposed Bi-LGMD visual neural

network model is systematically tested on synthetic stimuli and

real-world scene videos, showing that it is effective and robust

to input quality, such as noise, low contrast, and other factors.

Unlike existing LGMD-based models that rely heavily on image

pixel values, the Bi-LGMD model shifts the focus to position

matching, which may be a new line of research to consider in

the future.
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